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Abstract

Infinite random sequences of letters can be viewed as stochastic chains or as strings
produced by a source, in the sense of information theory. The relationship between
Variable Length Markov Chains (VLMC) and probabilistic dynamical sources is stud-
ied. We establish a probabilistic frame for context trees and VLMC and we prove that
any VLMC is a dynamical source for which we explicitly build the mapping. On two
examples, the “comb” and the “bamboo blossom”, we find a necessary and sufficient
condition for the existence and the unicity of a stationary probability measure for the
VLMC. These two examples are detailed in order to provide the associated Dirichlet
series as well as the generating functions of word occurrences.
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1 Introduction

Our objects of interest are infinite random sequences of letters. One can imagine
DNA sequences (the letters are A, C, G, T ), bits sequences (the letters are 0, 1)
or any random sequence on a finite alphabet. Such a sequence can be viewed as
a stochastic chain or as a string produced by a source, in the sense of information
theory. We study this relation for the so-called Variable Length Markov Chains
(VLMC).

From now on, we are given a finite alphabet A. An infinite random sequence of
letters is often considered as a chain (Xn)n∈Z, i.e. an AZ-valued random variable.
The Xn are the letters of the chain. Equivalently such a chain can be viewed as
a random process (Un)n∈N that takes values in the set L := A−N of left-infinite
words1 and that grows by addition of a letter on the right at each step of discrete
time. The L-valued processes we consider are Markovian ones. The evolution
from Un = . . . X−1X0X1 . . . Xn to Un+1 = UnXn+1 is described by the transition
probabilities P(Un+1 = Unα|Un), α ∈ A.

In the context of chains, the point of view has mainly been a statistical one until
now, going back to Harris [14] who speaks of chains of infinite order to express
the fact that the production of a new letter depends on a finite but unbounded
number of previous letters. Comets et al. [7] and Gallo and Garcia [11] deal with
chains of infinite memory. Rissanen [23] introduces a class of models where the
transition from the word Un to the word Un+1 = UnXn+1 depends on Un through
a finite suffix of Un and he calls this relevant part of the past a context. Contexts
can be stored as the leaves of a so-called context tree so that the model is entirely
defined by a family of probability distributions indexed by the leaves of a context
tree. In this paper, Rissanen develops a near optimal universal data compression
algorithm for long strings generated by non independent information sources.
The name VLMC is due to Bühlmann and Wyner [5]. It emphasizes the fact
that the length of memory needed to predict the next letter is a not necessarily
bounded function of the sequence Un. An overview on VLMC can be found in
Galves and Löcherbach [12].

We give in Section 2 a complete probabilistic definition of VLMC. Let us present
here a foretaste, relying on the particular form of the transition probabilities
P(Un+1 = Unα|Un). Let T be a saturated tree on A, which means that every
internal node of the tree – i.e. a word on A – has exactly |A| children. With each
leaf c of the tree, also called a context, is associated a probability distribution qc
on A. The basic fact is that any left-infinite sequence can thus be “plugged in” a

1In the whole text, N denotes the set of nonnegative integers.
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unique context of the tree T : any Un can be uniquely written Un = . . . c, where,
for any word c = α1 · · ·αN , c denotes the reversed word c = αN · · ·α1. In other
terms, for any n, there is a unique context c in the tree T such that c is a suffix
of Un; this word is denoted by c =

←−
pref (Un). We define the VLMC associated

with these data as the L-valued homogeneous Markov process whose transition
probabilities are, for any letter α ∈ A,

P(Un+1 = Unα|Un) = q←−pref (Un)(α).

When the tree is finite, the final letter process (Xn)n≥0 is an ordinary Markov
chain whose order is the height of the tree. The case of infinite trees is more
interesting, providing concrete examples of non Markov chains.

q0100 q0101

q011

q00

q1

x TxT 2x

I0 I1

Figure 1: example of probabilized context tree (on the left) and its corresponding
dynamical system (on the right).

In the example of Figure 1, the context tree is finite of height 4 and, for instance,
P(Un+1 = Un0|Un = · · · 0101110) = q011(0) because

←−
pref (· · · 0101110) = 011

(read the word · · · 0101110 right-to-left and stop when finding a context).

In information theory, one considers that words are produced by a probabilistic
source as developed in Vallée and her group papers (see Clément et al. [6] for an
overview). In particular, a probabilistic dynamical source is defined by a coding
function ρ : [0, 1] → A, a mapping T : [0, 1] → [0, 1] having suitable properties
and a probability measure µ on [0, 1]. These data being given, the dynamical
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source produces the A-valued random process (Yn)n∈N := (ρ(T nξ))n∈N, where ξ is
a µ-distributed random variable on [0, 1]. On the right side of Figure 1, one can
see the graph of some T , a subdivision of [0, 1] in two subintervals I0 = ρ−1(0)
and I1 = ρ−1(1) and the first three real numbers x, Tx and T 2x, where x is a
realization of the random variable ξ. The right-infinite word corresponding to
this example has 010 as a prefix.
We prove in Theorem 3.22 that every stationary VLMC is a dynamical source.
More precisely, given a stationary VLMC, (Un)n∈N say, we construct explicitly
a dynamical source (Yn)n∈N such that the letter processes (Xn)n∈N and (Yn)n∈N
are symmetrically distributed, which means that for any finite word w of length
N + 1, P(X0 . . . XN = w) = P(Y0 . . . YN = w). In Figure 1, the dynamical
system together with Lebesgue measure on [0, 1] define a probabilistic source that
corresponds to the stationary VLMC defined by the drawn probabilized context
tree.

The previous result is possible only when the VLMC is stationary. The question
of existence and unicity of a stationary distribution arises naturally. We give a
complete answer in two particular cases (Proposition 4.23 and Proposition 4.32
in Section 4) and we propose some tracks for the general case. Our two examples
are called the “infinite comb” and the “bamboo blossom”; they can be visualized
in Figures 6 and 7, respectively page 20 and page 31. Both have an infinite
branch so that the letter process of the VLMC is non Markovian. They provide
quite concrete cases of infinite order chains where the study can be completely
handled. We first exhibit a necessary and sufficient condition for existence and
unicity of a stationary measure. Then the dynamical system is explicitly built
and drawn. In particular, for some suitable data values, one gets in this way
examples of intermittent sources.
Quantifying and visualizing repetitions of patterns is another natural question
arising in combinatorics on words. Tries, suffix tries and digital search trees are
usual convenient tools. The analysis of such structures relies on the generating
functions of the word occurrences and on the Dirichlet series attached to the
sources. In both examples, these computations are performed.

The paper is organized as follows. Section 2 is devoted to the precise definition
of variable length Markov chains. In Section 3 the main result Theorem 3.22 is
established. In Section 4, we complete the paper with our two detailed examples:
“infinite comb” and “bamboo blossom”. The last section gathers some prospects
and open problems.
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2 Context trees and variable length Markov chains

In this section, we first define probabilized context trees ; then we associate with a
probabilized context tree a so-called variable length Markov chain (VLMC).

2.1 Words and context trees

Let A be a finite alphabet, i.e. a finite ordered set. Its cardinality is denoted by
|A|. For the sake of shortness, our results in the paper are given for the alphabet
A = {0, 1} but they remain true for any finite alphabet. Let

W =
⋃

n≥0

An

be the set of all finite words over A. The concatenation of two words v = v1 . . . vM
and w = w1 . . . wN is vw = v1 . . . vMw1 . . . wN . The empty word is denoted by ∅.
Let

L = A−N

be the set of left-infinite sequences over A and

R = AN

be the set of right-infinite sequences over A. If k is a nonnegative integer and if
w = α−k · · ·α0 is any finite word on A, the reversed word is denoted by

w = α0 · · ·α−k.

The cylinder based on w is defined as the set of all left-infinite sequences having
w as a suffix:

Lw = {s ∈ L, ∀j ∈ {−k, · · · , 0}, sj = αj}.

By extension, the reversed sequence of s = · · ·α−1α0 ∈ L is s = α0α−1 · · · ∈ R.
The set L is equipped with the σ-algebra generated by all cylinders based on
finite words. The set R is equipped with the σ-algebra generated by all cylinders
wR = {r ∈ R, w is a prefix of r}.

Let T be a tree, i.e. a subset of W satisfying two conditions:

• ∅ ∈ T

• ∀u, v ∈ W , uv ∈ T =⇒ u ∈ T .
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This corresponds to the definition of rooted planar trees in algorithmics. Let
CF (T ) be the set of finite leaves of T , i.e. the nodes of T without any descendant:

CF (T ) = {u ∈ T , ∀j ∈ A, uj /∈ T }.

An infinite word u ∈ R such that any finite prefix of u belongs to T is called an
infinite leaf of T . Let us denote the set of infinite leaves of T by

CI(T ) = {u ∈ R, ∀v prefix of u, v ∈ T }.

Let C(T ) = CF (T ) ∪ CI(T ) be the set of all leaves of T . The set T \ CF (T ) is
constituted by the internal nodes of T . When there is no ambiguity, T is omitted
and we simply write C, CF and CI .

Definition 2.1 A tree is saturated when each internal node w has exactly |A|
children, namely the set {wα, α ⊂ A} ⊂ T .

Definition 2.2 (Context tree)
A context tree is a saturated tree having a finite or denumerable set of leaves.
The leaves are called contexts.

Definition 2.3 (Probabilized context tree)
A probabilized context tree is a pair

(
T , (qc)c∈C(T )

)

where T is a context tree over A and (qc)c∈C(T ) is a family of probability measures
on A, indexed by the denumerable set C(T ) of all leaves of T .

Example 2.4 See Figure 1 for an example of finite probabilized context tree with
five contexts. See Figure 6 for an example of infinite probabilized context tree,
called the infinite comb.

Definition 2.5 A subset K of W ∪ R is a cutset of the complete |A|-ary tree
when both following conditions hold
(i) no word of K is a prefix of another word of K
(ii) ∀r ∈ R, ∃u ∈ K, u prefix of r.

Condition (i) entails unicity in (ii). Obviously a tree T is saturated if and only
if the set of its leaves C is a cutset. Take a saturated tree, then

∀r ∈ R, either r ∈ CI or ∃!u ∈ W , u ∈ CF , u prefix of r. (1)
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This can also be said on left-infinite sequences:

∀s ∈ L, either s ∈ CI or ∃!w ∈ W , w ∈ CF , w suffix of s. (2)

In other words:
L =

⋃

s∈CI

{s} ∪
⋃

w∈CF

Lw. (3)

This partition of L will be extensively used in the sequel. Both cutset properties
(1) and (2) will be used in the paper, on R for trees, on L for chains. Both orders
of reading will be needed.

Definition 2.6 (Prefix function) Let T be a saturated tree and C its set of
contexts. For any s ∈ L,

←−
pref (s) denotes the unique context α1 . . . αN such that

s = . . . αN . . . α1. The map
←−
pref : L → C

is called the prefix function. For technical reasons, this function is extended to

←−
pref : L ∪W → T

in the following way:

• if w ∈ T then
←−
pref (w) = w;

• if w ∈ W \ T then
←−
pref (w) is the unique context α1 . . . αN such that w has

αN . . . α1 as a suffix.

Note that the second item of the definition is also valid when w ∈ C. Moreover
←−
pref (w) is always a context except when w is an internal node.

2.2 VLMC associated with a context tree

Definition 2.7 (VLMC)
Let (T , (qc)c∈C) be a probabilized context tree. The associated Variable Length
Markov Chain (VLMC) is the order 1 Markov chain (Un)n≥0 with state space L,
defined by the transition probabilities

∀n ≥ 0, ∀α ∈ A, P (Un+1 = Unα|Un) = q←−pref (Un) (α) . (4)

Remark 2.8 As usually, we speak of the Markov chain defined by the transition
probabilities (4), because these data together with the distribution of U0 define a
unique L-valued random process (see for example Revuz [22]).
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The rightmost letter of the sequence Un ∈ L will be denoted by Xn so that

∀n ≥ 0, Un+1 = UnXn+1.

The final letter process (Xn)n≥0 is not Markov as soon as the context tree has at
least one infinite context. As already mentioned in the introduction, when the
tree is finite, (Xn)n≥0 is a Markov chain whose order is the height of the tree,
i.e. the length of its longest branch. The vocable VLMC is somehow confusing
but commonly used.

Definition 2.9 (SVLMC) Let (Un)n≥0 be a VLMC. When a stationary prob-
ability measure on L exists and when it is the initial distribution, we say that
(Un)n≥0 is a Stationary Variable Length Markov Chain (SVLMC).

Remark 2.10 In the literature, the name VLMC is usually applied to the chain
(Xn)n∈Z. There exists a natural bijective correspondence between A-valued chains
(Xn)n∈Z and L-valued processes (Un = U0X1 . . . Xn, n ≥ 0). Consequently, finding
a stationary probability for the chain (Xn)n∈Z is equivalent to finding a stationary
probability for the process (Un)n≥0.

3 Stationary variable length Markov chains

The existence and the unicity of a stationary measure for two examples of VLMC
will be established in Section 4. In the present section, we assume that a sta-
tionary measure π on L exists and we consider a π-distributed VLMC. In the
preliminary Section 3.1, we show how the stationary probability of finite words
can be expressed as a function of the data and the values of π at the tree nodes.
In Section 3.2, the main theorem is proved.

3.1 General facts on stationary probability measures

For the sake of shortness, when π is a stationary probability for a VLMC, we
write π(w) instead of π(Lw), for any w ∈ W :

π(w) = P(U0 ∈ Lw) = P(X−(|w|−1) . . . X0 = w). (5)

Extension of notation qu for internal nodes.
The VLMC is defined by its context tree T together with a family (qc)c∈C of
probability measures on A indexed by the contexts of the tree. When u is an

9



internal node of the context tree, we extend the notation qu by

qu(α) =







π(uα)

π(u)
if π(u) 6= 0

0 if π(u) = 0

(6)

for any α ∈ A. Thus, in any case, π being stationary, π(uα) = π(u)qu(α) as soon
as u is an internal node of the context tree. With this notation, the stationary
probability of any cylinder can be expressed by the following simple Formula (8).

Lemma 3.11 Consider a SVLMC defined by a probabilized context tree and let
π denote any stationary probability measure on L. Then,
(i) for any finite word w ∈ W and for any letter α ∈ A,

π(wα) = π(w)q←−pref (w)(α). (7)

(ii) For any finite word w = α1 . . . αN ∈ W,

π(w) =
N−1∏

k=0

q←−pref (α1...αk)(αk+1) (8)

(if k = 0, α1 . . . αk denotes the empty word ∅,
←−
pref (∅) = ∅, q∅(α) = π(α) and

π(∅) = π(L) = 1).

Proof. (i) If w is an internal node of the context tree, then
←−
pref (w) = w and the

formula comes directly from the definition of qw. If not, π(wα) = π(U1 ∈ Lwα)
by stationarity; because of Markov property,

π(wα) = P(U0 ∈ Lw)P(U1 ∈ Lwα|U0 ∈ Lw) = π(w)q←−pref (w)(α).

Finally, (ii) follows from (i) by a straightforward induction.

Remark 3.12 When A = {0, 1} and π is any stationary probability of a SVLMC,
then, for any natural number n, π(10n) = π(0n1). Indeed, on one hand, by
disjoint union, π(0n) = π(0n+1) + π(10n). On the other hand, by stationarity,

π(0n) = P(X1 . . . Xn = 0n) = P(X0 . . . Xn−1 = 0n)

= P(X0 . . . Xn = 0n+1) + P(X0 . . . Xn = 0n1) = π(0n+1) + π(0n1).

These equalities lead to the result. Of course, symmetrically, π(01n) = π(1n0)
under the same assumptions.
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3.2 Dynamical system associated with a VLMC

We begin with a general presentation of a probabilistic dynamical source in Sec-
tion 3.2.1. Then we build step by step partitions of the interval [0, 1] (Sec-
tion 3.2.2) and a mapping (Section 3.2.3) based on the stationary measure of
a given SVLMC. It appears in Section 3.2.4 that this particular mapping keeps
Lebesgue measure invariant. All these arguments combine to provide in the last
Section 3.2.5 the proof of Theorem 3.22 which allows us to see a VLMC as a
dynamical source.

In the whole section, I stands for the real interval [0, 1] and the Lebesgue measure
of a Borelian J will be denoted by |J |.

3.2.1 General probabilistic dynamical sources

Let us present here the classical formalism of probabilistic dynamical sources (see
Clément et al. [6]). It is defined by four elements:

• a topological partition of I by intervals (Iα)α∈A,

• a coding function ρ : I → A, such that, for each letter α, the restriction of
ρ to Iα is equal to α,

• a mapping T : I → I,

• a probability measure µ on I.

Such a dynamical source defines an A-valued random process (Yn)n∈N as follows.
Pick a random real number x according to the measure µ. The mapping T yields
the orbit (x, T (x), T 2(x), . . .) of x. Thanks to the coding function, this defines the
right-infinite sequence ρ(x)ρ(T (x))ρ(T 2(x)) · · · whose letters are Yn := ρ(T n(x))
(see Figure 2).
For any finite word w = α0 . . . αN ∈ W , let

Bw =
N⋂

k=0

T−kIαk

be the Borelian set of real numbers x such that the sequence (Yn)n∈N has w as a
prefix. Consequently, the probability that the source emits a sequence of symbols
starting with the pattern w is equal to µ(Bw). When the initial probability
measure µ on I is T -invariant, the dynamical source generates a stationary A-
valued random process which means that for any n ∈ N, the random variable Yn

is µ-distributed.

11



I0 I1

I0

I1

x Tx T 2x

Figure 2: the graph of a mapping T , the intervals I0 and I1 that code the interval
I by the alphabet A = {0, 1} and the first three points of the orbit of an x ∈ I
by the corresponding dynamical system.

The following classical examples often appear in the literature: let p ∈]0, 1[,
I0 = [0, 1 − p] and I1 =]1 − p, 1]. Let T : I → I be the only function which
maps linearly and increasingly I0 and I1 onto I (see Figure 3 when p = 0.65,
left side). Then, starting from Lebesgue measure, the corresponding probabilistic
dynamical source is Bernoulli: the Yn are i.i.d. and P(Y0 = 1) = p. In the same
vein, if T is the mapping drawn on the right side of Figure 3, starting from
Lebesgue measure, the {0, 1}-valued process (Yn)n∈N is Markov and stationary,
with transition matrix (

0.4 0.6
0.7 0.3

)

.

The assertions on both examples are consequences of Thales theorem. These two
basic examples are particular cases of Theorem 3.22.

3.2.2 Ordered subdivisions and ordered partitions of the interval

Definition 3.13 A family (Iw)w∈W of subintervals of I indexed by all finite words
is said to be an A-adic subdivision of I whenever
(i) for any w ∈ W, Iw is the disjoint union of Iwα, α ∈ A;

12



I0 I1 I0 I1

Figure 3: mappings generating a Bernoulli source and a stationary Markov chain
of order 1. In both cases, Lebesgue measure is the initial one.

(ii) for any v, w ∈ W, if v < w for the alphabetical order, then

∀x ∈ Iv, ∀y ∈ Iw, x < y.

Remark 3.14 For any integer p ≥ 2, the usual p-adic subdivision of I is a
particular case of A-adic subdivision for which |A| = p and |Iw| = p−|w| for any
finite word w ∈ W. For a general A-adic subdivision, the intervals associated
with two k-length words need not have the same length.

The inclusion relations between the subintervals Iw of an A-adic subdivision are
thus coded by the prefix order in the complete |A|-ary planar tree. In particular,
for any w ∈ W and for any cutset K of the complete |A|-ary tree,

Iw =
⋃

v∈K

Iwv

(this union is a disjoint one; see Section 2.1 for a definition of a cutset).
We will use the following convention for A-adic subdivisions: we require the
intervals Iv to be open on the left side and closed on the right side, except the
ones of the form I0n that are compact. Obviously, if µ is any probability measure
on R = AN, there exists a unique A-adic subdivision of I such that |Iw| = µ(wR)
for any w ∈ W .

13



Given an A-adic subdivision of I, we extend the notation Iw to right-infinite
words by

∀r ∈ R, Ir =
⋂

w∈W
w prefix of r

Iw.

Definition 3.15 A family (Iv)v∈V of subintervals of I indexed by a totally ordered
set V is said to define an ordered topological partition of I when
(i) I =

⋃

v∈V cl(Iv),
(ii) for any v, v′ ∈ V , v 6= v′ =⇒ int(Iv) ∩ int(Iv′) = ∅,
(iii) for any v, v′ ∈ V ,

v ≤ v′ =⇒ ∀x ∈ Iv, ∀x′ ∈ Iv′ , x ≤ x′

where cl(Iv) and int(Iv) stand respectively for the closure and the interior of Iv.
We will denote

I =
∑

v∈V

↑ Iv.

We will use the following fact: if I =
∑

v∈V ↑ Iv =
∑

v∈V ↑ Jv are two ordered
topological partitions of I indexed by the same denumerable ordered set V , then
Iv = Jv for any v ∈ V as soon as |Iv| = |Jv| for any v ∈ V .

3.2.3 Definition of the mapping T

Let (Un)n≥0 be a SVLMC, defined by its probabilized context tree (T , (qc)c∈C) and
a stationary2 probability measure π on L. We first associate with π the unique
A-adic subdivision (Iw)w∈W of I, defined by:

∀w ∈ W , |Iw| = π(w),

(recall that if w = α1 . . . αN , w is the reversed word αN . . . α1 and that π(w)
denotes π(Lw)).

We consider now three ordered topological partitions of I.

• The coding partition
It consists in the family (Iα)α∈A:

I =
∑

α∈A

↑ Iα = I0 + I1.

2Note that this construction can be made replacing π by any probability measure on L.
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• The vertical partition
The denumerable set of finite and infinite contexts C is a cutset of the A-ary tree.
The family (Ic)c∈C thus defines the so-called vertical ordered topological partition

I =
∑

c∈C

↑ Ic.

• The horizontal partition
AC is the set of leaves of the context tree AT = {αw, α ∈ A, w ∈ T }. As
before, the family (Iαc)αc∈AC defines the so-called horizontal ordered topological
partition

I =
∑

αc∈AC

↑ Iαc.

Definition 3.16 The mapping T : I → I is the unique left continuous function
such that:
(i) the restriction of T to any Iαc is affine and increasing;
(ii) for any αc ∈ AC, T (Iαc) = Ic.

The function T is always increasing on I0 and on I1. When qc(α) 6= 0, the slope
of T on an interval Iαc is 1/qc(α). Indeed, with Formula (7), one has

|Iαc| = π(cα) = qc(α)π(c) = |Ic|qc(α).

When qc(α) = 0 and |Ic| 6= 0, the interval Iαc is empty so that T is discontinuous
at xc = π({s ∈ L, s ≤ c}) (≤ denotes here the alphabetical order on R). Note
that |Ic| = 0 implies |Iαc| = 0. In particular, if one assumes that all the probability
measures qc, c ∈ C, are nontrivial (i.e. as soon as they satisfy qc(0)qc(1) 6= 0),
then T is continuous on I0 and I1. Furthermore, T (I0) = cl(T (I1)) = I and for
any c ∈ C, T−1Ic = I0c ∪ I1c (see Figure 4).

Example: the four flower bamboo
The four flower bamboo is the VLMC defined by the finite probabilized context
tree of Figure 5. There exists a unique stationary measure π under conditions
which are detailed later, in Example 5.40. We represent on Figure 5 the mapping
T built with this π, together with the respective subdivisions of x-axis and y-
axis by the four Ic and the eight Iαc. The x-axis is divided by both coding and
horizontal partitions; the y-axis is divided by both coding and vertical partitions.
This figure has been drawn with the following data on the four flower bamboo:
q00(0) = 0.4, q010(0) = 0.6, q011(0) = 0.8 and q1(0) = 0.3.
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Figure 4: action of T on horizontal and vertical partitions. On this figure, c is
any context and the alphabet is {0, 1}.
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Figure 5: on the left, the 4 flower bamboo context tree. On the right, its mapping
together with the coding, the vertical and the horizontal partitions of [0, 1].

3.2.4 Properties of the mapping T

The following key lemma explains the action of the mapping T on the intervals of
the A-adic subdivision (Iw)w∈W . More precisely, it extends the relation T (Iαc) =
Ic, for any αc ∈ AC, to any finite word.
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Lemma 3.17 For any finite word w ∈ W and any letter α ∈ A, T (Iαw) = Iw.

Proof. Assume first that w /∈ T . Let then c ∈ C be the unique context such that
c is a prefix of w. Because of the prefix order structure of the A-adic subdivision
(Iv)v, one has the first ordered topological partition

Ic =
∑

v∈W, |v|=|w|
c prefix of v

↑ Iv (9)

(the set of indices is a cutset in the tree of c descendants). On the other hand,
the same topological partition applied to the finite word αw leads to

Iαc =
∑

v∈W, |v|=|w|
c prefix of v

↑ Iαv.

Taking the image by T , one gets the second ordered topological partition

Ic =
∑

v∈W, |v|=|w|
c prefix of v

↑T (Iαv). (10)

Now, if c is a prefix of a finite word v, Iαv ⊆ Iαc and the restriction of T to Iαc is
affine. By Thales theorem, it comes

|T (Iαv)| = |Iαv|.
|Ic|

|Iαc|
.

Since π is a stationary measure for the VLMC,

|Iαc| = π(cα) = qc(α)π(c) = |Ic|qc(α).

Furthermore, one has π(vα) = qc(α)π(v). Finally, |T (Iαv)| = |Iv|. Relations (9)
and (10) are two ordered denumerable topological partitions, the components
with the same indices being of the same length: the partitions are necessarily the
same. In particular, because w belongs to the set of indices, this implies that
T (Iαw) = Iw.
Assume now that w ∈ T . Since the set of contexts having w as a prefix is a cutset
of the tree of the descendants of w, one has the disjoint union

Iαw =
⋃

c∈C
w prefix of c

Iαc.
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Taking the image by T leads to

T (Iαw) =
⋃

c∈C,w prefix of c

Ic = Iw

and the proof is complete.

Remark 3.18 The same proof shows in fact that if w is any finite word, T−1Iw =
I0w ∪ I1w (disjoint union).

Lemma 3.19 For any α ∈ A, for any context c ∈ C, for any Borelian set B ⊆ Ic,

|Iα ∩ T−1B| = |B|qc(α).

Proof. It is sufficient to show the lemma when B is an interval. The restriction
of T to Iαc is affine and T−1Ic = I0c ∪ I1c. The result is thus due to Thales
Theorem.

Corollary 3.20 If T is the mapping associated with a SVLMC, Lebesgue measure
is invariant by T , i.e. |T−1B| = |B| for any Borelian subset of I.

Proof. Since B =
⋃

c∈C B∩Ic (disjoint union), it suffices to prove that |T−1B| =
|B| for any Borelian subset of Ic where c is any context. If B ⊆ Ic, because of
Lemma 3.19,

|T−1B| = |I0 ∩ T−1B|+ |I1 ∩ T−1B| = |B|(qc(0) + qc(1)) = |B|.

3.2.5 SVLMC as dynamical source

We now consider the stationary probabilistic dynamical source ((Iα)α∈A, ρ, T, |.|)
built from the SVLMC. It provides the A-valued random process (Yn)n∈N defined
by

Yn = ρ(T nξ)

where ξ is a uniformly distributed I-valued random variable and ρ the coding
function. Since Lebesgue measure is T -invariant, all random variables Yn have
the same law, namely P(Yn = 0) = |I0| = π(0).

Definition 3.21 Two A-valued random processes (Vn)n∈N and (Wn)n∈N are called
symmetrically distributed whenever for any N ∈ N and for any finite word
w ∈ AN+1, P(W0W1 . . .WN = w) = P(V0V1 . . . VN = w).
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In other words, (Vn)n∈N and (Wn)n∈N are symmetrically distributed if and only
if for any N ∈ N, the random words W0W1 . . .WN and VNVN−1 . . . V0 have the
same distribution.

Theorem 3.22 Let (Un)n∈N be a SVLMC and π a stationary probability measure
on L. Let (Xn)n∈N be the process of final letters of (Un)n∈N. Let T : I → I be the
mapping defined in Section 3.2.3. Then,
(i) Lebesgue measure is T -invariant.
(ii) If ξ is any uniformly distributed random variable on I, the processes (Xn)n∈N
and (ρ(T nξ))n∈N are symmetrically distributed.

Proof. (i) has been already stated and proven in Corollary 3.20.
(ii) As before, for any finite word w = α0 . . . αN ∈ W , let Bw =

⋂N

k=0 T
−kIαk

be
the Borelian set of real numbers x such that the right-infinite sequence (ρ(T nx))n∈N
has w as a prefix. By definition, Bα = Iα if α ∈ A. More generally, we
prove the following claim: for any w ∈ W, Bw = Iw. Indeed, if α ∈ A
and w ∈ W , Bαw = Iα ∩ T−1Bw; thus, by induction on the length of w,
Bαw = Iα ∩ T−1Iw = Iαw, the last equality being due to Lemma 3.17. There
is now no difficulty in finishing the proof: if w ∈ W is any finite word of length
N + 1, then P(X0 . . . XN = w) = π(w) = |Iw|. Thus, because of the claim,
P(X0 . . . XN = w) = |Bw| = P(Y0 . . . YN = w). This proves the result.

4 Examples

4.1 The infinite comb

4.1.1 Stationary probability measures

Consider the probabilized context tree given on the left side of Figure 6. In this
case, there is one infinite leaf 0∞ and countably many finite leaves 0n1, n ∈ N.
The data of a corresponding VLMC consists thus in probability measures on
A = {0, 1}:

q0∞ and q0n1, n ∈ N.

Suppose that π is a stationary measure on L. We first compute π(w) (notation
(5)) as a function of π(1) when w is any context or any internal node. Because of
Formula (7), π(10) = π(1)q1(0) and an immediate induction shows that, for any
n ≥ 0,

π(10n) = π(1)cn, (11)
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Figure 6: infinite comb probabilized context tree (on the left) and the associated
dynamical system (on the right).

where c0 = 1 and, for any n ≥ 1,

cn =
n−1∏

k=0

q0k1(0). (12)

The stationary probability of a reversed context is thus necessarily given by For-
mula (11). Now, if 0n is any internal node of the context tree, we need going
down along the branch in T to reach the contexts; using then the disjoint union
π(0n+1) = π(0n)− π(10n), by induction, it comes for any n ≥ 0,

π(0n) = 1− π(1)
n−1∑

k=0

ck. (13)

The stationary probability of a reversed internal node of the context tree is thus
necessarily given by Formula (13).

It remains to compute π(1). The denumerable partition of the whole probability
space given by all cylinders based on leaves in the context tree (Formula (3))
implies 1− π(0∞) = π(1) + π(10) + π(100) + . . . , i.e.

1− π(0∞) =
∑

n≥0

π(1)cn. (14)
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This leads to the following statement that covers all cases of existence, unicity
and nontriviality for a stationary probability measure for the infinite comb. In
the generic case (named irreducible case hereunder), we give a necessary and suf-
ficient condition on the data for the existence of a stationary probability measure;
moreover, when a stationary probability exists, it is unique. The reducible case
is much more singular and gives rise to nonunicity.

Proposition 4.23 (Stationary probability measures for an infinite comb)
Let (Un)n≥0 be a VLMC defined by a probabilized infinite comb.

(i) Irreducible case

Assume that q0∞(0) 6= 1.

(i.a) Existence
The Markov process (Un)n≥0 admits a stationary probability measure on L if and
only if the numerical series

∑
cn defined by (12) converges.

(i.b) Unicity
Assume that the series

∑
cn converges and denote

S(1) =
∑

n≥0

cn. (15)

Then, the stationary probability measure π on L is unique; it is characterized by

π(1) =
1

S(1)
(16)

and Formulae (11), (13) and (8).
Furthermore, π is trivial if and only if q1(0) = 0, in which case it is defined by
π(1∞) = 1.

(ii) Reducible case

Assume that q0∞(0) = 1.

(ii.a) If the series
∑

cn diverges, then the trivial probability measure π on L
defined by π(0∞) = 1 is the unique stationary probability.

(ii.b) If the series
∑

cn converges, then there is a one parameter family of sta-
tionary probability measures on L. More precisely, for any a ∈ [0, 1], there exists
a unique stationary probability measure πa on L such that πa(0

∞) = a. The
probability πa is characterized by πa(1) =

1−a
S(1)

and Formulae (11), (13) and (8).
Furthermore, πa is non trivial except in the two following cases:
• a = 1, in which case π1 is defined by π1(0

∞) = 1;
• a = 0 and q1(0) = 0, in which case π0 is defined by π0(1

∞) = 1.
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Proof. (i) Assume that q0∞(0) 6= 1 and that π is a stationary probability mea-
sure. By definition of probability transitions, π(0∞) = π(0∞)q0∞(0) so that π(0

∞)
necessarily vanishes. Thus, thanks to (14), π(1) 6= 0, the series

∑
cn converges

and Formula (16) is valid. Moreover, when w is any context or any internal node
of the context tree, π(w) is necessarily given by Formulae (16), (11) and (13).
This shows that for any finite word w, π(w) is determined by Formula (8). Since
the cylinders Lw, w ∈ W span the σ-algebra on L, there is at most one stationary
probability measure. This proves the only if part of (i.a), the unicity and the
characterization claimed in (i.b).
Reciprocally, when the series converges, Formulae (16), (11), (13) and (8) define
a probability measure on the semiring spanned by cylinders, which extends to a
stationary probability measure on the whole σ-algebra on L (see Billingsley [3]
for a general treatment on semirings, σ-algebra, definition and characterization
of probability measures). This proves the if part of (i.a). Finally, the definition
of cn directly implies that S(1) = 1 if and only if q1(0) = 0. This proves the
assertion of (i.b) on the triviality of π.

(ii) Assume that q0∞(0) = 1. Formula (14) is always valid so that the divergence
of the series

∑
cn forces π(1) to vanish and, consequently, any stationary measure

π to be the trivial one defined by π(0∞) = 1.
Besides, with the assumption q0∞(0) = 1, one immediately sees that this trivial
probability is stationary, proving (ii.a).
To prove (ii.b), assume furthermore that the series

∑
cn converges and let a ∈

[0, 1]. As before, any stationary probability measure π is completely determined
by π(1). Moreover, the probability measure defined by πa(1) = 1−a

S(1)
, Formu-

lae (11), (13) and (8) and standardly extended to the whole σ-algebra on L is
clearly stationary. Because of Formula (14), it satisfies

πa(0
∞) = 1− πa(1)S(1) = a.

This proves the assertion on the one parameter family. Finally, πa is trivial only if
πa(1) ∈ {0, 1}. If a = 1 then πa(1) = 0 thus π1 is the trivial probability that only
charges 0∞. If a = 0 then πa(1) = 1/S(1) is nonzero and it equals 1 if and only
if S(1) = 1, i.e. if and only if q1(0) = 0, in which case π0 is the trivial probability
that only charges 1∞.

Remark 4.24 This proposition completes previous results which give sufficient
conditions for the existence of a stationary measure for an infinite comb. For
instance, in Galves and Löcherbach [12], the intervening condition is

∑

k≥0

q0k1(1) = +∞,
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which is equivalent with our notations to cn → 0. Note that if
∑

cn is divergent,
then the only possible stationary distribution is the trivial Dirac measure δ0∞.

4.1.2 The associated dynamical system

The vertical partition is made of the intervals I0n1 for n ≥ 0. The horizontal
partition consists in the intervals I00n1 and I10n1, for n ≥ 0, together with two in-
tervals coming from the infinite context, namely I0∞ and I10∞ . In the irrreducible
case, π(0∞) = 0 and these two last intervals become two accumulation points of
the partition: 0 and π(0). The following lemma is classical and helps understand
the behaviour of the mapping T at these accumulation points.

Lemma 4.25 Let f : [a, b] → R be continuous on [a, b], differentiable on ]a, b[\D
where D is a countable set. The fonction f admits a right derivative at a and

f ′r(a) = lim
x→a,x>a

x/∈D

f ′(x)

as soon as this limit exists.

Corollary 4.26 If (q0n1(0))n∈N converges, then T is differentiable at 0 and π(0)
(with a possibly infinite derivative) and

T ′r(0) = lim
n→+∞

1

q0n1(0)
, T ′r(π(0)) = lim

n→+∞

1

q0n1(1)
.

When (q0n1(0))n∈N converges to 1, T ′r(0) = 1. In this case, 0 is an indifferent
fixed point and T ′r(π(0)) = +∞. The mapping T is a slight modification of the
so-called Wang map (Wang [27]). The statistical properties of the Wang map are
quite well understood (Lambert et al. [17]). The corresponding dynamical source
is said intermittent.

4.1.3 Dirichlet series.

For a stationary infinite comb, the Dirichlet series is defined on a suitable vertical
open strip of C as

Λ(s) =
∑

w∈W

π(w)s.

In the whole section we suppose that
∑

cn is convergent. Indeed, if it is divergent
then the only stationary measure is the Dirac measure δ0∞ and Λ(s) is never
defined.
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The computation of the Dirichlet series is tractable because of the following for-
mula: for any finite words w,w′ ∈ W ,

π(w1w′)π(1) = π(w1)π(1w′). (17)

This formula, which comes directly from Formula (8), is true because of the very
particular form of the contexts in the infinite comb. It is the expression of its
renewal property. The computation of the Dirichlet series is made in two steps.

Step 1. A finite word either does not contain any 1 or is of the form w10n,
w ∈ W , n ≥ 0. Thus,

Λ(s) =
∑

n≥0

π(0n)s +
∑

n≥0

∑

w∈W

π(w10n)s.

Because of Formulae (17) and (16), π(w10n) = S(1)π(w1)π(10n). Let us denote

Λ1(s) =
∑

w∈W

π(w1)s.

With this notation and Formulae (11) and (13),

Λ(s) =
1

S(1)s

∑

n≥0

Rs
n + Λ1(s)

∑

n≥0

csn

where Rn stands for the rest
Rn =

∑

k≥n

ck. (18)

Step 2. It consists in the computation of Λ1. A finite word having 1 as last
letter either can be written 0n1, n ≥ 0 or is of the form w10n1, w ∈ W , n ≥ 0.
Thus it comes,

Λ1(s) =
∑

n≥0

π(0n1)s +
∑

n≥0

∑

w∈W

π(w10n1)s.

By Formulae (17) and (11), π(w10n1) = π(w1)cnq0n1(1) = π(w1)(cn − cn+1), so
that

Λ1(s) =
1

S(1)s

∑

n≥0

csn + Λ1(s)
∑

n≥0

(cn − cn+1)
s

and

Λ1(s) =
1

S(1)s
·

∑

n≥0 c
s
n

1−
∑

n≥0(cn − cn+1)s
.

Putting results of both steps together, we obtain the following proposition.
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Proposition 4.27 With notations (12), (15) and (18), the Dirichlet series of a
source obtained from a stationary infinite comb is

Λ(s) =
1

S(1)s

[
∑

n≥0

Rs
n +

(∑

n≥0 c
s
n

)2

1−
∑

n≥0(cn − cn+1)s

]

.

Remark 4.28 The analytic function
(
∑

n≥0 c
s
n)

2

1−
∑

n≥0(cn−cn+1)s
is always singular for s = 1

because its denominator vanishes while its numerator is a convergent series.

Examples. (1) Suppose that 0 < a < 1 and that q0n1(0) = a for any n ≥ 0.
Then cn = an, Rn = an

1−a
and S(1) = 1

1−a
. For such a source, the Dirichlet series

is

Λ(s) =
1

1− [as + (1− a)s]
.

In this case, the source is memoryless: all letters are drawn independently with
the same distribution. The Dirichlet series of such sources have been extensively
studied in Flajolet et al. [8] in the realm of asymptotics of average parameters of
a trie.

(2) Extension of Example 1: take a, b ∈]0, 1[ and consider the probabilized infinite
comb defined by

q0n1(0) =

{
a if n is even,
b if n is odd.

After computation, the Dirichlet series of the corresponding source under the
stationary distribution turns out to have the explicit form

Λ(s) =
1

1− (ab)s

[

1 +

(
a+ ab

1 + a

)s

+

(
1− ab

1 + a

)s
(1 + as)2

1− (ab)s − (1− a)s − as(1− b)s

]

.

The configuration of poles of Λ depends on arithmetic properties (approximation
by rationals) of the logarithms of ab, 1−a and a(1−b). The poles of such a series
are the same as in the case of a memoryless source with an alphabet of three
letters, see Flajolet et al. [8]. This could be extended to a family of examples.

(3) Let α > 2. We take data q0n1(0), n ≥ 0 in such a way that c0 = 1 and, for
any n ≥ 1,

cn = ζ(n, α) :=
1

ζ(α)

∑

k≥n

1

kα
,
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where ζ is the Riemann function. Since cn ∈ O(n1−α) when n tends to infinity,
there exists a unique stationary probability measure π on L. One obtains

S(1) = 1 +
ζ(α− 1)

ζ(α)

and, for any n ≥ 1,

Rn =
ζ(α− 1)

ζ(α)
ζ(n, α− 1)− (n− 1)ζ(n, α).

In particular, Rn ∈ O(n2−α) when n tends to infinity. The final formula for the
Dirichlet series of this source is

Λ(s) =
1

S(1)s

[
∑

n≥0

Rs
n +

(∑

n≥0 c
s
n

)2

1− ζ(αs)
ζ(α)s

]

.

(4) One case of interest is when the associated dynamical system has an indifferent
fixed point (see Section 4.1.2), for example when

q0n1(0) =

(

1−
1

n+ 2

)α

,

with 1 < α < 2. In this situation, cn = (1 + n)−α and

Λ(s) =
∑

n≥1

ζ(n, α)s +
ζ(αs)2

ζ(α)s
·

1

1−
∑

n≥1

1

nαs

[

1−

(

1−
1

n+ 1

)α] .

4.1.4 Generating function for the exact distribution of word occur-
rences in a sequence generated by a comb

The behaviour of the entrance time into cylinders is a natural question arising in
dynamical systems. There exists a large literature on the asymptotic properties of
entrance times into cylinders for various kind of systems, symbolic or geometric;
see Abadi and Galves [1] for an extensive review on the subject. Most of the
results deal with an exponential approximation of the distribution of the first
entrance time into a small cylinder, sometimes with error terms. The most up-
to-date result on this framework is Abadi and Saussol [2], not published yet, in
which the hypothesis are made only in terms of the mixing type of the source
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(so-called α-mixing). We are here interested in exact distribution results instead
of asymptotic behaviours.
Several studies in probabilities on words are based on generating functions. For
example one may cite Régnier [20], Reinert et al. [21], Stefanov and Pakes [25].
For i.i.d. sequences, Blom and Thorburn [4] give the generating function of the
first occurrence of a word, based on a recurrence relation on the probabilities. This
result is extended to Markovian sequences by Robin and Daudin [24]. Nonethe-
less, other approaches are considered: one of the more general techniques is the
so-called Markov chain embedding method introduced by Fu [9] and further de-
velopped by Fu and Koutras [10], Koutras [16]. A martingale approach (see
Gerber and Li [13], Li [18], Williams [28]) is an alternative to the Markov chain
embedding method. These two approaches are compared in Pozdnyakov et al.
[19].

We establish results on the exact distribution of word occurrences in a random
sequence generated by a comb (or a bamboo in Section 4.2.4). More precisely,
we make explicit the generating function of the random variable giving the rth

occurrence of a k-length word, for any word w such that w is not an internal node
of T .
Let us consider the process X = (Xn)n≥0 of final letters of (Un)n≥0, in the partic-
ular case of a SVLMC defined by an infinite comb. Let w = w1 . . . wk be a word
of length k ≥ 1. We say that w occurs at position n ≥ k in the sequence X if the
word w ends at position n:

{w at n} = {Xn−k+1 . . . Xn = w} = {Un ∈ Lw}.

Let us denote by T
(r)
w the position of the rth occurrence of w in X and Φ

(r)
w its

generating function:

Φ(r)
w (x) :=

∑

n≥0

P
(
T (r)
w = n

)
xn.

The following notation is used in the sequel: for any finite word u ∈ W , for any
finite context c ∈ C and for any n ≥ 0,

q(n)c (u) = P
(
Xn−|u|+1 . . . Xn = u|X−(|c|−1) . . . X0 = c

)
.

These quantities may be computed in terms of the data qc. Proposition 4.29
generalizes results of Robin and Daudin [24].

Proposition 4.29 For a SVLMC defined by an infinite comb, with the above
notations, for a word w such that w is non internal node, the generating function
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of its first occurrence is given, for |x| < 1, by

Φ(1)
w (x) =

xkπ(w)

(1− x)Sw(x)

and the generating function of its rth occurrence is given, for |x| < 1, by

Φ(r)
w (x) = Φ(1)

w (x)

(

1−
1

Sw(x)

)r−1

,

where

Sw(x) = Cw(x) +
∞∑

j=k

q
(j)
←−
pref (w)(w)x

j,

Cw(x) = 1 +
k−1∑

j=1

1{wj+1...wk=w1...wk−j}q
(j)
←−
pref (w) (wk−j+1 . . . wk) x

j.

Remark 4.30 The term Cw(x) is a generalization of the probabilized autocor-
relation polynomial defined in Jacquet and Szpankowski [15] in the particular
case when the (Xn)n≥0 are independent and identically distributed. For a word
w = w1 . . . wk this polynomial is equal to

cw(x) =
k−1∑

j=0

cj,w
1

π(w1 . . . wk−j)
xj,

where cj,w = 1 if the k−j-length suffix of w is equal to its k−j-length prefix, and
is equal to zero otherwise. When the (Xn)n≥0 are independent and identically
distributed, we have

k−1∑

j=1

1{wj+1...wk=w1...wk−j}q
(j)
←−
pref (w) (wk−j+1 . . . wk) x

j =
k−1∑

j=1

cj,w
π(w)

π (w1 . . . wk−j)
xj

that is
Cw(x) = π(w)cw(x).

Proof. We first deal with w = 10k−1, that is the only word w of length k such
that w ∈ C. For the sake of shortness, we will denote by pn the probability that
T

(1)
w = n. From the obvious decomposition

{w at n} = {T (1)
w = n} ∪ {T (1)

w < n and w at n}, (disjoint union)
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it comes by stationarity of π

π(w) = pn +
n−1∑

z=k

pz P
(
Xn−k+1 . . . Xn = w|T (1)

w = z
)
.

Due to the renewal property of the comb, the conditional probability can be
rewritten

{
P (Xn−k+1 . . . Xn = w|Xz−k+1 . . . Xz = w) if z ≤ n− k
0 if z > n− k

,

the second equality is due to the lack of possible auto-recovering in w. Conse-
quently, we have

π(w) = pn +
n−k∑

z=k

pzq
(n−z)
w (w).

Hence, for x < 1, it comes

xkπ(w)

1− x
=

+∞∑

n=k

pnx
n +

+∞∑

n=k

xn

n−k∑

z=k

pzq
(n−z)
w (w),

so that
xkπ(w)

1− x
= Φ(1)

w (x)

(

1 +
∞∑

j=k

xjq
(j)
w (w)

)

,

which leads to

Φ(1)
w (x) =

xkπ(w)

(1− x)Sw(x)
.

Note that when w = 10k−1, Cw(x) = 1.
Proceeding in the same way for the rth occurrence, from the decomposition

{w at n} = {T (1)
w = n} ∪ {T (2)

w = n} ∪ . . . ∪ {T (r)
w = n} ∪ {T (r)

w < n and w at n},

and denoting p(n, ℓ) = P(T
(ℓ)
w = n), the following recursive equation holds:

π(w) = pn + p(n, 2) + . . .+ p(n, r) +
n−1∑

z=k

P
(
T (r)
w = z and w at n

)
.

Again, by splitting the last term into two terms and using the non-overlapping
structure of w, one gets

π(w) = pn + p(n, 2) + . . .+ p(n, r) +
n−k∑

z=k

pzq
(n−z)
w (w).
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From this recursive equation, proceeding exactly in the same way, one gets for
the generating function, for x < 1,

Φ(r)
w (x) = Φ(1)

w (x)

(

1−
1

Sw(x)

)r−1

.

Let us now consider the case of words w such that w /∈ T , that is the words w
such that wj = 1 for at least one integer j ∈ {2, . . . , k}. We denote by i the last
position of a 1 in w, that is

←−
pref (w) = 0k−i1. Once again we have

π(w) = pn +
n−1∑

z=k

pz P
(
Xn−k+1 . . . Xn = w|T (1)

w = z
)
.

When z ≤ n− k, due to the renewal property, the conditional probability can be
rewritten as

P
(
Xn−k+1 . . . Xn = w|T (1)

w = z
)
= q

(n−z)
←−
pref (w)(w).

nz

w1 wk−n+z wk

w1 wn−z+1 wk

When z > n− k (see figure above),

P
(
w at n|T 1

w = z
)
= 1{wn−z+1...wk=w1...wk−n+z}q

(n−z)
←−
pref (w)(wk−n+z+1 . . . wk),

w = ∗10 · · · 0
︷ ︸︸ ︷
k−i

✻
n−k+i

✻
n

this equality holding if n − k + i 6= z. But when z =
n − k + i, because the first occurrence of w is at z,
necessarily wk = 1 and hence i = k, and z = n which
contradicts z < n. Consequently for z = n − k + i we
have

P
(
Xn−k+1 . . . Xn = w|T 1

w = z
)
= 0 = 1{wn−z+1...wk=w1...wk−n+z}.

Finally one gets

π(w) = pn +
n−k∑

z=1

pzq
(n−z)
←−
pref (w)(w)

+
n−1∑

z=n−k+1

pz1{wn−z+1...wk=w1...wk−n+z}q
(n−z)
←−
pref (w)(wk−n+z+1 . . . wk),
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and hence

Φ(1)
w (x) =

xkπ(w)/(1− x)

1 +
∞∑

j=k

xjq
(j)
←−
pref (w)(w) +

k−1∑

j=1

xj1{wj+1...wk=w1...wk−j}q
(j)
←−
pref (w)(wk−j+1 . . . wk)

.

Proceeding exactly in the same way by induction on r, we get the expression of
Theorem 4.29 for the r-th occurrence.

Remark 4.31 The case of internal nodes w = 0k is more intricate, due to the
absence of any symbol 1 allowing a renewal argument. Nevertheless, for the forth-
coming applications, we will not need the explicit expression of the generating
function of such words occurrences.

4.2 The Bamboo blossom

4.2.1 Stationary probability measures

Consider the probabilized context tree given by the left side of Figure 7.

q1

q00

q011

q0100

q01011

q(01)n00

q(01)n+11

q(01)∞
I0 I1

I0

I1

Figure 7: bamboo blossom probabilized context tree (on the left) and the associ-
ated dynamical system (on the right).

The data of a corresponding VLMC consist in probability measures on A indexed
by the two families of finite contexts

(q(01)n1)n≥0 and (q(01)n00)n≥0
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together with a probability measure on the infinite context q(01)∞ .
As before, assuming that π is a stationary probability measure on L, we compute
the probabilities of any π(w), w being an internal node or w being a context,
as functions of the data and of both π(1) and π(00). Determination of sta-
tionary probabilities of cylinders based on both contexts 1 and 00 then leads to
assumptions that guarantee existence and unicity of such a stationary probability
measure.

Computation of π(w), w context
Two families of cylinders, namely L1(10)n and L00(10)n, correspond to con-
texts. For any n ≥ 0, π(1(10)n+1) = π(1(10)n)q(01)n1(1)q1(0) and π(00(10)n+1) =
π(00(10)n)q(01)n00(1)q1(0). A straightforward induction implies thus that for any
n ≥ 0, 





π(1(10)n) = π(1)cn(1)

π(00(10)n) = π(00)cn(00)
(19)

where c0(1) = c0(00) = 1 and






cn(1) = q1(0)
n

n−1∏

k=0

q(01)k1(1)

cn(00) = q1(0)
n

n−1∏

k=0

q(01)k00(1)

for any n ≥ 1.

Computation of π(w), w internal node
Two families of cylinders, L0(10)n and L(10)n, correspond to internal nodes. By
disjoint union of events, they are related by

{
π(0(10)n) = π((10)n)− π(1(10)n)
π((10)n+1) = π(0(10)n)− π(00(10)n)

for any n ≥ 0. By induction, this leads to: ∀n ≥ 0,






π(0(10)n) = 1− π(1)Sn(1)− π(00)Sn−1(00)

π((10)n) = 1− π(1)Sn−1(1)− π(00)Sn−1(00)
(20)

where S−1(1) = S−1(00) = 0 and, for any n ≥ 0,






Sn(1) =
∑n

k=0 ck(1)

Sn(00) =
∑n

k=0 ck(00).

32



These formulae give, by quotients, the conditional probabilities on internal nodes
defined by (6) and appearing in Formula (8).

Computation of π(1) and of π(00)
The context tree defines a partition of the set L of left-infinite sequences (see (3)).
In the case of bamboo blossom, this partition implies

1− π((10)∞) =
∑

n≥0

π(1(10)n) +
∑

n≥0

π(00(10)n) (21)

=
∑

n≥0

π(1)cn(1) +
∑

n≥0

π(00)cn(00). (22)

We denote 





S(1) =
∑

n≥0 cn(1)

S(00) =
∑

n≥0 cn(00) ∈ [1,+∞].

Note that the series S(1) always converges. Indeed, the convergence is obvious if
q1(0) 6= 1; otherwise, q1(0) = 1 and q1(1) = 0, so that any cn(1), n ≥ 1 vanishes
and S(1) = 1. In the same way, the series S(00) is finite as soon as q1(0) 6= 1.

Proposition 4.32 (Stationary measure on a bamboo blossom)
Let (Un)n≥0 be a VLMC defined by a probabilized bamboo blossom context tree.

(i) Assume that q1(0) 6= 1, then the Markov process (Un)n≥0 admits a stationary
probability measure on L which is unique if and only if S(1)−S(00)(1+q1(0)) 6= 0.

(ii) Assume that q1(0) = 1.

(ii.a) If S(00) = ∞, then (Un)n≥0 admits π = 1
2
δ(10)∞ + 1

2
δ(10)∞1 as unique sta-

tionary probability measure on L.

(ii.b) If S(00) < ∞, then (Un)n≥0 admits a one parameter family of stationary
probability measures on L.

Proof. (i) Assume that q1(0) 6= 1 and that π is a stationary probability measure.
Applying (7) gives

π((10)∞) = q1(0)q(01)∞(1)π((10)
∞) (23)

and consequently π((10)∞) = 0. Therefore, Equation (21) becomes S(1)π(1) +
S(00)π(00) = 1. We get another linear equation on π(1) and π(00) by disjoint
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union of events: π(0) = 1−π(1) = π(10)+π(00) = π(1)q1(0)+π(00). Thus π(1)
and π(00) are solutions of the linear system







S(1)π(1) + S(00)π(00) = 1

[1 + q1(0)] π(1) + π(00) = 1.
(24)

This system has a unique solution if and only if the determinantal assumption

S(1)− S(00) [1 + q1(0)] 6= 0

is fulfilled, which is a very light assumption (if this determinant happens to be
zero, it suffices to modify one value of some qu, u context for the assumption to
be satisfied). Otherwise, when the determinant vanishes, System (24) is reduced
to its second equation, so that it admits a one parameter family of solutions.
Indeed,

1 ≤ S(1) ≤ 1 + q1(0)(1− q1(0)) +
∑

n≥2

q1(0)
n(1− q1(0)) = 1 + q1(0)

and S(00) ≥ 1, so that S(1)− S(00)(1 + q1(0)) = 0 implies that S(1) = 1+ q1(0)
and S(00) = 1. In any case, System (24) has at least one solution, which ensures
the existence of a stationary probability measure with Formulae (20), (19) and (8)
by a standard argumentation. Assertions on unicity are straightforward.

(ii) Assume that q1(0) = 1. This implies q1(1) = 0 and consequently S(1) = 1.
Thus, π(1) and π(00) are solutions of







π(1) + S(00)π(00) = 1− π((10)∞)

2π(1) + π(00) = 1.
(25)

so that, since S(00) ≥ 1, the determinantal condition S(1)−S(00)(1+ q1(0)) 6= 0
is always fulfilled.
(ii.a) When S(00) = ∞, π(00) = 0, π(1) = 1

2
and π((10)∞) = 1

2
. This defines

uniquely a stationary probability measure π. Because of (23), q(01)∞(1) = 1 so
that π((10)∞1) = π((10)∞)) = 1

2
. This shows that π = 1

2
δ(10)∞ + 1

2
δ(10)∞1.

(ii.b) When S(00) < ∞, if we fix the value a = π((10)∞), System (25) has
a unique solution that determines in a unique way the stationary probability
measure πa.
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4.2.2 The associated dynamical system

The vertical partition is made of the intervals I(01)n00 and I(01)n1 for n ≥ 0. The
horizontal partition consists in the intervals I0(01)n00, I1(01)n00, I0(01)n1 and I1(01)n1
for n ≥ 0, together with the two intervals coming from the infinite context, namely
I0(01)∞ and I1(01)∞ . If we make an hypothesis to ensure π((10)∞) = 0, then these
two last intervals become two accumulation points of the horizontal partition, a0
and a1. The respective positions of the intervals and the two accumulation points
are given by the alphabetical order

0(01)n−100 < 0(01)n00 < 0(01)∞ < 0(01)n1 < 0(01)n−11

1(01)n−100 < 1(01)n00 < 1(01)∞ < 1(01)n1 < 1(01)n−11

Lemma 4.33 If (q(01)n00(0))n∈N and (q(01)n1(0))n∈N converge, then T is right and
left differentiable in a0 and a1 – with possibly infinite derivatives – and

T ′ℓ(a0) = lim
n→∞

1

q(01)n00(0)
, T ′r(a0) = lim

n→∞

1

q(01)n1(0)

T ′ℓ(a1) = lim
n→∞

1

q(01)n00(1)
, T ′r(a1) = lim

n→∞

1

q(01)n1(1)
.

Proof. We use Lemma 4.25.

4.2.3 Dirichlet series

As for the infinite comb, the Dirichlet series of a source generated by a stationary
bamboo blossom can be explicitly computed as a function of the SVLMC data.
For simplicity, we assume that the generic Condition (i) of Proposition 4.32 is
satisfied. An internal node is of the form (01)n or (01)n0 while a context writes
(01)n00 or (01)n1. Therefore, by disjoint union,

Λ(s) = A(s) +
∑

n≥0,w∈W

π(w00(10)n)s +
∑

n≥0,w∈W

π(w1(10)n)s

where
A(s) =

∑

n≥0

π((10)n)s +
∑

n≥0

π(0(10)n)s

is explicitly given by Formulae (20) and (24). Because of the renewal property
of the bamboo blossom, Formula (7) leads by two straightforward inductions to
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π(w00(10)n) = π(w00)cn(00) and π(w1(10)n) = π(w1)cn(1) for any n ≥ 0. This
implies that

Λ(s) = A(s) + Λ00(s)
∑

n≥0

csn(00) + Λ1(s)
∑

n≥0

csn(1)

where
Λ00(s) =

∑

w∈W

π(w00)s and Λ1(s) =
∑

w∈W

π(w1)s.

It remains to compute both Dirichlet series Λ00 and Λ1, which can be done by a
similar procedure.

By disjoint union of finite words,

Λ00(s) = A00(s) +
∑

n≥0,w∈W

π(w00(10)n00)s +
∑

n≥0,w∈W

π(w1(10)n00)s (26)

where
A00(s) =

∑

n≥0

π((10)n00)s +
∑

n≥0

π(0(10)n00)s

and
Λ1(s) = A1(s) +

∑

n≥0,w∈W

π(w00(10)n1)s +
∑

n≥0,w∈W

π(w1(10)n1)s (27)

with
A1(s) =

∑

n≥0

π((10)n1)s +
∑

n≥0

π(0(10)n1)s.

Computation of A1 and A00

By disjoint union and Formula (7),

π((10)n+100) = π(0(10)n00)− π(00(10)n)q(01)n00(0)q00(0), n ≥ 0

and
π(0(10)n00) = π((10)n00)− π(1(10)n)q(01)n1(0)q00(0), n ≥ 1

where π(00(10)n) and π(1(10)n) are already computed probabilities of contexts
(Formula (19)). Since π(000) = π(00)q00(0), one gets recursively π((10)n00) and
π(0(10)n00) from these two relations as functions of the data. This computes A00.
A very similar argument leads to an explicit form of A1.
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Ultimate computation of Λ1 and Λ00

Start with (26) and (27). As above, for any n ≥ 0, by induction and with
Formula (7),

π(w00(10)n00) = π(w00)cn(00)q(01)n00(0)q00(0).

In the same way, but only when n ≥ 1,

π(w1(10)n00) = π(w1)cn(1)q(01)n1(0)q00(0).

Similar computations lead to similar formulae for π(w00(10)n1) and π(w1(10)n1),
for any n ≥ 0. So, (26) and (27) lead to

Λ00(s) = A00(s) + Λ100(s) + Λ00(s)B00(s) + Λ1(s)B1(s) (28)

where B00(s) and B1(s) are explicit functions of the data and where

Λ100(s) =
∑

w∈W

π(w100).

As above, after disjoint union of words, splitting by Formula (7) and double
induction, one gets

Λ100(s) = A100(s) + Λ00(s)C00(s) + Λ1(s)C1(s)

where A100(s), C00(s) and C1(s) are explicit series, functions of the data. Replac-
ing Λ100 by this value in Formula (28) leads to a first linear equation between
Λ00(s) and Λ1(s). A second linear equation between them is obtained from (27)
by similar arguments. Solving the system one gets with both linear equations
gives an explicit form of Λ00(s) and Λ1(s) as functions of the data, completing
the expected computation.

4.2.4 Generating function for the exact distribution of word occur-
rences in a sequence generated by a bamboo blossom

Let us consider the process X = (Xn)n≥0 of final letters of (Un)n≥0 in the partic-
ular case of a SVLMC defined by a bamboo blossom. We only deal with finite
words w such that w is not an internal node, i.e. w is a finite context or w /∈ T .
One can see that such a word of length k > 1 can be written in the form ∗11(10)ℓ1p

or ∗00(10)ℓ1p, with p ∈ {0, 1} and ℓ ∈ N, where ∗ stands for any finite word.
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Proposition 4.34 For a SVLMC defined by a bamboo blossom, with notations
of Section 4.1.4, the generating function of the first occurrence of a finite word
w = w1 . . . wk is given for |x| < 1 by

Φ(1)
w (x) =

xkπ(w)

(1− x)Sw(x)

and the generating function of the rth occurrence of w is given by

Φ(r)
w (x) = Φ(1)

w (x)

(

1−
1

Sw(x)

)r−1

,

where
(i) if w is of the form ∗00(10)ℓ or ∗11(01)ℓ0, with ℓ ∈ N, Sw(x) is defined in
Proposition 4.29 and
(ii) if w is of the form ∗00(10)ℓ1, ℓ ∈ N,

Sw(x) = Cw(x) +
∞∑

j=k

q
(j)

1(01)ℓ00
(w)xj,

Cw(x) = 1 +
k−1∑

j=1

1{wj+1...wk=w1...wk−j}q
(j)

1(01)ℓ00
(wj+1 . . . wk) x

j.

and if w is of the form ∗11(01)ℓ, ℓ ∈ N,

Sw(x) = Cw(x) +
∞∑

j=k

q
(j)

(10)ℓ11
(w)xj,

Cw(x) = 1 +
k−1∑

j=1

1{wj+1...wk=w1...wk−j}q
(j)

(10)ℓ11
(wj+1 . . . wk) x

j.

Proof. (i) We first deal with the words w such that

←−
pref (w) = (01)ℓ00 or

←−
pref (w) = (01)ℓ1.

Let us denote by pn the probability that T
(1)
w = n. Proceeding exactly in the

same way as for Proposition 4.29, from the decomposition

π(w) = pn +
n−1∑

z=k

pz P
(
Xn−k+1 . . . Xn = w|T (1)

w = z
)
,

38



and due to the renewal property of the bamboo, one has

π(w) = pn +
n−k∑

z=k

pz P
(

Un ∈ Lw
∣
∣
∣Uz ∈ L suff(w)

)

+
n−1∑

z=n−k+1

pz1{wn−z+1...wk=w1...wk−n+z}P
(

Un ∈ Lw
∣
∣
∣Uz ∈ L suff(w)

)

where suff(w) is the suffix of w equal to the reversed word of
←−
pref (w). Hence, for

x < 1, it comes

xkπ(w)

1− x
=

+∞∑

n=k

pnx
n +

+∞∑

n=k

xn

n−k∑

z=k

pzq
(n−z)
←−
pref (w)(w)

+
+∞∑

n=k

xn

n−1∑

z=n−k+1

pz1{wn−z+1...wk=w1...wk−n+z}q
(n−z)
←−
pref (w)(w)

which leads to the expression of Φ
(1)
w (x) given in Proposition 4.29. The rth occur-

rence can be derived exactly in the same way from the decomposition

{w at n} = {T (1)
w = n} ∪ {T (2)

w = n} ∪ . . . ∪ {T (r)
w = n} ∪ {T (r)

w < n and w at n}.

(ii) In the particular case of words w = ∗00(10)ℓ1, the main difference is that
the context 1 is not sufficient for the renewal property. The computation relies
on the equality

P
(
Xn−k+1 . . . Xn = w|T (1)

w = z
)
= P

(
Xn−k+1 . . . Xn = w|Xz−2ℓ−2 . . . Xz = 00(10)ℓ1

)
.

The sketch of the proof remains the same replacing q←−pref (w)(w) by q1(01)ℓ00(w).
The case w = ∗11(01)ℓ is analogous.

5 Some remarks, extensions and open problems

5.1 Stationary measure for a general VLMC

Infinite comb and bamboo blossom are two instructive but very particular ex-
amples, close to renewal processes. Nevertheless, we think that an analogous of
Proposition 4.23 or Proposition 4.32 can be written for a VLMC defined by a
general context tree with a finite or denumerable number of infinite branches.
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In order to generalize the proofs, it is clear that Formula (8) in Lemma 3.11 is
crucial. In this formula, for a given finite word w = α1 . . . αN ∈ W it is important
to check whether the subwords

←−
pref (α1 . . . αk), k < N, are internal nodes of the

tree or not. Consequently, the following concept of minimal context is natural.

Definition 5.35 (Minimal context) Define the following binary relation on
the set of the finite contexts as follows:

∀u, v ∈ CF , u ≺ v ⇐⇒ ∃w,w′ ∈ W , v = wuw′

(in other words u is a sub-word of v). This relation is a partial order. In a
context tree, a finite context is called minimal when it is minimal for this partial
order on contexts.

Remark 5.36 (Alternative definition of a minimal context) Let T be a
context tree. Let c = αN . . . α1 be a finite context of T . Then c is minimal if and
only if ∀k ∈ {1, . . . , N − 1},

←−
pref (α1 . . . αk) /∈ CF (T ).

Example 5.37 In the infinite comb, the only minimal context is 1. In the bamboo
blossom, the minimal contexts are 1 and 00.

Remark 5.38 There exist some trees with infinitely many infinite leaves and a
finite number of minimal contexts. Take the infinite comb and at each 0k branch
another infinite comb. In such a tree, the finite leaf 10 is the only minimal context.
Nonetheless, a tree with a finite number of infinite contexts has necessarily a finite
number of minimal contexts.

As one can see for the infinite comb or for the bamboo blossom (see Sections 4.1.1
and 4.2.1), minimal contexts play a special role in the computation of stationary
probability measures. First of all, when π is a stationary probability measure
and w a finite word such that w /∈ T , Formula (8) implies that π(w) is a rational
monomial of the data qc(α) and of the π(u) where u belongs to T . This shows
that any stationary probability is determined by its values on the nodes of the
context tree. In both examples, we compute these values as functions of the data
and of the π(m), wherem are minimal contexts, and we finally write a rectangular
linear system satisfied by these π(m). Assuming that this system has maximal
rank can be viewed as making an irreducibility condition for the Markov chain
on L. We conjecture that this situation happens in any case of VLMC.
In the following example, we detail the above procedure, in order to understand
how the two main principles (the partition (3) and the disjoint union) give the
linear system leading to the irreducibility condition.
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Example 5.39 Let T be a probabilized context tree corresponding to Figure 8
(finite comb with n + 1 teeth). There are two minimal contexts: 1 and 0n+1.
Assume that π is a stationary probability measure on L. Like in the case of the

q
0n+1 q0n1

q001

q01

q1

Figure 8: (n+ 1)-teeth comb probabilized context tree.

infinite comb, the probability of a word that corresponds to a teeth is π(10k) =
π(1)ck, 0 ≤ k ≤ n where ck is the product defined by (12). Also, the probabilities
of the internal nodes and of the handle are

π(0k) = 1− π(1)Sk−1, 0 ≤ k ≤ n+ 1,

where Sp :=
∑p

j=0 cj. By means of these formulae, π is determined by π(1).
In order to compute π(1), one can proceed as follows. First, by the partition
principle (3), we have 1 = π(0n+1) + π(1)

∑n

k=0 ck. Secondly, by disjoint union,

π(0n+1) = π(0n+2) + π(10n+1) = π(0n+1)q0n+1(0) + π(10n)q0n1(0).

This implies the linear relation between both minimal contexts probabilities:

{
π(0n+1) + Snπ(1) = 1
q0n+1(1)π(0n+1)− q0n1(0)cnπ(1) = 0.

In particular, this leads to the irreducibility condition q0n+1(1)Sn + q0n1(0)cn 6= 0
for the VLCM to admit a stationary probability measure. One can check that this
irreducibility condition is the classical one for the corresponding A-valued Markov
chain of order n+ 1.

Example 5.40 Let T be a probabilized context tree corresponding to Figure 5
(four flower bamboo). This tree provides another example of computation pro-
cedure using Formulae (7) and (8), the partition principle (3) and the disjoint
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union. This VLMC admits a unique stationary probability measure if the deter-
minantal condition

q00(1)[1 + q1(0)] + q1(0)
2q010(0) + q1(0)q1(1)q011(0) 6= 0

is satisfied; it is fulfilled if none of the qc is trivial.

5.2 Tries

In a first kind of problems, n words independently produced by a source are
inserted in a trie. There are results on the classical parameters of the trie (size,
height, path length) for a dynamical source (Clément et al. [6]), which rely on the
existence of a spectral gap for the underlying dynamical system. We would like
to extend these results to cases when there is no spectral gap, as may be guessed
in the infinite comb example.

Another interesting application consists in producing a suffix trie from one se-
quence coming from a VLMC dynamical source, and analyzing its parameters.
For his analysis, Szpankowski [26] puts some mixing assumptions (called strong
α-mixing) on the source. A first direction consists in trying to find the mixing
type of a VLMC dynamical source. In a second direction, we plan to use the
generating function for the occurrence of words to improve these results.
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