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Forests of hierarchical latent models for
association genetics

Raphaël Mourad†, Christine Sinoquet‡, Philippe Leray†

raphael.mourad,christine.sinoquet,philippe.leray@univ-nantes.fr

Abstract

Genome wide association studies address the localization and identification of causal mutations responsible for com-
mon, complex human genetic diseases. Nevertheless, this task has been revealed to be a formidable challenge because
of the huge amount and the complexity of the data to analyze. At the frontier between machine learning and statistics,
probabilistic graphical models, such as hierarchical Bayesian networks, are potentially powerful tools to tackle this
issue. In this research work, we evaluate a novel method based on forests of hierarchical latent class models. We
show the relevance of using this class of models for the purpose of genetic association studies.
We correct for multiple testing and cope with cardinality heterogeneity amongst the model’s latent variables. For this
purpose, we design alayer-wisepermutation procedure. We empirically prove, using both simulated and real data,
the ability of the model’s latent variables to capture indirect genetic associations with the disease. Strong associations
are evidenced between the disease and the causal genetic marker’s ancestor nodes in the forest. At the opposite, very
weak associations are obtained regarding the causal genetic marker’s non-ancestor nodes.





1 Introduction

Thanks to their ability to capture (conditional) independences and dependences between variables, prob-
abilistic graphical models (PGMs) offer an adapted framework for a fine modelling of relationships be-
tween variables in an uncertain data framework [7]. A PGM is a probabilistic model relying on a graph
representing conditional dependences within a set of random variables. Basically, this model provides a
compact and natural representation of the joint distribution of the set of variables. Several subclasses of
PGMs exist such as Markov random fields (MRFs) and Bayesian networks (BNs).

Formally, BNs are defined by a DAGG(X, E) and a set of parametersθ [11]. The set of nodes
X = {X1, ..., Xn} representsn random variables and the set of edgesE captures the conditional depen-
dences between these variables (i.e. the structure). The set of parametersθ is composed of conditional
probability distributionsθi = [P(Xi/PaXi

)] wherePaXi
denotes nodei’s parents. Despite the fact that

the observed variables (OVs) are often sufficient to describe their joint distribution, sometimes, additional
unobserved variables, also named latent variables (LVs), have a role to play. In this context, hierarchical
Bayesian networks such as hierarchical latent class models(HLCMs) were proposed.

HLCMs are tree-shaped BNs where leaf nodes are observed while internal nodes are not. HLCMs
were identified as a potentially useful class of BNs by Pearl [15] for various reasons. First, multiple
LVs organized in a hierarchical structure allow high modelling flexibility (see Figure1) as well as struc-
ture simplification to trees. Second, the attempt to learn these models can reveal latent causal structures.
Third, HLCMs alleviate disadvantages of latent class models (LCMs), defined as containing a unique
latent variable connected to each of the observed variables. In LCMs, observed variables are enforced to
be independent, conditional on the latent variable [20]. In contrast, HLCMs relax the local independence
(LI) assumption which is often violated by observed data. The applications of HLCMs are wide: clus-
tering through the use of LVs, probabilistic inference in linear time or causal latent structure discovery.
Few algorithms have been designed for learning such models [21,19] and fewer still for applications in
association genetics [22].

Figure 1: Hierarchical latent class model. The light shade indicates the observed variables whereas the
dark shade points out the latent variables.

Genetic markers such as SNPs are the key to dissecting the genetic susceptibility of complex diseases,
such as asthma, diabetes, atherosclerosis and some cancers[9]. Indeed, they are used for the purpose
of identifying combinations of genetic determinants whichshould accumulate among affected subjects.
Generally, in such combinations, each genetic variant onlyexerts a modest impact on the observed phe-
notype, the interaction between genetic variants and possibly environmental factors being determining
in contrast. Decreasing genotyping costs now enable the generation of hundreds of thousands of genetic
variants, or SNPs, spanning whole Human genome, accross cohorts of cases and controls. This scaling
up to genome-wide association studies (GWAS) makes the analysis of high-dimensional data a hot topic.

fig1_hlcm.eps
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Yet, the search for associations between single SNPs and thevariable describing case/control status re-
quires carrying out a large number of statistical tests. Since SNP patterns, rather than single SNPs, are
likely to be determining for complex diseases, a high rate offalse positives as well as a perceptible sta-
tistical power decrease, not to speak of intractability, are severe issues to be overcome. As a possible
solution, we propose to test associations using FHLCM’s LVsinstead of SNPs.

Exploiting the existence of statistical dependences between SNPs, also called linkage disequilibrium
(LD), is the key to association study achievement [1]. Indeed, a causal variant may not be a SNP. For
instance, insertions, deletions, inversions and copy-number polymorphisms may be causative of disease
susceptibility. Nevertheless, a well-designed study willhave a good chance of including one or more
SNPs that are in strong LD with a common causal variant. In thelatter case, indirect association with the
phenotype, say affected/unaffected status, will be revealed (see Figure2).

Figure 2: a) Direct association between a genetic marker andthe phenotype. b) Indirect association
between a genetic marker and the phenotype.

Interestingly, LD appears crucial to reduce data dimensionality in GWASs. In eukaryotic genomes,
LD is highly structured into the so-called "haplotype blockstructure" [13]: regions where correlation
between markers is high alternate with shorter regions characterized by low correlation (see Figure3).
Relying on this feature, various approaches were proposed to achieve data dimensionality reduction:
testing association with haplotypes (i.e. inferred data underlying genotypic data) [16], partitioning the
genome according to spatial correlation [14], selecting SNPs informative about their context, or SNP
tags [4] (for other references, see [8] for example). Unfortunately, these methods do not take into account
all existing dependences since they miss higher-order dependences.

Probabilistic graphical models offer an adapted frameworkfor a fine modelling of dependences be-
tween SNPs. Various models have been used for this peculiar purpose, mainly Markov fields [18] and
Bayesian networks (BNs), with the use of hierarchical latent BNs (embedded BNs [12]); two-layer BNs
with multiple latent (hidden) variables [22]. Although modelling SNP dependences through hierarchical
BNs is undoubtedly an attractive lead, there is still room for improvement. Notably, scalability remains a
crucial issue.

In a previous article [10], we designed an original framework dedicated to genetic data analysis, rely-
ing on forests of HLCMs, namely FHLCMs (see Figure4). Considering genetic markers which describe
DNA variability among individuals, our final aim is dissecting the genetic susceptibility of complex dis-
eases. FHLCMs allow to model a larger set of configurations than HLCMs do. Typically, an HLCM
is limited to represent clusters of close dependent variables. Actually, in this model, variables are con-
strained to be dependent upon one another, either directly or indirectly. But realistic modelling requires a
more flexible framework. Indeed, the vast majority of statistical dependences, also called linkage disequi-
librium (LD), is observed between SNPs (Single Nucleotide Polymorphisms), or genetic markers, which

fig1_direct_indirect_association.eps
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Figure 3: LD plot (matrix of pairwise dependences between genetic markers or linkage disequilibrium).
Human genome, chromosome2, region [234 357kb - 234 457kb]. For a pair of SNPs, the colourshade is
all the darker as the correlation between the two SNPs is high.

are close to one another, on the chromosome. LD is rarely observed for SNPs distant by more than500
kb [6]. We argued that the FHLCMs can offer several advantages forgenetic data analysis, in particular
for genome-wide association studies (GWASs). For instance, FHLCMs’ hierarchical structure supported
by LVs allows flexible information synthesis, thus efficiently reducing the data dimensionality. Indeed,
in an FHLCM, the different layers provide several degrees ofreduction, which allow zooming in through
narrower and narrower regions in search for stronger associations with the disease. Another promising
property of the FHLCMs relies on their ability to allow a simple test of direct dependence beween an
observed variable and a target variable such as the phenotype, conditional on the latent variable, parent of
the observed variable. Note that the phenotype variable is not included in the FHLCM. In the context of
GWASs, this test helps finding the markers which are directlyassociated with the phenotype,i.e. causal
markers, should there be any.

Figure 4: Forest of hierarchical latent class models. See Figure1 for node nomenclature.

In the present work, we apply our new genetic association method based on FHLCMs, to empirically
show that the FHLCMs are relevant to detect indirect geneticassociations with the disease. From now on,
we name indirect genetic association any dependence between a causal SNP’s ancestor node (abbreviated
as CA) of the FHLCM and the disease. Such an indirect association is due to the fact that a CA is likely to
capture the information of a causal SNP. The capture of indirect genetic association is at the basis of our
original genetic association approach: the identificationof CA nodes helps to point out the causal marker,
since the latter is one of the leaves (observed variables) ofa tree rooted in a CA node. For our purpose,
the performence of the FHLCM-based method is evaluated using both simulated and real genotypic data.
Simulations are generated under different scenarii varying in minor allele frequencies (MAFs), geno-
type relative risks (GRRs) and disease models. The real dataanalysis considers the well-studied region

fig2_ldplot.eps
fig2_fhlcm.eps
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flanking theCYP2D6human gene [5]. In order to assess the significance of the associations, wealso
adapted a permutation procedure dedicated to the computation of p-value thresholds, each one specific to
a FHLCM’s layer.

This paper is organized as follows: in the second Section, weprovide a quick insight of the CFHLC
algorithm dedicated to FHLCM learning; the third Section describes the evaluation protocol implemented
to assess the relevance of our approach when applied for association studies; the fourth Section details
our results and discusses them. Finally, the last Section highlights the contribution of our work and gives
directions for future works.

2 A short tour of CFHLC algorithm

In a previous paper [10], we described a scalable algorithm, named CFHLC, conceived for learning both
structure and parameters of FHLCMs dedicated to genome-wide data analysis. The learning is performed
through an adapted agglomerative hierarchical clustering(AHC) procedure: (i) at each agglomerative
step, a clique partitioning method is used to identify cliques of variables (i.e. statistically dependent vari-
ables); (ii) each such clique, if relevant, is intended to besubsumed into an LV, through an LCM. For each
LCM, parameter learning using expectation-maximization (EM) algorithm and missing data imputation
through probabilistic inference (for the latent variable)are performed. Iterating these two steps yields a
hierarchical structure.

In other words, latent variables capture the information born by underlying observed variables (e.g.
genetic markers). To their turn, latent variables can be synthetized through additional latent variables,
and so on. During the agglomerative construction, the number of layers is determined thanks to a decay
information criterion: each LCM corresponding to a clique is checked for carrying sufficient information
about the subsumed variables.

The reader interested in the detailed algorithm is referredto the aforementioned paper [10]. In par-
ticular, three ingredients of algorithm CFHLC - node partitioning, imputation of LV values and control
of information decay - are described therein. It has to be emphasized that the theoretical framework
proposed is generic and that, regarding implementation, any strategy implementing one of the previous
ingredients may be plugged into the generic scheme. For a quick insight, the sketch of the algorithm is
presented in Figure5. Stage1 implements genome scanning through contiguous windows encompassing
up to some hundreds of SNPs. Stage2 identifies cliques of pairwise-dependent variables, the dependence
being controlled by a given threshold. The next phase (3) builds as many LCM models (i.e. as many LVs)
as there are such previous cliques identified. The LCM parameters are learnt through phase4, which
subsequently allows the imputation of the values of each LV for all individuals considered in the study.
A validation stage (5) controls that the unescapable information decay accompanying the subsuming pro-
cess is not too drastic. Now, such LVs satisfying the validation procedure are considered as observed
variables for the next step of the AHC procedure (stages2 through5). The AHC process stops when
no more clique or relevant LCM is identified. Then, the FHLCM corresponding to the current window
is constructed through a procedure growing trees from leaves to root, starting from the nodes in initial
0 layers (i.e. layers only including initial OVs) (phase6). Finally, the FHLCM modelling the studied
genome or genome region is the mere collection of window FHLCMs (phase7).
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Figure 5: Scheme of algorithm CFHLC. The light shade indicates the observed variables whereas the
dark shade points out the latent variables.

3 Evaluation of the CFHLC approach

3.1 Protocol description

Relying on data for which the causal SNP is known, the guide line of our evaluation protocol consists of
the following steps: (i) build the FHLCM corresponding to the genome or genomic region under study,
(ii) carry on an association test between the phenotype variableY and each node of the FHLCM, (iii)
compare the p-values obtained for three node sets: a set reduced to the causal SNP (i.e. a leaf of the
FHLCM); CAs, the set of causal SNP’s ancestor nodes and CNAs,the set of causal SNP’s non-ancestor
nodes.

Illustrating the trends for all three node sets has first beenachieved through graphical visualization:
we have plotted the mean p-values obtained for the causal SNP, the CAs of a given layer and the CNAs
belonging to the same layer in the FHLCM. Furthermore, two tests have been performed to confirm or
invalidate the dissimilarity of the p-value distributionsrelative to both CA and CNAs sets. We first used
a non-parametric standard test, the Wilcoxon rank-sum test.

Recently, a method, called local FDR (false discovery rate), has been proposed to estimate the specific
probability, given the p-value, for being under the null hypothesis [3]. The method relies on a mixture

fig8_schema_algo.eps
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distribution of p-values depending on the unobserved status of the null hypothesis (true or false). In the
present work, the local FDR method has proven useful to finelycompare the proportion of CAs and CNAs
under the alternative hypothesis.

3.2 Assessment of genetic associations adapted to the FHLCMframework

To measure the association strength between a variableX of the FHLCM (OV or LV) and the phenotype
Y , we used standard tests for independence. We applied theG2 test instead of the well-knownChi2

test. Indeed, the former corresponds to the likelihood ratio test (LRT) whereas the latter is just an ap-
proximation of the LRT. For samples of reasonable sizes, theG2 test and theChi2 test will lead to the
same conclusions. But for relatively small sample sizes (below 300 individuals) as is the case for the real
dataset analyzed, large divergences between results are expected. For theG2 test, the degree of freedom
is (n − 1) × (m − 1), in our case(n − 1), wheren is the cardinality ofX andm is the cardinality ofY
(here, constant and equal to2).

Due to information decay through bottom to top, in an FHLCM, it would be nonsense to apply the
same threshold to assess significance for two variables belonging to different layers. Therefore, to assess
the significance of associations, we had to implement a specific permutation procedure dedicated to the
computation of the per-test type I error rateα′, in order to control the family-wise type I error rateα .
α controls the probability to make one or more false discoveries among all hypotheses when performing
multiple association tests. For a givenα value, the larger the number of variables to be tested, the lower
α′ must be. An advantage of our FHLCM strategy relies on the factthat there are less variables in the
higher layers than in the lower ones. Thus, an increase ofα′ is expected as the layer level increases.

In the standard permutation procedure dedicated to this control purpose [2], the labels of the target
variableY (in genetic association studies, the phenotype) are permuted a given number of times, amongst
individuals, which provides a set of permutationsP . For each permutation, a test betweenY and each
variable tested for association is run,e.g. a Chi2 test, and the maximum statisticmax(T ) obtained
over all tests is saved. When the number of permutations is sufficiently large, themax(T ) distribution
represents a good empirical approximation of the null hypothesis distribution, that is the no dependence
hypothesis. In our model, LVs may present various cardinalities, thus requiring association tests involv-
ing different degrees of freedom. Therefore, we can not compare themax(T ) statistics with one another.
That is the reason why we had to adapt the standard permutation method to this characteristic. The adap-
tation is straightforward: instead of relying on the maximum statistic distribution, we use the distribution
of minimum p-values. Indeed, p-values are comparable, since the degree of freedom is taken into account
in a p-value and the minimum p-value can replace the maximum statistic max(T ) in the distribution
construction.

The adapted permutation procedure is described in Algorithm 1. The procedure performsnp permu-
tations. For each permutation, and each FHLCM’s layer, independence tests are run for any variableXv

belonging to FHLCM’s layerℓ and the target variableY . For each permutation, the minimum of the p-
values over all variables belonging to FHLCM’s layerℓ is identified, which will constitute the distribution
of minimal p-values for this layer. Given a specified family-wise error rateα, this distribution then allows
to extract the correspondingα′ threshold. Thisα′ value, specific to each layer, is to be compared with the
p-value resulting from the association test between variable Xv (belonging to layerl) andY . Thus can
be assessed association significance, corrected for family-wise type I error, or should one write instead,
controlled forlayer-wisetype I error.
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Algorithm 1 PermutationProcedure(X, DX , Y, DY , np, α)
INPUT:
X, DX: a set ofnv candidate variables (observed or latent)X = X1, ..., Xnv and the corresponding data observed or imputed forn

individuals,
Y, DY : a target variableY and the corresponding data observed forn individuals,
np: the number of permutations,
α: the family-wise error rate.

OUTPUT:
{α′(1), ..., α′(nℓ)}: the set of per-test error rates respectively computed for layersl to nℓ.

1: for ℓ = 1 to nℓ

2: distribminP V alues(ℓ)← ∅

3: end for

4: for p = 1 to np

5: DYp ← permuteLabels(DY )

6: for ℓ = 1 to nl

7: pV alues(p, ℓ)← ∅

8: for each variableXv in layerℓ
9: pV aluep, ℓ, v ← runAssociationTest(Xv , DYp )

10: pV alues(p, ℓ)← pV alues(p, ℓ) ∪ pV aluep, ℓ, v

11: end for
12: distribminP V alues(ℓ)← distribminP V alues(ℓ) ∪minXv (pV alues(p, ℓ))

13: end for
14: end for

15: for ℓ = 1 to nl

16: α′(ℓ)← quantile(distribminP V alues(ℓ), α)

17: end for

4 Results and discussion

Algorithm CFHLC has been implemented in C++, relying on the ProBT library dedicated to BNs (http://
bayesian-programming.org). CFHLC was run on a standard personal computer (3 GHz, 2 GB RAM).
We have performed intensive testing to evaluate the relevance of using FHLCMs for genetic associa-
tion purpose. Tests have been performed both on simulated and real biological data. To implement
layer-wisetype I error correction,α threshold has been set to0.05, with a number of permutations
equal to1000, quite standard values for this aim. The local FDR-based method has been run through
Kerfdr, an R package implementing a semi-parametric approach based on kernel estimators (http://cran.r-
project.org/web/packages/kerfdr/).

We will display the−log10(p-value) values instead of the p-values themselves. The−log10(p-value)
values near0 point out independence and the previous indicator increases with the strength of the depen-
dence.

4.1 Simulations

4.1.1 Generation of realistic genetic data

To assess the ability of FHLCM’s LVs to capture indirect genetic associations, we have simulated geno-
typic and phenotypic data under various scenarii. In particular, we have considered different scenarii
combining various minor allele frequencies, genotype relative risks and disease models. We have repli-
cated each scenario100 times. SNP data without missing values have been generated using software
HAPGEN (http://www.stats.ox.ac.uk/∼marchini/software/gwas/hapgen.html) with reference haplotypes
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of the HapMap phase II coming from U.S. residents of northernand western European ancestry (CEU)
(http://hapmap.ncbi.nlm.nih.gov/). The simulated data has been generated for1000 controls and1000
cases (unrelated individuals) and consists of unphased genotypic data relative to a1.5 Mb region con-
taining around100 SNPs. Among the simulated SNPs, HAPGEN selects one SNP to be the causal marker
associated with the simulated phenotype (affected/unaffected). The MAF (minor allele frequency) at the
causal SNP is specified to belong to interval [0.1-0.2], [0.2-0.3] or [0.3-0.4]. Different heterozygous
genotype relative risks are considered:1.4, 1.6 or 1.8. The disease model is specified among additive,
dominant, multiplicative or recessive. Combining all previous conditions led to testing3×3×4 scenarii.
Quality control of genotypic data has been carried out: SNPswith MAF less than0.05 and SNPs deviant
from the Hardy-Weinberg Equilibrium (HWE) with a p-value below 0.001 have been removed.

4.1.2 Comparing CA nodes to CNA nodes

In the following, the data analysis may entail the generation of up to7 layers in the FHLCM. We will not
report results obtained for layers with numbers above3: indeed, such layers do not provide sufficient data
to compute representative medians or draw informative boxplots. On average, over all3600 FHLCMs (36
scenarii× 100 replicates), the percentages of nodes are distributed as follows: 89.1% in layer0, 9.5% in
layer1, 1.2% in layer2 and0.2% in layer3.

Figure6 compares the histograms of−log10(p-value) values resulting from association tests ofY
with the CAs and with the CNAs, respectively. The comparisonof these two histograms reveals a large
dissimilarity between the two distributions. The majority(70%) of −log10(p-value) values relative to
CAs is greater than1, whereas it is the case for only19% for CNAs. Indeed, we observe that large
−log10(p-value) values (e.g., greater than5) are common for the former and are very rare for the latter.
The Wilcoxon rank-sum test shows a p-value less than10−16, which confirms that CA and CNA p-values
follow two different distributions.

Now distinguishing between layers, Figure7 more thoroughly describes the−log10(p-value) values
observed for the tests relative to CAs and CNAs. Layer0 represents the association test between the phe-
notype and the causal SNP and serves as the reference value. We remind the reader that there are as many
association tests between causal marker and phenotype as there are different scenarios (36) in our evalu-
ation protocol. In Figure7, we observe that the association strength with CAs slowly decreases when the
layer number increases, whereas the association strength with CNAs dramatically falls to−log10(p-value)
values below0.4, corresponding to p-values greater than0.4. Although CNAs reveal false positive asso-
ciations (less than10% have a p-value below0.01), these results clearly highlight a general trend: indirect
associations are captured by the CAs while it is not the case for a large majority of CNAs.

4.1.3 CA versus CNA node comparison including significance assessment

Figure9 emphasizes the general trend of−log10(p-value) values on CAs and CNAs, and compares the
median−log10(p-value) value obtained for each layer to the corresponding value associated with the
significance thresholdα′ specific to this layer (see Subsection3.2). Figure9 reveals that up to the second
layer, significant associations are identified for CAs. In contrast, regarding CNAs, in all layers, median
−log10(p-value) values are smaller than the corresponding−log10(α′) values. Focusing on the CNA
distribution, the rate of p-values lower thanα′ value (false positives) is4.7%.

Relying on the local FDR method, Figure8 displays the trend for CA and CNA nodes and confirms
the aforedescribed contrast between both node sets. Regarding CA nodes, known to be associated with
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Figure 6: Histograms of−log10(p-value) values resulting from association tests betweenthe phenotype
and the causal SNP’s ancestor nodes or between the phenotypeand the causal SNP’s non-ancestor nodes.
These histograms compile all studied scenarii: MAF ([0.1-0.2], [0.2-0.3] and [0.3-0.4]), GRR (1.4, 1.6
and1.8) and disease model (additive, dominant, multiplicative and recessive). The X-axis indicates the
proportion of nodes showing a−log10(p-value) value in the corresponding interval indicated bythe Y-
axis.

the disease, the probability that the association test be observed under the alternative hypothesis is pre-
vailing, as expected: mixture and alternative hypothesis densities are close to one another. In the right
section of Figure8 (a), the presence of the small peak related to the (true) nullhypothesis calls for the
following comment: for the p-values corresponding to the concerned probit range ([−2, 2]), the proba-
bility that this p-value be observed under the true null hypothesis is not close to0 as it is elsewhere in
the figure; indeed, this probability is greater than the probability of the alternative hypothesis for p-value
probit interval[0, 2]. The pointed area designates false negatives. In contrast,in Figure8 (b) showing the
trend for CNAs, as expected, the curves relative to mixture and true null hypothesis are superimposed.
Knowing that CNAs are not associated with the disease, the curve related to false null hypothesis points
out false positives.

The existence of false positives (FPs) can partly be explained by the presence of indirect dependences
between the causal SNP and the CNAs of the causal tree (the tree containing the causal SNP), nodes
abbreviated as CT-CNAs. At the opposite, no FPs are expectedfor CNAs present in the non-causal trees
(NCT-CNAs). Actually, more than73% of FPs are CT-CNAs, which represents only21% of CNAs. The
rate of FPs in CT-CNAs is16.07% whereas it is10 times less in NCT-CNAs.

When applying the local FDR method to CT-CNA and NCT-CNA p-values, we confirm that the
mixture distributions of both hypotheses greatly differ: amajor part of CT-CNA p-values follows the
alternative hypothesis (see Figure10 (a)), while it is the case for only a very small part of NCT-CNA

fig3_hist_chi2_p-values_of_ancestors_non-ancestors.eps
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Figure 7: Boxplot of−log10(p-value) values for the different layers of the FHLCM, resulting from as-
sociation tests between the phenotype and the causal SNP’s ancestor nodes or between the phenotype
and the causal SNP’s non-ancestor nodes. Layer0 indicates the result of the association test between the
phenotype and the causal SNP (mean over all scenarii). See Figure6 for details about the scenarii.
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Figure 8: Mixture distributions ofprobit(p-values) depending on the unobserved status of the null hy-
pothesis (true or false) - CA nodesversusCNA nodes, simulated data, all scenarii -. (a) Mixture distribu-
tion learnt for CA p-values. (b) Mixture distribution learnt for CNA p-values. See Figure6 for definitions
of CA and CNA nodes and details about the scenarii. The distribution under the true null hypothesis
corresponds to the thick (blue) line, whereas the distribution relative to the false null hypothesis is dis-
played through a thin (red) line. The third line correspondsto the mixture. Theprobit tranformation is
the inverse cumulative distribution function associated with the standard normal distribution.

p-values (see Figure10 (b)). Thus, we conclude that a prominent part of false positive associations are
due to indirect dependences between CT-CNAs and the phenotype.

fig4_boxplot_chi2_p-values_of_ancestors_non-ancestors.eps
figX_kerfdr_chi2_p-values_of_a.eps
figX_kerfdr_chi2_p-values_of_na.eps
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Figure 9: Median−log10(p-value) values for the different layers of the FHLCM, resulting from tests of
association with the phenotype (for the definition of error rateα′, see last paragraph of3.2). CAs: causal
SNP’s ancestor nodes; CNAs: causal SNP’s non-ancestor nodes. See Figure6 for more details about
layer0.
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Figure 10: Mixture distributions ofprobit(p-values) depending on the unobserved status of the null hy-
pothesis (true or false) - CT-CNA nodesversusNCT-CNA nodes, simulated data, all scenarii -. (a) Mix-
ture distribution learnt for CT-CNA p-values. (b) Mixture distribution learnt for NCT-CNA p-values.See
Figure6 for definitions of CT-CNA and NCT-CNA nodes and details aboutthe scenarii. The distribution
under the true null hypothesis corresponds to the thick (blue) line, whereas the distribution relative to the
false null hypothesis is displayed through a thin (red) line. The third line corresponds to the mixture. The
probit tranformation is the inverse cumulative distribution function associated with the standard normal
distribution.

4.1.4 Comparison between various genetic scenarii

We recall the reader that we have evaluated the behaviour of FHLCM’s LVs under several genetic config-
urations: minor allele frequency (MAF) range at the causal SNP between [0.1-0.2], [0.2-0.3] or [0.3-0.4];
heterozygous genotype relative risk of1.4, 1.6 or 1.8; additive, dominant, multiplicative or recessive dis-
ease model. As previously done, we now compare association test results between three node sets, the

fig5_threshold_G2_p-values_of_a_and_na.eps
figX_kerfdr_chi2_p-values_of_na_ct.eps
figX_kerfdr_chi2_p-values_of_na_nct.eps
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causal SNP, CAs and CNAs, now distinguishing between all36 scenarii. Figures11 and12 respectively
focus on CAs and causal SNPs, and CNAs and causal SNPs. On average, similar tendencies are observed
over all scenarii: the association strength continuously drops from bottom to fourth layer; in the case of
CNAs, an overwhelming majority of results point out absenceof association, whichever the FHLCM’s
layer concerned.
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Figure 11:−log10(p-value) median values for the different layers of the FHLCM, resulting from associ-
ation tests between the phenotype and the causal SNP’s ancestor nodes. The different windows represent
possible genetic scenarii. At the top of each window, the range of the simulated causal SNP’s minor
allele frequency and the disease model assumption are indicated (additive, dominant, multiplicative or
recessive). The three different symbols used refer to as many genotype relative risks considered for the
simulated causal SNP (see Legend). The result for layer0 corresponds to tests of association between the
phenotype and the causal SNP (over all100 replications).

fig6_xyplot_median_chi2_p-values_of_ancestors_per_level.eps
legend_fig6-7.eps
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Figure 12: Median of−log10(p-value) values for the different layers of the FHLCM, resulting from
tests of association between the phenotype and the causal SNP’s non-ancestor nodes. See Figure11 for
parameter description and more details about layer0.

When considering the easiest case (MAF range= 0.3-0.4, GRR= 1.8 and multiplicative model),
over all layers, the CAs present strong associations (−log10(p-value) > 7). Regarding a less ideal
but more plausible configuration (MAF range= 0.2-0.3, GRR= 1.6 and additive model), the median
−log10(p-value) value computed for CAs decreases from8.3 at layer0, to reach4.6, 3.2 and2.2 at layers
1, 2 and3, respectively. On the contrary, when the model is recessive, the association with the causal SNP
is low and the CAs can not capture anything (similar results are obtained with most of the methods ded-
icated to association studies). As regards the causal SNP’snon-ancestors, null associations are reported
in all configurations.

fig7_xyplot_median_chi2_p-values_of_non-ancestors_per_level.eps
legend_fig6-7.eps
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Figure 13: Boxplot of−log10(p-value) values for the different layers of the FHLCM, resulting from
tests of association of the phenotype with the causal SNP’s ancestor nodes or with the causal SNP’s non-
ancestor nodes. Layer0 represents the tests of association between the phenotype and the causal SNP
(marker19). In layer3, no CNAs are observed in the FHLCMs.

4.2 Application to real data

We have evaluated our hierarchical Bayesian network approach on a real genotypic dataset from a890
kb region flanking theCYP2D6gene on human chromosome 22q13. This gene has been shown to play
a confirmed role in drug metabolism [5]. The studied genomic region consists of32 SNP markers geno-
typed for268 individuals and has been downloaded from the R package graphminer developed by Verzilli
and collaborators [18]. This genomic region has been used in several studies, to test proposed LD-based
methods dedicated to fine mapping. Strong evidence has been brought that the SNP19 at position550 kb
is the marker most significantly associated withCYP2D6gene (whose "location" is referred to as525.3
kb position) [17]. For this reason, we considered the SNP19 as the causal marker in our experiment.

To take into account the stochastic nature of our algorithm (random initialization of parameters dur-
ing the EM algorithm), we present the results of1000 runs (5.4 s per run on average, on a standard PC
computer (3 GHz, 2 Go RAM)).

On average, over all1000 FHLCMs (1000 replicates), the percentages of nodes are distributed as
follows: 82.62% in layer0, 16.89% in layer1, 0.39% in layer2 and0.10% in layer3. Figure13 shows
the−log10(p-value) values of association tests relative to CAs and CNAs. As expected in view of exper-
iments led on simulated data, the CAs succeed in capturing indirect association, in particular in layer1,
with a median value of5.5, corresponding to p-values lower than5.10−6. In the other layers, the strength
of associations is lower but remains relatively high as in layer2 showing a median value of4, equivalent
to a p-value of10−4. As previously seen, when we focus on CNAs, we observe very few strong associa-
tions. The majority of p-values (over80%) are greater than0.01.

Finally, in addition to intensive evaluation performed on simulated benchmarks, similar tests con-
ducted on real data confirm that the FHLCM-based method is relevant to detect causal regions.

fig8_boxplot_G2_p-values_of_ancestors_non-ancestors.eps
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5 Conclusion

Using both intensive testing on simulated and real genetic data, the research work reported here demon-
strates the ability of FHLCM’s latent variables to guarantee data dimension reduction while allowing
efficient identification of genetic associations. In our hierarchical Bayesian network proposal, the two
keys to efficient association capture are the following ones: (i) the causal SNP’s ancestor nodes suc-
ceed in capturing indirect associations with the phenotype; (ii) in contrast, the causal SNP’s non-ancestor
nodes globally show very weak associations. These two characteristics allow to distinguish between true
and false indirect genetic associations. We have addressedthe efficiency question, performing associa-
tion studies simulated under four realistic disease models, three disease severities and three ranges for
causal marker’s minor allele frequency. We have adapted correction for multiple hypothesis testing to a
multi-layered framework. We have also started investigations connected to power analysis, relying on the
local FDR approach.

Complementary points will be addressed in future works. First, we will investigate whether bene-
fitting from the ability of FHLCMs to encode conditional independences between variables could help
reinforcing the dismissing of false indirect associations: we will evaluate an association analysis proce-
dure implementing, for instance, tests for conditional independence.

Second, we will adapt our Bayesian network-based method to tackle genome-wide association stud-
ies. A protocol involving far more intensive tests as in the present preliminary work is planned, relying on
both genome-scale simulated and real data. In addition, we will go deeper into the study of our method’s
power to identify robust associations between a causal SNP and a binary quantitative trait.

Finally, the ability of FHLCMs to implement relevant modelling for biological data will be further
investigated to cope with more complex association analyses. Indeed, in the present work, we made the
assumption that the causal genetic factor restrains to a unique marker. But reality is more complex. The
causal genetic factor might be the share haplotype, carrying the mutation which appeared in the past, for
an ancestor individual. In this case, the latent variables in our hierarchical model could also be able to
represent this type of causal genetic factor. Thus, beside their subsumption role, latent variables might
play a role in interpreting association studies.
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Abstract

Genome wide association studies address the localization and identification of causal mutations responsible for com-
mon, complex human genetic diseases. Nevertheless, this task has been revealed to be a formidable challenge because
of the huge amount and the complexity of the data to analyze. At the frontier between machine learning and statistics,
probabilistic graphical models, such as hierarchical Bayesian networks, are potentially powerful tools to tackle this
issue. In this research work, we evaluate a novel method based on forests of hierarchical latent class models. We
show the relevance of using this class of models for the purpose of genetic association studies.
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