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Abstract. We use the Signorini expansion method to determine the second-order Saint-Venant so-
lution for an infinitesimally bent and stretched bar. The bar in the unstressed reference configuration
is straight, prismatic, isotropic, homogeneous and made of a second-order elastic material. These
solutions and those found earlier for a pretwisted bar give generalized Poynting effects. A bar when
bent stretches and the elongation is determined by the first and second-order elasticities, area of cross-
section, torsional rigidity, bending vector and the inertia tensor. When an infinitesimally twisted bar
is deformed, there is a second-order bending deformation even when there is no resultant bending
moment applied on the end faces.
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Key words: Signorini’s expansion, plane elliptic problems, Saint-Venant’s problem, semi-inverse
method.

1. Introduction

Poynting [1] observed that an elastic prismatic bar when twisted by torques applied
at the end faces also elongates, and the elongation is proportional to the square
of the twist. Rivlin [2] used the second-order elasticity theory to compute the
elongation as a function of the angular twist and showed that the elongation was
proportional to second-order elasticities. The work has been extended to general
nonlinear elastic solids by Green and Shield [3]. Green and Adkins [4] noted that
when the displacements and infinitesimal rotations of the centroid of one end-face
vanish, then the compatibility condition for the loads in the Signorini’s expansion
method [5] is automatically satisfied. Signorini’s method reduces the solution of a
nonlinear elastic problem to that of a series of linear elastic problems with body
forces and surface tractions determined by the solution of the previous linear elas-
tic problem. Truesdell and Noll [6] and Wang and Truesdell [7] have reviewed
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182 F. DELL’ISOLA ET AL.

the historical background and the relevant literature on the Poynting effect and
the Signorini expansion method. They have pointed out that Signorini’s method
delivers only those solutions that are in the neighborhood of solutions of the linear
elastic problem with the same loads as for the nonlinear problem.

In [8] we used the Signorini expansion method to analyse the Saint-Venant
problem [9,10] for a straight, isotropic, stress-free and homogeneous prismatic bar
made of a second-order elastic material with the first term in the expansion for
the displacement field corresponding to an infinitesimal twist of the body. Here we
investigate the problem when the first term in Signorini’s expansion corresponds
to an infinitesimal bending and stretching of the bar. The solution of the problem
yields generalized Poynting effects such as second-order extension of the bar in
the absence of external resultant normal tractions at the end faces. This second-
order extension is found to depend upon the first and second-order elasticities,
initial bending, and other properties of the cross-section. Further such effects are
deduced for a pretwisted bar by using results from [8].

The analysis of the problem is simplified by decomposing, as suggested by
DiCarlo [11], and Davi and Tiero [12], the displacement field and other tensorial
quantities into components along the axis of the bar and those in the cross-section.

Iesan [13–16] has studied the Saint-Venant problem for inhomogeneous and
anisotropic linear elastic bodies, elastic dielectrics, and microstretch elastic solids.
Dell’Isola and Rosa [17,18] and Davi [19] have studied the problem for linear
piezoelectric bodies, and dell’Isola and Batra [20] for linear elastic porous solids.

2. Formulation of the Problem

We consider a second-order elastic, homogeneous, and isotropic prismatic bar oc-
cupying the regionA × [o, `] in the unstressed reference configuration. ThusA
is the cross-section of the bar and` its length. Let the bar be infinitesimally bent
and stretched by tractions applied only at its end faces. Following Signorini [5], we
expand the displacement fieldu in terms of the infinitesimal elongationε and write
it as

u = εu̇+ ε2ü+ ε3...u+ · · · . (1)

Thus a superimposed dot onu indicates the order of the displacement field. Our
goal is to findü for a second-order elastic material whenu̇ corresponds to in-
finitesimal elongation and/or bending of the bar. Saint-Venant’s solution foru̇
is

u̇(r , ζ ) = ζ(ε − c · r)e+ ζ
2

2
c+ Kc − νεr , (2)

whereζ is the axial coordinate of a point when the origin of the co-ordinate system
is at the centroid of one end face,e is a unit vector along the centroidal axis of

168756.tex; 31/07/1996; 12:17; p.2



POYNTING EFFECTS IN PREDEFORMED PRISMATIC BARS 183

the bar in the unstressed configuration,r is the position vector of a point in the
plane perpendicular to the centroidal axis,c = v′′ is the curvature characterizing
the bending of the bar, a prime denotes differentiation with respect toζ , ∗r equals
e× r , and

u(r , ζ ) := v(r , ζ )+w(r , ζ )e, (3)

K := ν[r ⊗ r − (∗r)⊗ (∗r)]/2, (4)

ν := λ/(2(λ+ µ)), (5)

(a⊗ b)d = (a · d)b (6)

for arbitrary vectorsa,b andd. Thusv equals the displacement of a point within
the cross-section andw its displacement in the axial direction,K is the anticlastic
curvature operator,ν is Poisson’s ratio, andλ andµ are the Lamé constants. Resul-
tant forces and moments to be applied to the end faces of the bar can be computed
from the displacement field (2) and the constitutive relation for the bar (e.g. see
Sokolnikoff [21]). We require that the centroid of one end face of the bar and the
skew symmetric part of the displacement gradientH vanish there. That is,

u(0,0) = 0, H(0,0) = HT (0,0). (7)

Green and Adkins [4] have shown that under conditions (7), there is no compatibil-
ity condition required by the first-order loads in the Signorini’s series expansion of
the solution. We assume that the bending curvature and extension are of the same
order of magnitude; i.e.

c= εċ+O(ε2). (8)

Thus with

δ := ċ · r ,

u̇(r , ζ ) = ε
[
ζ(1− δ)e+ ζ

2

2
ċ+ Kċ− νr

]
.

(9)

Due to the bending of the bar, the axial displacementδ of a point is proportional to
its distance from the centroidal axis. From (9) we derive the following expressions
for the first-order displacement gradientḢ, the infinitesimal strain tensoṙE, and
other deformation measures needed in the expression for the first Piola–Kirchhoff
stress tensorS.

Ḣ = ε[(1− δ)e⊗ e+ ζe∧ ċ− ν(1− δ)Î + νϕ∗], (10)

ϕ := (∗ċ) · r , (11)
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Ė := (Ḣ + ḢT )/2= ε(1− δ)(e⊗ e− ν Î), (12)

ḢḢT = ε2{[(1− δ)2+ ζ 2‖ċ‖2]e⊗ e

+ (1+ ν)(1− δ)ζe∨ ċ− νϕζe∨ (∗ċ)
+ ζ 2ċ⊗ ċ+ ν2[ϕ2+ (1− δ)2]Î }, (13)

Ė2 = ε2(1− δ)2(e⊗ e+ ν2Î ), (14)

(ḢT )2 = ε2{[(1− δ)2− ζ 2‖ċ‖2]e⊗ e

+ ζ(1− δ)(1− ν)ċ∧ e+ νϕζ(∗ċ) ∨ e

− ζ 2ċ⊗ ċ+ ν2[(1− δ)2− ϕ2]Î + 2ν2(1− δ)ϕ∗}. (15)

Here

a∧ b = a⊗ b− b⊗ a, (16)

a∨ b = a⊗ b+ b⊗ a, (17)

for arbitrary vectorsa andb, Î is the two-dimensional identity matrix,‖a‖ equals
the length of vectora, andϕ is the twist caused by the bending of the bar. The two-
dimensional identity matrix is extended to a three-dimensional matrix by adding
zeros in the third row and third column, and the rotation operator∗ is also simi-
larly extended. In a rectangular Cartesian coordinate system withe pointing along
the 3-axis, the elements of the first, second and third rows of the 3× 3 matrix
corresponding to the∗ operator are 0,−1,0; 1,0,0; 0,0,0 respectively.

For a second-order elastic material, the first Piola–Kirchhoff stress tensor,S, is
given by (e.g. see Wang and Truesdell [7])

S = µ

[(
α1IĖ + 2Ė+ α1

2
(IḢḢT + 2IĖ2 + α3I

2
Ė + α4(IĖ2 − (IĖ)2)/2

)
1

+(α5+ 2)IĖĖ− α1IĖḢT − (ḢT )2+ α6Ė2

]
, (18)

whereµ is the shear modulus,µα1 is a Lamé constant,α3, α4, α5 andα6 are non-
dimensional material constants, andIĖ = tr(Ė). Substitution from (10)–(15) into
(18), collecting terms of different orders ofε, and expandingSas a power series in
ε, viz.

S= εṠ+ ε2S̈+ · · · (19)

we can derive expressions forṠ, S̈ etc. Because of the assumption of stress free
reference configuration,S vanishes forε = 0. Also u̇ is assumed to be known,
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therefore, explicit relation foṙS in terms ofḢ etc. is omitted. With the objective
of finding ü, we list below the expression for̈S in terms of ü and other known
quantities

S̈ = ¨̄S+ ε2

{[
λ

((
1− 4ν + 10ν2

2

)
(1− δ)2+ ν2ϕ2

)

+(λ+ µ)ζ 2‖ċ‖2+ µβ(1− δ)2
]
e⊗ e

+µ[ζ 2ċ⊗ ċ− νϕζ(∗ċ) ∨ e]

−µ(1+ ν)(1− δ)ζ ċ∧ e+ kÎ
}
, (20)

where

¨̄S= λ tr(Ë)1+ 2µË, (21)

2Ë = Gradü+ (Gradü)T , (22)

β = 1− 4ν + α3(1− 2ν)2 + (α4ν + α5)(1− 2ν)+ α6, (23)

k = λ
[(

3− 6ν + 6ν2

2

)
(1− δ)2+ ζ 2‖ċ‖2

]
+ (λ+ µ)ν2ϕ2+ µγ, (24)

γ = (3ν2− 2ν + α3(1− 2ν)2+ α4(ν
2− 2ν)

+α5(2ν
2 − ν)+ α6ν

2)(1− δ)2, (25)

and Grad (Div) is the three-dimensional gradient (divergence) operator in the ref-
erence configuration. The second-order stress tensorS̈ must satisfy the following
equilibrium equations and boundary conditions

Div S̈= 0 in A× [0, `], (26)

S̈N= 0 on∂A× [0, `]. (27)

HereN is an outward unit normal on∂A× [0, `]. Decomposing̈̄S into compo-
nents as

¨̄S= σ̈e⊗ e+ ẗ ∨ e+ ¨̂S, (28)

and recalling (21) and the decomposition (3) of the displacement into its axial and
in-plane components, we obtain

σ̈ = (λ+ 2µ)ẅ′ + λ tr ¨̂E, (29)
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ẗ = µ(v̈′ + gradẅ), (30)

¨̂S= λ(tr ¨̂E)Î + 2µ ¨̂E, (31)

where

2 ¨̂E = gradv̈+ (gradv̈)T , (32)

and grad (div) is the two-dimensional gradient (divergence) operator in planeA.
Substitution from (20) and (28) into (26) and (27) yields

σ̈ ′ + divẗ = −(2λ+ 3µ)ζε2‖ċ‖2 in A× [0, `], (33)

ẗ′ + div ¨̂S= ε2{(µ− λ)ϕ(∗ċ)+ [λ(3− 6ν + 6ν2)

+ µ(2γ − ν − 1)](1− δ)ċ} in A× [0, `], (34)

ẗ · N = µζε2[νϕ(∗ċ)+ (1+ ν)(1− δ)ċ] ·N on ∂A× [0, `], (35)

¨̂SN= −ε2[µζ 2ċ⊗ ċ+ kÎ ]N on ∂A× [0, `]. (36)

We will find a solution for (33)–(36) in Section 4.

3. Resultant Forces and Moments on a Cross-section

Integrating (26) overA× [0, ζ ], using the divergence theorem and boundary con-
ditions (27), we obtain∫

Aζ

S̈edA = const. (37)

for everyζ . Thus from (28) and (20),∫
Aζ

σ̈ dA + (λ+ µ)ζ 2ε2‖ċ‖2Aζ + λν2ε2(Jċ) · ċ

+ε2(1
2λ(1− 4ν + 10ν2)+ µβ)(Aζ − (J(∗ċ) · (∗ċ))) = const., (38)∫

Aζ

ẗ dA+ µε2(1+ ν)ζ ċAζ = const., (39)

where

J :=
∫

Aζ

(∗r)⊗ (∗r) dA (40)
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is an inertia tensor. The momentM ζ of tractions on a cross-sectionAζ is given by

M ζ =
∫

Aζ

(p0+ εu̇+ ε2ü+ · · ·)× [(εṠ+ ε2S̈+ · · ·)N] dA, (41)

wherep0 is the position vector of a point in the reference configuration. Thus

M̈ ζ =
∫

Aζ

(p0× S̈N+ u̇× ṠN) dA. (42)

Taking moments of tractions on the boundary of the domainA× [0, ζ ], recalling
(27) and since the resultant moment of second-order tractions at the end faces
vanishes, we obtain∫

Aζ

[(r0 + ζ0e)× S̈e+ u̇× Ṡe] dA = const. (43)

Substitution forS̈ from (20) and forṠ into (43) and some simplification gives∫
Aζ

[(∗r) · ẗ − µζε2ċ · (J(∗ċ))] dA = const. (44)

ζ

∫
Aζ

(∗ẗ) dA−
∫

Aζ

(σ̈ (∗r)) dA

+ε2

{
(1

2λ(1− 4ν + 10ν2)+ µβ)

×
(

2J(∗ċ)−
∫

Aζ

[(∗r)⊗ (∗r) · (∗ċ⊗ ∗ċ)(∗r)] dA
)

−λν2
∫

A

[(∗r)⊗ (∗r) · (ċ⊗ ċ)](∗r) dA− 2µ(1+ ν)

×
[
ν

2

∫
Aζ

(r ∨ (∗r))(1− δ)ċ dA+ νJ (∗ċ)
]}
= const.

(45)

4. Saint-Venant Solutions

Assuming thaẗu(r , ζ ) is a polynomial inζ , we write it as

ü(r , ζ ) = u0(r)+ ζu1(r)+ ζ
2

2! u2(r)+ ζ
3

3! u3(r)+ · · · , (46)
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where we have dropped the superimposed double dots on the right-hand side of
(46). We note that such a solution will not capture well the boundary layer effect, if
any, near the end facesζ = 0 andζ = `. Saint-Venant solutions represent well the
deformation fields away from the end faces. Recognizing that the right-hand sides
of (33)–(36) are polynomials of order at most one inζ , we obtain foru4,u5, . . .

etc., equations analogous to those in linear elasticity with zero body forces and zero
traction boundary conditions. Because of the conditions (7) at the centroid of one
end face, and the uniqueness of solutions in linear elasticity,u4 = u5 = · · · = 0. A
similar reasoning foru3 gives

u3 = w0
3e+ v0

3 + ω0
3(∗r). (47)

Here and below, quantities with superscript zero denote constants. From (46),
(47) andu4 = u5 = · · · = 0, we obtain

v̈(r , ζ ) = v0(r)+ ζv1(r)+ ζ
2

2! v2(r)+ ζ
3

3! (v
0
3+ ω0

3(∗r)),

ẅ(r , ζ ) = w0(r)+ ζw1(r)+ ζ
2

2!w2(r)+ ζ
3

3!w
0
3.

(48)

Substitution from (48) into (29)–(32) yields

2 ¨̂E = ζ 2

2
(gradv2(r))s + ζ(gradv1(r))s + (gradv0(r))s,

σ̈ = (λ+ 2µ)
[
ζ 2

2
w0

3 + ζw2(r)+w1(r)
]

+λdiv

[
ζ 2

2
v2(r)+ ζv1(r)+ v0(r)

]
,

ẗ = µ
[
ζ 2

2
(v0

3+ ω0
3(∗r)+ gradw2(r)+ ζ(v2(r)

(49)

+gradw1(r))+ v1(r)+ gradw0(r)
]

¨̂S= µ
[
ζ 2

2
(gradv2(r))s + ζ(gradv1(r))s + (gradv0(r))s

]

+λ
[
ζ 2

2
(w0

3 + div v0(r))+ ζ(w2(r)

+div v1(r))+w1(r)+ div v0(r)
]
Î ,
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where

(gradv(r))s = gradv(r)+ (gradv(r))T . (50)

Substitution from (49) into (33)–(36) and equating like powers ofζ on both sides
yields equations for determiningw2, v2, w1, v1 andw0, v0. Equations for the de-
termination ofw2 andv2 are

1Rw2 = 0, in A,

Fv2 = 0, in A,

(gradw2) ·N = −(v0
3+ ω0

3(∗r)) · N, on ∂A,

(Gv2)N = −[λw0
3Î + 2ε2(µċ⊗ ċ+ λ‖ċ‖2Î )]N, on ∂A,

(51)

where

G(·) = µ(grad(·))s + Îλ div (·),
F = div G = µ1R + (λ+ µ)grad div,

(52)

1R is the two-dimensional (in-plane) Laplacian operator, andF is the Navier
operator of linear elasticity.

The solution of (51) is

w2(r) = w0
2 − v0

3 · r + ω0
3φ(r),

v2(r) = v0
2+ ω0

2(∗r)− νw0
3r

− ε2[(1+ ν)(ċ⊗ ċ)+ ν(∗ċ⊗ ∗ċ)]r ,
(53)

whereφ(r) is the standard Saint-Venant warping function. The Poisson effect pro-
portional toε2 varies quadratically withζ , the distance from the ‘fixed’ end, and is
not uniform throughout the cross-section. The displacement of a point in the bend-
ing direction ċ is more than that in the direction perpendicular toċ. Substitution
from (53) into (49), the result into (38) and equating coefficients of like powers of
ζ on both sides yields

w0
3 = −ε2‖ċ‖2, ω0

3 = 0. (54)

Thus

w2(r) = w0
2 − v0

3 · r ,
v2(r) = v0

2+ ω0
2(∗r)− ε2(ċ⊗ ċ)r .

(55)
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Hence for an unloaded mantle, the second-order Poisson effect proportional toε2

is only in theċ direction.
Equations governing displacement fieldsv1 andw1 are

1Rw1 = 0, in A,

Fv1 = λv0
3, in A,

(gradw1)·N=−[v0
2+ω0

2(∗r)+ε2(ν(ċ⊗ċ)

− (∗ċ⊗∗ċ)r − (1+ ν)ċ] · N, on∂A,

(Gv1)N = [λ(v0
3·r − ω0

2)Î ]N, on ∂A.

(56)

The solution of (56) is

w1(r) = w0
1 − v0

2 · r + ω0
2φ(r)− ε2(Cr) · r + ε2(1+ ν)ċ · r ,

v1(r) = v0
1+ ω0

1(∗r)− νw0
2r + Kv0

3,
(57)

where

C = ν(ċ⊗ ċ− (∗ċ)⊗ (∗ċ))/2. (58)

Equations (44) and (45) for the resultant force and the resultant moment do not
restrict the constants appearing in (57). However, (38) and (44) imply the following

w0
2 = 0, ω0

2 = ḟ · ċ/Kt, (59)

where

ḟ = EJ(∗ċ), E = 2µ(1+ ν),

Kt = µ(J0−D), J0 =
∫

A

r2 dA,

D =
∫

A

(∗ gradφ) · r dA,

(60)

ḟ equals the resultant bending moment, andKt the torsional rigidity of the Saint-
Venant first-order bending and torsion problems respectively. In the absence of
torques on the mantle, the angular twist is proportional toζ 2. The constantω0

2
vanishes wheṅc is parallel to a principal axis of the cross-section and is ex-
tremum wheṅc is parallel to the direction bisecting the principal axes of the cross-
section. This second-order angular twist proportional toζ 2 does not depend upon
the second-order elasticities of the material but is determined by Poisson’s ratio, the
bending vector, and the properties associated with the cross-section. The last term
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on the right-hand side of (57)1 corresponds to the extra out-of-plane rigid rotation
of a cross-section around(∗ċ), which is proportional to its distance from the fixed
end, and arises only when the bar is simultaneously prebent and prestretched.

Equations governing displacementsv0, w0 are

1Rw0 = 2v0
3 · r , in A,

Fv0 = λv0
2− ω0

2[(λ+ µ)gradφ + µ(∗r)] − 2λν(∗ċ⊗ ∗ċ)r
−λ(ċ⊗ ċ)r + ε2(1− δ)ċ{λ(6ν2− 7ν − 4)

+µ[6ν2 − 6ν − 2+ 2α3(1+ 2ν)2+ 2α4(ν
2− 2ν)

+2α5(2ν2− ν)+ 2α6ν
2]}, in A,

(gradw0) ·N = −(v0
1+ ω0

1(∗r)+ Kv0
3) · N, on∂A, (61)

(Gv0)N = −{λ[w0
1 + (ε2(1+ ν)ċ− v0

2) · r
−ε2(Cr) · r + ω0

2φ] + ε2(λ+ µ)ν2φ2

+ε2[λ(3− 6ν + 6ν2)/2+ µ(3ν2 − 2ν)+ α3(1− 2ν)2

+α4(ν
2− 2ν)+ α5(2ν2 − ν)+ α6ν

2)]
×(1− δ)2}ÎN , on∂A.

The solution of (61) is

w0(r) = w0
0 − v0

1 · r + ω0
1φ(r)+ w̃0(r),

v0(r) = v0
0+ ω0

0(∗r)− νw0
1r + Kv0

2+ ṽ0(r).
(62)

Functionsw̃0(r) and ṽ0(r) are solutions of (61) after settingω0
1 = 0, w0

1 =
0, v0

1 = 0 andv0
2 = 0, and constantw0

0, ω
0
0, v

0
0 andv0

1 are to be determined from
the six conditions (7) at the centroid of one end-face. Constantsw0

1, ω
0
1, v

0
2 and

v0
3 determine the Saint-Venant solution for extension, torsion, bending, and flexure

problem respectively. The terms linear inċ on the right-hand side of (61)2 and (61)4
are due to the simultaneous prebending and prestretching of the bar.

5. Generalized Poynting Effects in a Prebent, Prestretched and Pretwisted
Bar

A second-order effect in a bar bent by loads applied only at the end faces is that the
angular twist varies quadratically with the distance from the ‘fixed’ end. This twist
vanishes only when the bending vectorċ is parallel to one of the principal axes of
the cross-section, and hence is always zero for a circular bar.
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192 F. DELL’ISOLA ET AL.

The resultant second-order normal and shear tractions on an end face are given
by ∫

A`

(S̈e) · edA

= EAw0
1 − ε2

{
(λ+ 2µ)

∫
A`

[(Cr) · r − ω0
2φ] dA

− λν2(Jċ) · ċ+ ((λ(1− 4ν + 10ν2)/2) + µβ)

× (A− (J(∗ċ)) · (∗ċ))
}
+ λ

∫
A`

(div ṽ0) dA,

(63)∫
A`

(S̈e)⊥ dA = µ
∫

A`

(gradw̃0) dA− µν
2
(J + ∗J∗)v0

3,

and the resultant second-order torqueT , and the bending momentM , have the
expressions

T = Ktω0
1 + µ

(∫
A`

(∗r) · (gradw̃0) dA− ν
2

∫
A`

r2(∗r) · v0
3 dA

)
, (64)

M = EJ(∗v0
2)− (λ+ 2µ)[ε2(1+ ν)J (∗ċ)]

−ε2
∫

A0

((Cr) · r)(∗r) dA+ ω0[(∗r)φ dA] − λ[(div ṽ0)(∗r) dA]

+ε2

{
(1

2λ(1− 4ν + 10ν2)+ µβ)
(

2J (∗ċ)−
∫

A0

(∗r)⊗ (∗r)

×((∗ċ)⊗ (∗ċ))(∗r) dA

−λν2
∫

A0

((∗r)⊗ (∗r)) · (ċ⊗ ċ)(∗r) dA

)

−E
(

1
2ν

∫
A0

(r ∨ (∗r))(1− δ)ċ dA+ νJ (∗ċ)
)}
. (65)

HereE = µ(3λ+2µ)/(λ+µ) is Young’s modulus for the material of the bar. Equa-
tions (61)1 and (63)2 imply that the resultant second-order shear traction is linear
in v0

3. Therefore, there is no second-order flexure in the absence of second-order

168756.tex; 31/07/1996; 12:17; p.12



POYNTING EFFECTS IN PREDEFORMED PRISMATIC BARS 193

resultant shear force. However, (63)1 implies that in the absence of the resultant
second-order axial traction, there can be a second-order extension of the bar. This
second-order extension depends upon the first and second-order elasticities of the
material, area of cross-section, first-order torsional rigidity, bending vectorċ, and
the inertia tensorJ. Equation (63)1 generalizes Rivlin’s result for the resultant axial
force in a pretwisted bar to that in a prebent bar. For a given cross-section and zero
resultant normal traction, it is a nontrivial task to find the bending directionċ, which
will give extreme values of the second-order elongationw0

1 since the functioñv0 is
a solution of a plane linear elastic problem with non-zero body forces.

For a zero resultant shear force, the second and third terms on the right-hand
side of (64)1 vanish. Thus when the torque also vanishes,ω0

1 = 0 and there is no
angular twist proportional toζ .

Equation (64)2 implies that even whenM = 0, v0
2 need not vanish. Thus there

is in general a second-order bending effect in the absence of the external resultant
second-order moment at the end faces. It is rather difficult to find the bending
directionċ which will extremizev0

2.
In [8] we studied Saint-Venant type deformations of a pretwisted bar, computed

the resultant forces and moments on an end face, and discussed the usual Poynting
effect. The expressions for the resultant second-order normal and shear tractions
on an end face are as follows∫

A`

(S̈e) · edA = Ew0
1A+ λ

∫
A`

div ṽ0 dA+ τ2

(
1
2λ−

µ(α4− α6)

4

)

× (J0−D)+ τ2(λ+ µ)D, (66)

∫
A`

(S̈e)⊥ dA = µ
[
v0

1A− (J + ∗J∗)v0
3 +

∫
A`

(gradw̃0) dA
]
. (67)

Functionsṽ0 andw̃0 in (66) and (67) are different from those appearing in earlier
equations, and are defined in [8]. As in this paper, they are also solutions of plane
elliptic problems but with different source terms and boundary conditions.τ is the
pretwist in the bar. The second-order resultant torque,T , and the moment,M , are
given by

T = µ
[
ω0

1(J0−D)− 1
2νv0

3 ·
∫

A0

‖r‖2(∗r) dA

+
∫

A0

((∗r) · gradw̃0) dA

]
, (68)
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M = EJ ∗ v0
2− λ

∫
A0

(∗r)div ṽ0 dA

+τ2(λ+ µ)
∫

a0

(∗r ⊗ ∗r)gradφ dA

−τ2

(
1
2λ−

µ(α4− α6)

4

)∫
A0

‖g‖2(∗r) dA

+τ2µ

∫
φ(∗g) dA, (69)

where

g= (∗r + gradϕ). (70)

Expressions (67) and (68) for the second-order resultant shear force and the twist-
ing moment respectively imply that the second-order shear deformation and the
second-order twist vanish if and only if these resultants equal zero. However, ex-
pression (69) implies that, in general, there is a second-order bending deformation
even when the resultant bending moment on an end face is zero. This bending
deformation depends upon the first and second-order elasticities, the inertia tensor,
and ∫

(∗r) div ṽ0 dA,

whereṽ0 is the solution of the elliptic problem defined by equations (51) of [8].

Conclusions

We have found a second-order solution of the Saint-Venant problem for a straight,
prismatic, homogeneous body made of a second-order elastic material. The bar is
initially stretched and bent by an infinitesimal amount from the unstressed refer-
ence configuration, and then deformed by tractions applied at the end faces. The
displacements and infinitesimal rotations at the centroid of one end face are taken
to be zero. The problem is analysed by the Signorini expansion method, and its
solution reduced to that of solving two linear plane elliptic problems. The resultant
second-order forces and moments at an end face are given by equations (63), (64),
and (65).

Equation (53)2 reveals a new Poisson’s effect proportional to the square of the
initial infinitesimal deformation. The Poisson effect in a cross-section varies as the
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square of its distance from the ‘fixed’ end, and the in-plane displacement of a point
in the bending direction is more than that in the orthogonal direction.

Unless the direction of prebending is along a principal axis of a cross-section,
the cross-section twists in the absence of external torques at the end faces. This
twist is proportional to the square of the distance of the cross-section from the
‘fixed’ end, and is determined by Poisson’s ratio, the bending vector and properties
of the cross-section, but is independent of the second-order elasticities.

Equation (63)1 indicates that in the absence of a second-order resultant normal
force, there can be a second-order extension of the bar which depends upon the
first and second order elasticities of the material, the bending vector and geometric
properties of the cross-section.

From (64)2 we conclude that a second-order bending effect may occur in the
absence of corresponding bending moments at the end faces.

For a pretwisted bar, it follows from (69) that there is a second-order bending
deformation for vanishing second-order bending moments at the end faces.
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