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Abstract. We use the Signorini expansion method to determine the second-order Saint-Venant so-
lution for an infinitesimally bent and stretched bar. The bar in the unstressed reference configuration
is straight, prismatic, isotropic, homogeneous and made of a second-order elastic material. These
solutions and those found earlier for a pretwisted bar give generalized Poynting effects. A bar when
bent stretches and the elongation is determined by the first and second-order elasticities, area of cross-
section, torsional rigidity, bending vector and the inertia tensor. When an infinitesimally twisted bar

is deformed, there is a second-order bending deformation even when there is no resultant bending
moment applied on the end faces.

Mathematics Subject Classifications1991): 73C99, 73B99.

Key words: Signorini’s expansion, plane elliptic problems, Saint-Venant's problem, semi-inverse
method.

1. Introduction

Poynting [1] observed that an elastic prismatic bar when twisted by torques applied
at the end faces also elongates, and the elongation is proportional to the square
of the twist. Rivlin [2] used the second-order elasticity theory to compute the
elongation as a function of the angular twist and showed that the elongation was
proportional to second-order elasticities. The work has been extended to general
nonlinear elastic solids by Green and Shield [3]. Green and Adkins [4] noted that
when the displacements and infinitesimal rotations of the centroid of one end-face
vanish, then the compatibility condition for the loads in the Signorini's expansion
method [5] is automatically satisfied. Signorini’'s method reduces the solution of a
nonlinear elastic problem to that of a series of linear elastic problems with body
forces and surface tractions determined by the solution of the previous linear elas-
tic problem. Truesdell and Noll [6] and Wang and Truesdell [7] have reviewed
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the historical background and the relevant literature on the Poynting effect and
the Signorini expansion method. They have pointed out that Signorini's method
delivers only those solutions that are in the neighborhood of solutions of the linear
elastic problem with the same loads as for the nonlinear problem.

In [8] we used the Signorini expansion method to analyse the Saint-Venant
problem [9,10] for a straight, isotropic, stress-free and homogeneous prismatic bar
made of a second-order elastic material with the first term in the expansion for
the displacement field corresponding to an infinitesimal twist of the body. Here we
investigate the problem when the first term in Signorini's expansion corresponds
to an infinitesimal bending and stretching of the bar. The solution of the problem
yields generalized Poynting effects such as second-order extension of the bar in
the absence of external resultant normal tractions at the end faces. This second-
order extension is found to depend upon the first and second-order elasticities,
initial bending, and other properties of the cross-section. Further such effects are
deduced for a pretwisted bar by using results from [8].

The analysis of the problem is simplified by decomposing, as suggested by
DiCarlo [11], and Davi and Tiero [12], the displacement field and other tensorial
guantities into components along the axis of the bar and those in the cross-section.

lesan [13-16] has studied the Saint-Venant problem for inhomogeneous and
anisotropic linear elastic bodies, elastic dielectrics, and microstretch elastic solids.
Dell'lsola and Rosa [17,18] and Davi [19] have studied the problem for linear
piezoelectric bodies, and dell’'lsola and Batra [20] for linear elastic porous solids.

2. Formulation of the Problem

We consider a second-order elastic, homogeneous, and isotropic prismatic bar oc-
cupying the region4 x [o, £] in the unstressed reference configuration. THus

is the cross-section of the bar aAdks length. Let the bar be infinitesimally bent

and stretched by tractions applied only at its end faces. Following Signorini [5], we
expand the displacement fialdn terms of the infinitesimal elongatianand write

it as

Uu=cecl+e2li+e3li+---. @

Thus a superimposed dot enindicates the order of the displacement field. Our
goal is to findl for a second-order elastic material whércorresponds to in-
finitesimal elongation and/or bending of the bar. Saint-Venant's solutioni for
is

2
ur,z)=¢(e—c- r)e+%c+ Kc — ver, (2)

where¢ is the axial coordinate of a point when the origin of the co-ordinate system
is at the centroid of one end facejs a unit vector along the centroidal axis of
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the bar in the unstressed configurations the position vector of a point in the
plane perpendicular to the centroidal axis= v’ is the curvature characterizing
the bending of the bar, a prime denotes differentiation with respegtto equals
exr,and

ucr, ) =v(r, &) +wr, oe, 3)
K:=[r®r — («) ® (xr)]/2, (4)
vi=A/(20\ + ), (5)
(@a®b)d = (a-d)b (6)

for arbitrary vectorsa, b andd. Thusv equals the displacement of a point within

the cross-section and its displacement in the axial directiol, is the anticlastic
curvature operator; is Poisson’s ratio, and andu are the Lamé constants. Resul-

tant forces and moments to be applied to the end faces of the bar can be computed
from the displacement field (2) and the constitutive relation for the bar (e.g. see
Sokolnikoff [21]). We require that the centroid of one end face of the bar and the
skew symmetric part of the displacement gradidntanish there. That is,

u(,0) =0, H(0, 0) = H? (0, 0). (7)

Green and Adkins [4] have shown that under conditions (7), there is no compatibil-
ity condition required by the first-order loads in the Signorini’s series expansion of
the solution. We assume that the bending curvature and extension are of the same
order of magnitude; i.e.

¢ =eC+ O(ed). (8)
Thus with

g:==¢C-r,

acr, ¢) :8[4(1—8)e+§—22(':+ K(':—vr} ©)

Due to the bending of the bar, the axial displacendewita point is proportional to

its distance from the centroidal axis. From (9) we derive the following expressions
for the first-order displacement gradient the infinitesimal strain tensdt, and

other deformation measures needed in the expression for the first Piola—Kirchhoff
stress tensob.

H=c[(1-8)e®e+cert—vl— + vpxl, (10)

— (x0) - T, (11)
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E=H+H)/2=c1-68)(exe— ), (12)
HHT = 2([(1 - 8)” + SPllciPle® e

+ A+v)(L—-08)¢evE—vpleV (xC)

+ 226 @ e+ 1% + (L —8)2)i}, (13)
E? = 2(1—8)%(e® e+ v3), (14)
(H')? = 41— 8)* - 7|l e e

+2(1=8)(L—-v)EAe+vpi(xC) Ve

— 2@+ 12 [(1 - 8)? — *1l +20%(1 — 8)px). (15)

Here
aAb=a®b-b®a, (16)
avb=a®b+b®a, (17)

for arbitrary vectorsa andb, | is the two-dimensional identity matriXal| equals
the length of vectoa, andy is the twist caused by the bending of the bar. The two-
dimensional identity matrix is extended to a three-dimensional matrix by adding
zeros in the third row and third column, and the rotation operatisralso simi-
larly extended. In a rectangular Cartesian coordinate systemeypibinting along
the 3-axis, the elements of the first, second and third rows of the33matrix
corresponding to the operator are 0—1,0; 1,0, 0; 0, 0, O respectively.

For a second-order elastic material, the first Piola—Kirchhoff stress tes)ger,
given by (e.g. see Wang and Truesdell [7])

S = M[(allE +2E + %(l,w + 2l + a3l + as(Ie — (Ip)?) /2)1

(s 4+ DIE — aaTeHT — (HTY? 4 aGEZ}, (18)

where is the shear modulug,o; is a Lame constants, o4, as andag are non-
dimensional material constants, afid= tr(E). Substitution from (10)—(15) into
(18), collecting terms of different orders @fand expandin as a power series in
&, Viz.

S=eS+625+... (19)

we can derive expressions f8 S etc. Because of the assumption of stress free
reference configuratior§ vanishes fore = 0. Also U is assumed to be known,
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therefore, explicit relation fos in terms ofH etc. is omitted. With the objective
of finding U, we list below the expression f@ in terms ofli and other known
guantities

. _ 2
8 = é+82{[x((—1 4”; Lo )(1—8)2+v2g02>

+( 4 ) E2EN? + pp (L — a)ﬂe@ e

+ulZ?E ® € — vpr (+€) V €]

—uwl+v)A—8rEAe+ ki}, (20)

where
S tr(E)1+ 2uE, (1)
2E = Gradii + (Gradii)?, (22)
B=1—4 +az(l—2v)%+ (@ +as)(1 — 2v) + as, (23)

_ 2
k= [(%) (182 + gzncnz} Ot VR y,  (24)

y = (3v2 — 2v + a3(1 — 2v)% + as (V2 — 2v)

+a5(2v% — v) + agr?) (1 — §)?, (25)

and Grad (Div) is the three-dimensional gradient (divergence) operator in the ref-
erence configuration. The second-order stress tehsaust satisfy the following
equilibrium equations and boundary conditions

DivS=0 in x[0,¢], (26)
SN=0 onds x [0, £]. (27)

HereN is an outward unit normal oA x [0, £]. Decomposing:5 into compo-
nents as

S=se@et+tve+s (28)

and recalling (21) and the decomposition (3) of the displacement into its axial and
in-plane components, we obtain

& = (h+ 2u)i' + A trE, (29)
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f=npn\V + gradw), (30)

S=atrE) + 2uE, (31)
where

OF = gradv + (gradv)”, (32)

and grad (div) is the two-dimensional gradient (divergence) operator in ptane
Substitution from (20) and (28) into (26) and (27) yields

&' 4+ divt = —(2x + 3u)ce?||el?  in A x [0, €], (33)

¥ 4 divs = e2{(u — Mp(x€) + [L(3 — 6v + 6v?)

+uy —v—-—01(1-68)¢ inAx][O0,2], (34)
t-N=pucevoxt) + (1+v)(L—8)¢-N ondA x [0, £], (35)
SN= —e2[uc?%e® e+ kN ondA x [0, €]. (36)

We will find a solution for (33)—(36) in Section 4.

3. Resultant Forces and Moments on a Cross-section

Integrating (26) ovewt x [0, ¢], using the divergence theorem and boundary con-
ditions (27), we obtain

f SedA = const (37)
A¢

for every¢. Thus from (28) and (20),

f & dA + (A + )¢ 2e?(|¢)2A, + 12e?Je) - €
Ar

+e2(3A(1 — 4 + 10v?) + up) (A, — (J(xC) - (x¢))) = const, (38)
/A t dA + pue?(1 + v)¢es, = const, (39)
;
where
J = (xr) ® (xr) dA (40)

A
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is an inertia tensor. The momelt, of tractions on a cross-sectiofy is given by

M, = [ (po+el+e%li+---) x[(eS+e25+--)N]dA, (41)

Ar

wherepy is the position vector of a point in the reference configuration. Thus

M, = [ (pox SN+ U x SN) dA. (42)

A

Taking moments of tractions on the boundary of the domir [0, ¢], recalling
(27) and since the resultant moment of second-order tractions at the end faces
vanishes, we obtain

[(ro+ £o€) x Se+ U x S¢ dA = const (43)

Ar

Substitution forS from (20) and forSinto (43) and some simplification gives

[(xr) -t — uce®e- (J(x€))] dA = const (44)

Ar

¢ | (t)dA— [ (&(xr))dA
Ar Ac

+82{(%k(1 — 4y + 10v?) + up)

X <2J(>1<(':) — [(xr) & (xr) - (%€ Q *C) ()] dA) (45)

Ar

—szf [(+r) @ (xr) - (€@ O)](xr) dA — 2u(1+ v)
A

x [g (r v (1) (1= 8)edA + vJ(*C)]} — const

Ar

4. Saint-Venant Solutions
Assuming thati(r, ¢) is a polynomial inz, we write it as

2 3
0, ) = Uo(T) + £UL(") + () + S-s(0) -+, (46)



188 F. DELLISOLAET AL.

where we have dropped the superimposed double dots on the right-hand side of
(46). We note that such a solution will not capture well the boundary layer effect, if
any, near the end faces= 0 and¢ = £. Saint-Venant solutions represent well the
deformation fields away from the end faces. Recognizing that the right-hand sides
of (33)—(36) are polynomials of order at most one;inwe obtain forug, us, . ..

etc., equations analogous to those in linear elasticity with zero body forces and zero
traction boundary conditions. Because of the conditions (7) at the centroid of one
end face, and the uniqueness of solutions in linear elastigjtys us = --- = 0. A

similar reasoning fous gives

Us = wle+ V3 + wl(xr). (47)
Here and below, quantities with superscript zero denote constants. From (46),
(47) andug = us = - - - = 0, we obtain
y _ % ISPV IR
V(r, &) = vo(r) +¢va(r) + §Vz(r) + = (V3 + w3(xr)),

3! (48)

w(r, &) = wo(r) + cwy(r) + sz(r) + gwg.

Substitution from (48) into (29)—(32) yields
. 2
26 = £ (gradva(r), + ¢ (gradva(n), + (@radvo(n),.

2
oc=A+2uw [%wg + Cwa(r) + wl(f)]

2
+Adiv [%vz(r) + ¢va(r) +Vo(r)] ,

2
t= u[%(vg + @3(xr) + gradw,(r) + £ (Va(r)
(49)
+gradwq(r)) + vi(r) + gradwo(r)}

. 2

S M[%(gradVZ(r))s + ¢(gradvy(r)), + (gradvo(r))s}
§-2

+A[7<w8 + div Vo(r)) + £ (wa(r)

+div vi(r)) + wq(r) + div vo(r)]f,
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where
(gradv(r)), = gradv(r) + (gradv(r))’. (50)

Substitution from (49) into (33)—(36) and equating like powerg oh both sides
yields equations for determining,, Vo, w1, V1 andwg, Vo. Equations for the de-
termination ofw, andv, are

Arwo =0, in A,

Fvo =0, in#,
(51)
(gradwy) - N = — (V3 + @3 (xr)) - N,  0ond,
(GVa)N = —[wdi + 262(ue ® ¢+ A[1€12)IN,  ona.A,
where
G() = u(grad(-)); + ir div (),
(52)

F =divG = uAg + (A + p)grad div,

A is the two-dimensional (in-plane) Laplacian operator, #&ds the Navier
operator of linear elasticity.
The solution of (51) is

wa(r) = w3 — V3 - T + w3$(r),
Va(r) = V3 4 @9(xr) — vwdr (53)
—&[A+V)(ER C) + v(x¢ @ *O)]r,

where¢ (r) is the standard Saint-Venant warping function. The Poisson effect pro-
portional tos? varies quadratically witly, the distance from the ‘fixed’ end, and is
not uniform throughout the cross-section. The displacement of a point in the bend-
ing direction¢ is more than that in the direction perpendiculartt@&ubstitution

from (53) into (49), the result into (38) and equating coefficients of like powers of
¢ on both sides yields

21112
wy=—&%el?, o

wo
Il
o

(54)
Thus
wa(r) = wd —v3-r,

(55)
Va(r) = V9 + @d(xr) — e2(E @ O)r.
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Hence for an unloaded mantle, the second-order Poisson effect proportiedal to
is only in thec¢ direction.
Equations governing displacement fieldsandw; are

Arwy =0, inwA,
Fvi=Av3, in A,
(gradwy)-N=—[V3+w9(xr)+e2(V(E®E) (56)
— (*6*C)r — (14+v)¢]-N, onodA,
(GV)N = [A(V]-T — 0DIIN,  0ondsh.
The solution of (56) is

wi(r) = wd — V9 -1 +@dp(r) —e2(Cr)-r +e2(L+v)C-r,

(57)
va(r) = V§ + @d(+r) — vwdr + Kv),
where
C=v(t®C—(x0) ® (x0))/2. (58)

Equations (44) and (45) for the resultant force and the resultant moment do not
restrict the constants appearing in (57). However, (38) and (44) imply the following

wy =0, w3 ="f.¢/K,, (59)
where

f = EJ(x0), E =2u(l+v),

— _ 2
K, = n(Jo— D), Jo—fAr da, (60)
D=/(>x< grade) - r dA,
A

f equals the resultant bending moment, @cthe torsional rigidity of the Saint-
Venant first-order bending and torsion problems respectively. In the absence of
torques on the mantle, the angular twist is proportionat2oThe constant»)
vanishes whert is parallel to a principal axis of the cross-section and is ex-
tremum whert is parallel to the direction bisecting the principal axes of the cross-
section. This second-order angular twist proportionajtaloes not depend upon

the second-order elasticities of the material but is determined by Poisson’s ratio, the
bending vector, and the properties associated with the cross-section. The last term
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on the right-hand side of (5¢torresponds to the extra out-of-plane rigid rotation

of a cross-section arour@c), which is proportional to its distance from the fixed

end, and arises only when the bar is simultaneously prebent and prestretched.
Equations governing displacements wg are

Agwo =231, in A,
FVo = AV — wd[(A + p)grade + pw(+r)] — 2av (¢ ® *C)r
—MEQ O + £%(1 — 8)E{A(6V2 — Tv — 4)
+u[6V% — 6V — 2 + 203(1 + 2v)? + 204 (V2 — 2v)
+2a5(2v2 — v) + 206v?]}, N A,
(gradwp) - N = —(V + 0(xr) + Kv3) - N, onau, (61)
(GVoON = —{A[wd + (2L +v)E—V)) - T
—&(Cr) - r + w3p] + £2(A + p)v3¢?
+82[A(3 — 6V + 6V%) /2 + 1 (3v% — 2v) + az(1 — 2v)?
+aa(v? — 2v) 4+ a5(2v% — V) + agv?)]
x(1—8)%}IN, ona.
The solution of (61) is
wo(r) = wg —V§ - T + & (r) + wo(r),
Vo(r) = V8 + @d(xr) — vwdr + Kv3 + Vo(r). (62)

Functionswo(r) and Vo(r) are solutions of (61) after setting? = 0, w? =

0, v = 0 andv3 = 0, and constantvd, 3, v§ andV§ are to be determined from

the six conditions (7) at the centroid of one end-face. Constafits?, v3 and

vJ determine the Saint-Venant solution for extension, torsion, bending, and flexure
problem respectively. The terms linearinn the right-hand side of (61and (61)

are due to the simultaneous prebending and prestretching of the bar.

5. Generalized Poynting Effects in a Prebent, Prestretched and Pretwisted
Bar

A second-order effect in a bar bent by loads applied only at the end faces is that the
angular twist varies quadratically with the distance from the ‘fixed’ end. This twist
vanishes only when the bending vectas parallel to one of the principal axes of

the cross-section, and hence is always zero for a circular bar.
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The resultant second-order normal and shear tractions on an end face are given
by

/ (Se -edA
Ay

= EAuwd — 82{@ +2uw) | [(Cr) -1 — wdp] dA
Ay

—2238) - €4+ (ML — 4y +10v?)/2) + upB)

X (A — (J(xC)) - (*C))} 1+ | (divig) da,
Ay

(63)

e, dA =y | (gradi) dA — 22 (J + xJ5V2,
Ay Ay 2

and the resultant second-order tordfieand the bending momei, have the
expressions

T = Kta)f + M( (xr) - (gradwg) dA — %f

Ay

r2(xr) - v3 dA) , (64)

Ay

M = EJVI) — (A + 2u)[e2(1+ v)J (x¢)]

—82/ ((Cr) - r)(xr) dA 4+ °[(xr)¢ dA] — A[(diV Vo) (xr) dA]
A0

+82{(%A(1 — 4y +10v?) + uﬂ)(zJ(*C) = [ (1) ® (xr)
AQ

X ((x€) ® (x€))(xr) dA

a2 | ((x1) @ (%)) - (€ R E)(xr) dA)

E)
—E(%v (r v(*r))(l—S)CdA+vJ(*C))}. (65)
A0

HereE = u(3x+21)/(A+w) is Young’'s modulus for the material of the bar. Equa-
tions (61) and (63) imply that the resultant second-order shear traction is linear
in vg. Therefore, there is no second-order flexure in the absence of second-order
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resultant shear force. However, (63nplies that in the absence of the resultant
second-order axial traction, there can be a second-order extension of the bar. This
second-order extension depends upon the first and second-order elasticities of the
material, area of cross-section, first-order torsional rigidity, bending véctamd

the inertia tensod. Equation (63) generalizes Rivlin’s result for the resultant axial
force in a pretwisted bar to that in a prebent bar. For a given cross-section and zero
resultant normal traction, itis a nontrivial task to find the bending direciarhich

will give extreme values of the second-order elongatigrsince the functiorg is

a solution of a plane linear elastic problem with non-zero body forces.

For a zero resultant shear force, the second and third terms on the right-hand
side of (64) vanish. Thus when the torque also vanishes= 0 and there is no
angular twist proportional tg.

Equation (64) implies that even wheM = 0, v3 need not vanish. Thus there
is in general a second-order bending effect in the absence of the external resultant
second-order moment at the end faces. It is rather difficult to find the bending
direction¢ which will extremizevs.

In [8] we studied Saint-Venant type deformations of a pretwisted bar, computed
the resultant forces and moments on an end face, and discussed the usual Poynting
effect. The expressions for the resultant second-order normal and shear tractions
on an end face are as follows

(S0 -edA = Ew)a + 2 diVVodA+t2(%A_M)
A " 2
x (Jo— D) + t%(A + w)D, (66)
Se, dA =p [v(l)a% — (J +*JV3+ | (gradivo) dAi| ) (67)
Ay "

Functionsvg andwyg in (66) and (67) are different from those appearing in earlier
equations, and are defined in [8]. As in this paper, they are also solutions of plane
elliptic problems but with different source terms and boundary conditioisthe
pretwist in the bar. The second-order resultant torqueand the momentyl, are

given by

T=pu [w(l)(Jo — D) — v} / Ir|I2(xr) dA
A0

+ [ ((xr)-gradwp) dA} , (68)
A0
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M=EJ*V3—x [ (xr)divVydA
A0

+72(0 + ) / (xr ® xr)grad¢ dA
ao

— (- 222 [ ggin da
A0

+¥uf¢wwdm (69)
where
g = (xr + grado). (70)

Expressions (67) and (68) for the second-order resultant shear force and the twist-
ing moment respectively imply that the second-order shear deformation and the

second-order twist vanish if and only if these resultants equal zero. However, ex-

pression (69) implies that, in general, there is a second-order bending deformation
even when the resultant bending moment on an end face is zero. This bending
deformation depends upon the first and second-order elasticities, the inertia tensor,
and

/(*r) div Vo dA,

whereVy is the solution of the elliptic problem defined by equations (51) of [8].

Conclusions

We have found a second-order solution of the Saint-Venant problem for a straight,
prismatic, homogeneous body made of a second-order elastic material. The bar is
initially stretched and bent by an infinitesimal amount from the unstressed refer-
ence configuration, and then deformed by tractions applied at the end faces. The
displacements and infinitesimal rotations at the centroid of one end face are taken
to be zero. The problem is analysed by the Signorini expansion method, and its
solution reduced to that of solving two linear plane elliptic problems. The resultant
second-order forces and moments at an end face are given by equations (63), (64),
and (65).

Equation (53) reveals a new Poisson’s effect proportional to the square of the
initial infinitesimal deformation. The Poisson effect in a cross-section varies as the
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square of its distance from the ‘fixed’ end, and the in-plane displacement of a point
in the bending direction is more than that in the orthogonal direction.

Unless the direction of prebending is along a principal axis of a cross-section,
the cross-section twists in the absence of external torques at the end faces. This
twist is proportional to the square of the distance of the cross-section from the
‘fixed’ end, and is determined by Poisson’s ratio, the bending vector and properties
of the cross-section, but is independent of the second-order elasticities.

Equation (63) indicates that in the absence of a second-order resultant normal
force, there can be a second-order extension of the bar which depends upon the
first and second order elasticities of the material, the bending vector and geometric
properties of the cross-section.

From (64) we conclude that a second-order bending effect may occur in the
absence of corresponding bending moments at the end faces.

For a pretwisted bar, it follows from (69) that there is a second-order bending
deformation for vanishing second-order bending moments at the end faces.
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