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ABSTRACT

The performance (in term of error rate) of biometric sys-
tems can be improved by combining them. Multiple fusion
techniques can be applied from classical logical operations
to more complex ones based on score fusion. In this paper,
we use a genetic algorithm to learn the parameters of dif-
ferent multibiometrics fusion functions. We are interested
in biometric systems usable on any computer (they do not
require specific material). In order to improve the speed of
the learning, we defined a fitness function based on a fast
Error Equal Rate computing method. Experimental results
show that the developed method provides very low error
rates while having reasonable computation times. The pro-
posed method opens new perspectives for the development
of secure multibiometrics systems with speeding up their
computation time.

KEYWORDS: Authentication, Identity Management,
Access Control, Multibiometrics.

1. INTRODUCTION

Biometrics is a science in perpetual evolution: every day,
new algorithms performing much better than previous ones
are designed, as well as novel type of biometric modali-
ties (like finger knuckle recognition proposed in 2009 [1]).
Many biometric modalities exist, each classified among
three main families (even if we can find a more precise
topology in the literature) (i) Biological: recognition based
on the analysis of biological data linked to an individual
(e.g., DNA, EEG analysis, ...). (ii) Behavioural: based on
the analysis of the behaviour of an individual while he is
performing a specific task (e.g., signature dynamics, gait,
...). (iii) Morphological: based on the recognition of differ-

ent physical patterns, which are, in general, permanent and
unique (e.g., fingerprint, face recognition, ...).

Nevertheless, there will always be users for which one
modality (or method applied to this modality) will give bad
results. These low performances can be implied by differ-
ent facts: the quality of the capture, the acquisition condi-
tions, or the individual itself. Biometrics multi-modality
(or multibiometrics) allows to compensate this problem
while obtaining better biometric performances (i.e., bet-
ter security by rejecting less genuine users and accepting
less impostors) by expecting that the errors of the different
modalities are not correlated. So, the aim of multibiomet-
rics is to protect logical or physical access to a resource
by using different biometric captures. We can find differ-
ent types of biometric multi-modality. Most of them are
listed here [2], they use: (a) different sensors of the same
modality (i.e., capacitive or resistive sensors for fingerprint
acquisition); (b) different representations of the same cap-
ture (i.e., use of points of interest or texture); (c) different
biometric modalities (i.e., face and fingerprint); (d) several
instances of the same modality (i.e., left and right eye for
iris recognition); (e) multiple captures (i.e., 25 images per
seconds in a video used for face recognition); (f) an hybrid
system composed of the association of the previous ones.

In our study, we are interested in the first four kinds of
multi-modality. We present in this paper, a new multibio-
metrics approach using fusion functions parametrized by
various genetic algorithms using a fast EER (Error Equal
Rate, presented in section 2.1) computing method to speed
up the fitness evaluation. Our generated functions give bet-
ter results than the sum one which is commonly accepted
as a good fusion function in the literature. The computation
time needed to estimate the parameters of these functions
is greatly improved by the help of our fast EER computing
method.

This paper is related to high performance computing, be-
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cause algorithms are designed to work in an infrastructure
managing the biometric authentication of thousands of in-
dividuals. To improve recognition rate of biometric sys-
tems, it is necessary to regularly update the model to take
into account intra class variability. With our proposition,
the time taken to update the model would be lower. The
more the method is fast, the more we can launch the updat-
ing process.

In the next section, we present the state of the art of this
domain. Section 3 describes the proposed method and sec-
tion 4 illustrates its efficiency. We conclude and give some
perspectives of this study.

2. BACKGROUND

2.1. Biometric Systems Evaluation

Like in all pattern recognition problems, biometric sys-
tems need to be evaluated in order to be compared together.
There are three main error rates:

FAR False Acceptance Rate which represents the ratio of
impostors accepted by system;

FRR False Rejection Rate which represents the ratio of
genuine users rejected by the system;

EER Error Equal Rate which is the error rate when the
system is configured in order to obtain a FAR equal
to the FRR. This is the error rate we use all over this
paper.

The main approach to compute the EER is to compute the
couples of FAR and FRR for several thresholds. These
thresholds are linearly distributed over the minimal and the
maximal scores of the whole set of intra and inter scores.
Each score is computed by comparing a capture to a model
(this model can be a reference capture or computed with
several captures). The intra scores are computed by com-
paring captures from one user with its own model, while
the inter scores are computed by comparing captures from
one user with model from another one. This approach
is slightly different than in [3], but, when the number of
scores is much more important than the number of steps
(which is always the case in our biometric databases), the
number of comparison is far lower (and takes less compu-
tation time).

The computation of the FAR and FRR error rates is based
on the comparison of the scores against a threshold (the di-
rection of the comparison is reversed if the scores represent
similarities instead of distances). FRR and FAR are respec-
tively computed (in the case of a distance score) as in (1)
and (2), where intrai (respectively interi) means the intra

score at position i in the set of intra score (respectively in-
ter score at position i) and Card{set} is the cardinal of the
set in argument.

FRR =
Card{intrai,∀i⊂Card(intra)|intrai > thr}

Card{intra}
(1)

FAR =
Card{interi,∀i⊂Card{inter}|interi ≤ thr}

Card{inter}
(2)

With the help of these equations, we can see that it is neces-
sary to operate Card{intra}+Card{inter} comparisons
for each couple of (FAR, FRR), so the computation time for
these comparisons is highly related to the number of avail-
able scores. Once the couples of (FAR, FRR) are computed
for each threshold, we can obtain:

• the ROC curve by plotting the FRR depending on the
FAR (we choose this representation to easily graph-
ically read the EER which is presented below). The
aim of this curve is to present the tradeoff between
FAR and FRR and to have a quick overview of the
system performance and security.

• the EER by selecting the couple of (FAR, FRR) hav-
ing the smallest absolute difference (3) and returning
their average (4). By this way, we have obtained the
best approaching EER with the smallest precision er-
ror. The EER computing algorithm is presented in the
Figure 1.

ERRORi=min(abs(FARi − FRRi)), (3)
∀i⊂Card{ROC}

EER=
FARi + FRRi

2
, (4)

∀i⊂Card{ROC}|i = argmin(ERRORi)

2.2. Multibiometrics

We focus in this part on the state of the art on multimodal
systems involving biometric modalities usable for all com-
puters (keystroke, face, voice...). The fusion process is the
most important process in multimodal systems. It can be
operated on the scores provided by algorithms or in the
templates themselves [4]. In the first case, it is necessary
to normalize the different scores as they do not evolve in
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ROC ← []
EER← 1.0
DIFF ← 1.0
START ← min(scores)
END ← max(scores)
for THRESHOLD from START to END in N steps do

FAR← compute FAR for THRESHOLD
FRR← compute FRR for THRESHOLD
append (FAR, FRR) to ROC
if abs(FAR− FRR) < DIFF then

DIFF ← abs(FAR− FRR)
EER← (FAR + FRR)/2

end if
end for
return EER, ROC

Figure 1. Classical EER Computing Algorithm

the same range. Different methods can be used for doing
this, and the more efficient methods are zscore, tanh and
minmax [5]. Different kinds of fusion methods have been
applied on biometric systems. The fusion can be done with
multiple algorithms of the same modality. For example,
in [6], three different keystroke dynamics implementations
are fused with an improvement of the EER, but less than 40
users are involved in the database. In [7], two keystroke dy-
namics systems are fused together by using weighted sums
for 50 users, but no information on the weight computing
is provided. The fusion can also be done within different
modalities in order to improve the authentication process.
In [8], authors use both face and fingerprint recognition,
the impact of error rate reduction is used to reduce the error
when adapting the user’s model. There is only one paper
(to our knowledge) on keystroke dynamics fusion with an-
other kind of biometric modality (voice recognition): it is
presented in [9], but only 10 users are involved in the ex-
periment. In [10], multi-modality is done on fingerprints,
speech, and face images on 50 individuals. Fusion has been
done with SVM [11] with good improvements, especially,
when using user specific classifiers.

Very few multimodal systems have been proposed for clas-
sical computers and the published ones have been validated
on small databases. In order to contribute to solve this
problem, we propose a new approach in the following sec-
tion.

3. PROPOSED METHOD

We propose a biometric fusion system based on the gener-
ation of a fusion function parametrized by a genetic algo-
rithm and a fast method to compute the EER (which is used
as fitness function) in order to speed the computing time of
the genetic algorithm.

3.1. Fast EER Computing

Computation time to get the EER can be quite important.
When EER need to be computed a lot of time, it is neces-
sary to use a quicker way than the standard one.

In the biometric community, the shape of the ROC curve
always follows the same pattern: it is a monotonically de-
creasing function and the EER value is the curve’s point
having xROC = yROC (or FAR = FRR). Thanks to this
fact, the curve symbolising the difference of yROC against
xROC is also a monotonically decreasing function from
1 to −1, where the point at yDIFF = 0 represents the
EER (and its value is xDIFF because xROC = yROC or
FAR = FRR).

With these information, we know that to get the EER, we
need to find the xDIFF for which yDIFF is closest as pos-
sible to zero. An analogy with the classical EER comput-
ing, would be to incrementally compute yDIFF for each
score by increasing order and stop when yDIFF change of
sign. By this way, we can expect to do half threshold con-
figuration than with the classical way if scores are correctly
distributed. A clever way is to use something equivalent to
a divide and conquer algorithm like the binary search and
obtain a mean complexity closer to O(log(n)). We have
implemented a polytomous version of EER computing:

1. we chose i thresholds linearly distributed on the scores
sets

2. for each scores, we compute the FAR and FRR

3. we catch the two following scores s1 and s2 having
sign(FRRs1 −FARs1) different of sign(FRRs2 −
FARs1)

4. we repeat step 2 with selecting i thresholds between
s1 and s2 included while FRRs1 − FARs1) do not
reach the attended precision.

By this way, the number of threshold comparisons is far
smaller than in the classical way. Its complexity analysis
is not an easy task because it depends both on the attended
precision and the choice of i. A tentative of analysis of the
method is presented in the next section.

The algorithm is given in Figure 2, while its working steps
are given in Figure 3. It is applied on a system which ROC
curve is plotted with the plain line. We have chosen i = 4
points to compute during each iteration. For the first itera-
tion, 4 points are computed (represented by a circle). Then,
according to the sign change of the difference, 2 points are
chosen and the steps are repeated: two more points (the in-
terval extremities were already computed) are computed;
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ROC ← []
CACHE ← {}
START ← min(scores)
END ← max(scores)
while True do

for THRESHOLD from START to END in N steps do
SDIFF ← []
THRESHOLDS ← []
if not empty CACHE[THRESHOLD] then

FAR, FRR← CACHE[THRESHOLD]
else

FAR← compute FAR for THRESHOLD
FRR← compute FRR for THRESHOLD
append (FAR, FRR) to ROC
CACHE[THRESHOLD]← (FAR, FRR)

end if
if abs(FAR− FRR) < PRECISION then

EER← (FAR + FRR)/2
return EER, ROC

end if
append FAR− FRR to SDIFF
append THRESHOLD to THRESHOLDS

end for
PSTART ← −1
PEND ← −1
for PIV OT = 0 to STEPS − 1 do

if sign(SDIFF [PIV OT ]) 6= sign(SDIFF [PIV OT +
1]) then

PSTART ← PIV OT
PEND ← PIV OT + 1
break

end if
end for{PSTART and PEND are set}
START ← THRESHOLDS[PSTART ]
END ← THRESHOLDS[PEND]

end while

Figure 2. Fast EER Computing Algorithm

they are represented by a star. The same phenomena ap-
pears in the iteration 3, where points are represented by a
rectangle. These tests are repeated until the difference be-
tween FAR and FRR of a point is lower than the required
precision. When it is verified, the EER is estimated by
computing the mean of the FAR and FRR of this point. The
ROC curve generated by the polytomous algorithm is rep-
resented in the dotted line. We can see that the inevitable
trade-off (due to this computing time earning) is the lack
of precision of the ROC curve. But, in our case, it is not
a problem, because our algorithm is not designed for that
purpose.

3.2. Fusion Method

We have tested three different kinds of score fusion meth-
ods which parameters are automatically set by genetic al-
gorithms [12]. These functions are presented in (5), (6) and
(7) where n is the number of available scores (i.e., the num-
ber of biometric systems involved in the fusion process),
wi the weight of multiplication of score i, si the score i
and xi the weight of exponent of score i. (5) is the com-

Figure 3. Points Computed By Our Algorithm When
i = 4. In This Case, The EER Is Found In 8

Comparisons

monly used weighted sum (note that in this version, the
sum of the weights is not equal to 1), while the two others,
to our knowledge, have never been used in multibiometrics.
We have empirically designed them in order to give more
weights to bigger scores.

ga1 =
n∑

i=0

wi ∗ si (5)

ga2 =
n∏

i=0

sxi
i (6)

ga3 =
n∑

i=0

wi ∗ sxi
i (7)

The aim of the genetic algorithm is to optimize the parame-
ters of each function in order to obtain the best fusion func-
tion. Each parameter (the wi and xi) is stored in a chromo-
some of real numbers. The fitness function is the same for
the three genetic algorithms. It is processed in two steps:

• fusion: The generated function (5), (6) or (7) is evalu-
ated on the whole set of scores;

• error computing: The EER is computed on the result
of the fusion. We use the polytomous version of com-
puting in order to highly speed up the total computa-
tion time.

4. VALIDATION

We have designed different experimental protocols in order
to answer to several questions:

• How fast and better is our EER computing method in
comparison to the classical one ?

• Do our fusion functions provide better results than the
fusion functions from the state of the art ?
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• What is the gain of using our EER method for the
learning step of our multibiometrics system ?

4.1. Databases Sets

In order to do these evaluations, we have used three
different biometric databases:

4.1.1. BSSR1
The BSSR1 [13] database is an ensemble of scores sets
from different biometric systems. In this study, we are
interested in the subset containing the scores of two facial
recognition systems and the two scores of a fingerprint
recognition system applied to two different fingers for
512 users. This database has been used many times in the
literature [14, 15].

4.1.2. BANCA
The second database is a subset of scores produced from
the BANCA database [16]. The selected scores correspond
to the following one labelled:

1. IDIAP voice gmm auto scale 25 100 pca.scores

2. SURREY face nc man scale 100.scores

3. SURREY face svm man scale 0.13.scores

4. UC3M voice gmm auto scale 10 100.scores

G1 set is used as the learning set, while G2 set is used as
the validation set.

4.1.3. PRIVATE
The latest database is a chimeric one we have created for
this purposed by combining two public biometric template
databases: the AR [17] for the facial recognition and the
GREYC keystroke [18] for keystroke dynamics. The AR
database is composed of frontal facial images of 126 indi-
viduals under different facial expression, illumination con-
ditions or occlusions. These images have been taken during
two different sessions with 13 captures per session. The
GREYC keystroke contains the captures on several ses-
sions on two months of 133 individuals. User were asked
to type the password ”greyc laboratory” 6 times on a laptop
and 6 times on an USB keyboard by interlacing the typings.
We have selected the first 100 individual of the AR database
and we have associated each of these individuals to another
one in a subset of the GREYC keystroke database having 5
sessions of captures. We then used the 10 first captures to
create the model of each user and the 16 other to compute
the intra and inter scores. These scores have been computed
by using two different methods for the face recognition and
two other ones for the keystroke dynamics.

4.2. Evaluation of the EER Computing

4.2.1. Experimental Protocol
The two different algorithms for EER computing have
been run on five different sets of scores (three of keystroke
dynamics and two of face recognition, generated with the
PRIVATE database) with various parameters. We call
classic the classical way of computing the EER and polyto
our version of the algorithm. The classic way is tested by
using 50, 100, 500 and 1000 steps to compute the EER.
The polytomous way is tested by using between 3 and 7
steps and a precision of 0.01, 0.005 and 0.003. The aim of
these tests is to compare how our method is better than the
classical one, and what are its best parameters.

4.2.2. Experimental Results
Table 1 presents the results obtained within the first tested
biometric system. We present the name of the method,
the error of precision while computing the EER, the com-
putation time in milliseconds and the number of compar-
isons involved (each comparison corresponds to the com-
parison of a threshold against the whole set of intra and
inter scores). The real computation time taken by a com-
parison is given in (8), where n is the number of thresholds
to compare, A is the timing to do a comparison and B and
C depends on the algorithm.

T=n ∗ (A ∗ (Card{intra}+ Card{inter}) + B)
+C (8)

We can see that the computation time is highly related to
the number of comparisons and the size of the score set.
The obtained results are slightly similar for the five tested
biometrics modalities. We can observe that, in the clas-
sic method, using 50 steps gives not enough precise re-
sults, while using 1000 gives a very good precision, but
is really time consuming; depending on the dataset, 500
steps seems to be a good compromise between precision
error and computation time. In all the polytomous config-
urations, the computation time is far better than the fastest
classic method (50 steps) while having a greatest precision.
This precision is always better than the classic method with
100 steps and approach or is better than the precision in
1000 steps. This gain of time is due to the lowest number
of involved comparisons. In an n steps classical comput-
ing, we need to check n thresholds, while in the polyto-
mous way this number depends both on the dataset and the
required precision: with our dataset, it can vary from 8 to
35 which is always lower than 50. As the computation time
depends only on this values, we can say that the fastest al-
gorithms are the one having the smallest number of tests.

Based on the number of comparisons (and by the way, the
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Table 1. Comparison Of The Differents EER
Computing Methods And Configurations On The First

Test Set
LABEL ERROR (%) TIME (ms.) COMP.
classic 50 8.37 459 50
classic 100 4.13 940 100
classic 500 0.20 4700 500
classic 1000 0.20 9310 1000
polyto 3 0.010 0.30 110 11
polyto 3 0.005 0.07 139 14
polyto 3 0.003 0.07 140 14
polyto 4 0.010 0.40 140 15
polyto 4 0.005 0.20 149 16
polyto 4 0.003 0.10 169 18
polyto 5 0.010 0.30 150 16
polyto 5 0.005 0.07 190 20
polyto 5 0.003 0.07 179 20
polyto 6 0.010 0.40 140 15
polyto 6 0.005 0.10 179 19
polyto 6 0.003 0.10 179 19
polyto 7 0.010 0.07 190 21
polyto 7 0.005 0.07 190 21
polyto 7 0.003 0.07 200 21

Table 2. Fastest EER Computing Parameters For Each
Modality

DB LABEL ERROR (%) TIME COMP.
1 polyto 3 0.010 0.30 110 11
2 polyto 3 0.010 0.05 50 5
3 polyto 6 0.003 0.09 60 7
4 polyto 3 0.010 0.14 89 10
5 polyto 4 0.010 0.29 70 7

timing computation), Table 2 presents the best results for
each modality (when several methods return the same num-
ber of iterations, the most precise is chosen).

We can argue that our method is better both in terms of
speed and precision error than the classical way of com-
puting. Based on the results of our dataset, the configu-
ration using 3 steps and a precision of 0.010 seems to be
the best compromise between speed and precision. We can
now argue that our EER computation will speed up genetic
algorithms using the EER as fitness function.

4.3. Efficiency of Fusion Functions

4.3.1. Experimental Protocol
Table 3 presents the parameters of the genetic algorithms.
The genetic algorithms has been trained on a learning set
composed of half of the intra-scores and half of the inter-
scores of a database and they have been verified with a
validation set composed of the others scores. The three

Table 3. Configuration Of The Genetic Algorithms
Parameter Value
Population 5000
Generations 500
Chromosome signification weights and powers of

the fusion functions
Chromosome values interval [−10; 10]

Fitness polytomous EER on the
generated function

Selection normalized gemetric
selection (probability
of 0.9)

Mutation boundary, multi non
uniform, non uniform,
uniform

Cross-over Heuristic Crossover
Elitism True

databases have been used separately.

The generated functions are compared to three methods of
the state of the art: sum, mul and min, they have been
explored in [5, 19]. Table 4 presents, for each database, the
EER of each of its biometric method (noted sn for method
n), as well as the performance of the fusion functions of
the state of the art.

We can see that biometric methods from PRIVATE have
more biometric verification errors than the ones of the
other databases. The min fusion operator does not
give good results, while sum and mul operators always
improve the performance of the system.

4.3.2. Experimental Results
The EER of each generated function of each database is
presented in Table 5 for the learning and validation sets,
while Figure 4 presents there ROC curve on the validation
set. We can see that our generated functions are all globally
better than the ones from the state of the art (by compari-
son with Table 4) and the obtained EER is always better
than the ones of the sum and mul. The two new fusion
functions ((6) and (7)) give similar or better results than
the weighted sum (5). We do not observe over-fitting prob-
lems: the results are promising both on the learning and
validation sets.

We also could expect to obtain even better performance by
using more individuals or more generations in the genetic
algorithm process, but, in this case, timing computation
would become too much important. Their will always be
a tradeoff between security (biometric performance) and
computation speed (genetic algorithm performance). By
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(a) Performance With BANCA (b) Performance With BSSR1 (c) Performance With PRIVATE

Figure 4. ROC Curve Of The Generated Multibiometrics Fusion Functions On The Validation Set

Table 4. Performance (EER) Of The Biometric Systems
(s1, s2, s3, s4), And The State Of The Art Fusion

Functions (sum,min,mul) On The Three Databases
Method Learning validation

BANCA

Biometric systems

s1 0.0310 0.0438
s2 0.0680 0.1154
s3 0.0824 0.0897
s4 0.0974 0.0732

State of the art fusion
sum 0.0128 0.0128
min 0.0385 0.0438
mul 0.0128 0.0128
BSSR1

Biometric systems

s1 0.0425 0.0430
s2 0.0553 0.0620
s3 0.0861 0.0841
s4 0.0511 0.0454

State of the art fusion
sum 0.0116 0.0070
min 0.0436 0.0504
mul 0.0117 0.0070

PRIVATE

Biometric systems

s1 0.1161 0.1153
s2 0.1522 0.1569
s3 0.0603 0.0621
s4 0.2815 0.3143

State of the art fusion
sum 0.0256 0.0278
min 0.1397 0.1471
mul 0.0252 0.0281

the way the best individuals were provided in the first 10
generations, and several runs give approximately the same
results, so we may already be in a global minima.

As a conclusion of this part, we increased the performance
of multibiometrics systems given the state of the art by re-
ducing errors of 58% for BANCA, 45% for BSSR1 and
22% for PRIVATE.

Table 5. EER For Training and Validation Sets And
Computation Time Gain By Using Our EER

Computation Method
Function Train EER Test EER Gain (%)

BANCA
(5): ga1 0.0032 0.0091 61.29
(6): ga2 0.0032 0.0091 41.84
(7): ga3 0.0037 0.0053 43

BSSR1
(5): ga1 0.000596 0.0038 78.32
(6): ga2 0.000532 0.0038 64.77
(7): ga3 0.000626 0.0038 28.49

PRIVATE
(5): ga1 0.019899 0.0241 77.66
(6): ga2 0.019653 0.0244 46.5
(7): ga3 0.020152 0.0217 55.03

4.4. Magnitude Of the Gain in Computation Time

4.4.1. Experimental Protocol
We also want to prove that using our EER computation
method improves the computation time of the genetic al-
gorithm run. To do that, the previously described process
has been repeated two times:

• using our EER computing method with the following
configuration: 5 steps and stop at a precision of 0.01.

• using the classical EER computing method with 100
steps.

The total computation time is saved in order to compare
the speed of the two systems. These tests have been done
on a Pentium IV machine with 512 Mo of RAM with the
Matlab programming language.

4.4.1. Experimental Results
Table 5 presents a summary of the performance of the gen-
erated methods both in term of EER and timing computing
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improvement. The column gain presents the improvement
of timing computation between our EER polytomous com-
putation time and the classical one in 100 steps.

We can observe that, in all the cases, our computation
methods outperform the classical one (which is not its
slowest version). We can see that this improvement de-
pends both on the cardinal of the set of scores and the func-
tion to evaluate: there are better improvements for (5). The
best gain is about 78% while the smallest is about 28%.

5. CONCLUSION

In this paper, we have presented two things: a fast EER
computing method, and two fusion functions having to be
parametrized thanks to genetic algorithms. The benefit of
this fast EER computing method is to speed up the com-
putation time of the genetic algorithm because its fitness
function consists on computing the EER.

The fast EER computing method have been validated on
five different biometric systems and compared to the classi-
cal way. The results present the superiority of our method,
both in term of precision of the EER value and timing com-
putation.

The score fusion functions have been validated on three
significant multibiometric databases (two reals and one
chimerical). The fusion functions parametrize by genetic
algorithm always outperform simple state of the art simple
functions (sum, min, mul), and the two new fusion func-
tions have given better are equal results than the weighted
sum. Using our fast EER computing method also consid-
erably speed up the timing computation of the genetic al-
gorithms. These better results imply that the multibiomet-
rics system has a better security (fewer impostors can be
accepted) and is more pleasant to be used (fewer genuine
users can be rejected).

Our next research will focus on the use of different evolu-
tionary algorithms in order to generate other kind of com-
plex functions allowing to get better results. EER computa-
tion timing may also be improved by using the fixed point
theorem.
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