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raphael.mourad,christine.sinoquet,philippe.leray@univ-nantes.fr

Abstract

Genome wide association studies address the localizatidantification of causal mutations responsible for com-
mon, complex human genetic diseases. Nevertheless, $kihaa been revealed to be a formidable challenge because
of the huge amount and the complexity of the data to analyzéherontier between machine learning and statistics,
probabilistic graphical models, such as hierarchical Barenetworks, are potentially powerful tools to tacklesthi
issue. In this research work, we evaluate a novel methoddbasdorests of hierarchical latent class models. We
show the relevance of using this class of models for the merpbd genetic association studies.

We correct for multiple testing and cope with cardinalitydregeneity amongst the model’s latent variables. For this
purpose, we designlayer-wisepermutation procedure. We empirically prove, using bothusated and real data,
the ability of the model’s latent variables to capture irdirgenetic associations with the disease. Strong asieosat
are evidenced between the disease and the causal gendtarsiancestor nodes in the forest. At the opposite, very
weak associations are obtained regarding the causal genatker's non-ancestor nodes.






1 Introduction

Thanks to their ability to capture (conditional) indepenckes and dependences between variables, prob-
abilistic graphical models (PGMs) offer an adapted franv&vor a fine modelling of relationships be-
tween variables in an uncertain data framewadilk A PGM is a probabilistic model relying on a graph
representing conditional dependences within a set of randwiables. Basically, this model provides a
compact and natural representation of the joint distrdyutf the set of variables. Several subclasses of
PGMs exist such as Markov random fields (MRFs) and Bayesiawmonks (BNs).

Formally, BNs are defined by a DAG(X, E) and a set of parametefs[11]. The set of nodes
X ={X;,..., X, } representa random variables and the set of edgesaptures the conditional depen-
dences between these variablies. (the structure). The set of parametéris composed of conditional
probability distribution®); = [P(X,;/Pax,)] wherePax, denotes nodés parents. Despite the fact that
the observed variables (OVs) are often sufficient to deschibir joint distribution, sometimes, additional
unobserved variables, also named latent variables (L\4s}k h role to play. In this context, hierarchical
Bayesian networks such as hierarchical latent class m@delSMs) were proposed.

HLCMs are tree-shaped BNs where leaf nodes are observed imtdélrnal nodes are not. HLCMs
were identified as a potentially useful class of BNs by PeHs] for various reasons. First, multiple
LVs organized in a hierarchical structure allow high moideglfflexibility (see Figurel) as well as struc-
ture simplification to trees. Second, the attempt to leaese¢lmodels can reveal latent causal structures.
Third, HLCMs alleviate disadvantages of latent class mo@eCMs), defined as containing a unique
latent variable connected to each of the observed varialile<CMs, observed variables are enforced to
be independent, conditional on the latent variaBl#.[In contrast, HLCMs relax the local independence
(LI) assumption which is often violated by observed datae &pplications of HLCMs are wide: clus-
tering through the use of LVs, probabilistic inference melar time or causal latent structure discovery.
Few algorithms have been designed for learning such mog&|49] and fewer still for applications in
association genetic29).
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Figure 1: Hierarchical latent class model. The light shadkciates the observed variables whereas the
dark shade points out the latent variables.

Genetic markers such as SNPs are the key to dissecting thégsusceptibility of complex diseases,
such as asthma, diabetes, atherosclerosis and some cijcdreleed, they are used for the purpose
of identifying combinations of genetic determinants whéttould accumulate among affected subjects.
Generally, in such combinations, each genetic variant exéyts a modest impact on the observed phe-
notype, the interaction between genetic variants and Iplgsshvironmental factors being determining
in contrast. Decreasing genotyping costs now enable thergton of hundreds of thousands of genetic
variants, or SNPs, spanning whole Human genome, accrosstsaif cases and controls. This scaling
up to genome-wide association studies (GWAS) makes thgsinaif high-dimensional data a hot topic.
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Yet, the search for associations between single SNPs angitiable describing case/control status re-
quires carrying out a large number of statistical testsc&BNP patterns, rather than single SNPs, are
likely to be determining for complex diseases, a high ratfalske positives as well as a perceptible sta-
tistical power decrease, not to speak of intractabilite, severe issues to be overcome. As a possible
solution, we propose to test associations using FHLCM'siidgsead of SNPs.

Exploiting the existence of statistical dependences batv@&NPs, also called linkage disequilibrium
(LD), is the key to association study achievemelijt Indeed, a causal variant may not be a SNP. For
instance, insertions, deletions, inversions and copybarmolymorphisms may be causative of disease
susceptibility. Nevertheless, a well-designed study héle a good chance of including one or more
SNPs that are in strong LD with a common causal variant. Iiatier case, indirect association with the
phenotype, say affected/unaffected status, will be rexe@ee Figur@).
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Figure 2: a) Direct association between a genetic markertlaghenotype. b) Indirect association
between a genetic marker and the phenotype.
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Interestingly, LD appears crucial to reduce data dimeradignin GWASSs. In eukaryotic genomes,
LD is highly structured into the so-called "haplotype blastkucture" [L3]: regions where correlation
between markers is high alternate with shorter regionsatherized by low correlation (see Figusg
Relying on this feature, various approaches were propasedhieve data dimensionality reduction:
testing association with haplotypdse( inferred data underlying genotypic datd)], partitioning the
genome according to spatial correlatidid], selecting SNPs informative about their context, or SNP
tags B (for other references, se8][for example). Unfortunately, these methods do not take agcount
all existing dependences since they miss higher-orderakpees.

Probabilistic graphical models offer an adapted framevforla fine modelling of dependences be-
tween SNPs. Various models have been used for this peculipope, mainly Markov fieldsig] and
Bayesian networks (BNs), with the use of hierarchical laBs (embedded BNslLp)); two-layer BNs
with multiple latent (hidden) variable&%]. Although modelling SNP dependences through hierarthica
BNs is undoubtedly an attractive lead, there is still roomifigprovement. Notably, scalability remains a
crucial issue.

In a previous articleI0], we designed an original framework dedicated to genetia daalysis, rely-
ing on forests of HLCMs, namely FHLCMs (see Figde Considering genetic markers which describe
DNA variability among individuals, our final aim is dissewtithe genetic susceptibility of complex dis-
eases. FHLCMs allow to model a larger set of configuratioas tHLCMs do. Typically, an HLCM
is limited to represent clusters of close dependent vasgabhctually, in this model, variables are con-
strained to be dependent upon one another, either direditglvectly. But realistic modelling requires a
more flexible framework. Indeed, the vast majority of stat&# dependences, also called linkage disequi-
librium (LD), is observed between SNPs (Single Nucleotidg/Porphisms), or genetic markers, which
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Figure 3: LD plot (matrix of pairwise dependences betwearetie markers or linkage disequilibrium).
Human genome, chromosogregion [234 357kb - 234 457kb]. For a pair of SNPs, the cohade is
all the darker as the correlation between the two SNPs is high

are close to one another, on the chromosome. LD is rarelyraddéor SNPs distant by more thafo

kb [6]. We argued that the FHLCMs can offer several advantagegdpetic data analysis, in particular
for genome-wide association studies (GWASS). For instafide CMs’ hierarchical structure supported
by LVs allows flexible information synthesis, thus efficigmeducing the data dimensionality. Indeed,
in an FHLCM, the different layers provide several degreagdfiction, which allow zooming in through
narrower and narrower regions in search for stronger assoes with the disease. Another promising
property of the FHLCMs relies on their ability to allow a sitagest of direct dependence beween an
observed variable and a target variable such as the phenatypditional on the latent variable, parent of
the observed variable. Note that the phenotype variabletigwluded in the FHLCM. In the context of
GWASSs, this test helps finding the markers which are direxslsociated with the phenotype. causal
markers, should there be any.
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Figure 4: Forest of hierarchical latent class models. SgerEil for node nomenclature.

In the present work, we apply our new genetic associatiomatebased on FHLCMs, to empirically
show that the FHLCMs are relevant to detect indirect geretsociations with the disease. From now on,
we name indirect genetic association any dependence betwesisal SNP’s ancestor node (abbreviated
as CA) of the FHLCM and the disease. Such an indirect as$oeigtdue to the fact that a CA is likely to
capture the information of a causal SNP. The capture oféetigenetic association is at the basis of our
original genetic association approach: the identificatfb@A nodes helps to point out the causal marker,
since the latter is one of the leaves (observed variableg)i@e rooted in a CA node. For our purpose,
the performence of the FHLCM-based method is evaluatedyusith simulated and real genotypic data.
Simulations are generated under different scenarii vgriginminor allele frequencies (MAFs), geno-
type relative risks (GRRs) and disease models. The realasteatiysis considers the well-studied region
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flanking theCYP2D6human genef]. In order to assess the significance of the associationslsee
adapted a permutation procedure dedicated to the commutitp-value thresholds, each one specific to
a FHLCM’s layer.

This paper is organized as follows: in the second Sectiorpneeide a quick insight of the CFHLC
algorithm dedicated to FHLCM learning; the third Sectiosctées the evaluation protocol implemented
to assess the relevance of our approach when applied fatiaiso studies; the fourth Section details
our results and discusses them. Finally, the last Sectglights the contribution of our work and gives
directions for future works.

2 A short tour of CFHLC algorithm

In a previous pape], we described a scalable algorithm, named CFHLC, conddiwelearning both
structure and parameters of FHLCMs dedicated to genome-ghéth analysis. The learning is performed
through an adapted agglomerative hierarchical clustgiidC) procedure: (i) at each agglomerative
step, a clique partitioning method is used to identify ctigwf variablesi(e. statistically dependent vari-
ables); (ii) each such clique, if relevant, is intended telblgsumed into an LV, through an LCM. For each
LCM, parameter learning using expectation-maximizatiekl) algorithm and missing data imputation
through probabilistic inference (for the latent variatdeg performed. Iterating these two steps yields a
hierarchical structure.

In other words, latent variables capture the informatiombxy underlying observed variables.g.
genetic markers). To their turn, latent variables can behstized through additional latent variables,
and so on. During the agglomerative construction, the numblayers is determined thanks to a decay
information criterion: each LCM corresponding to a cliqaehecked for carrying sufficient information
about the subsumed variables.

The reader interested in the detailed algorithm is refetwetie aforementioned papek(]. In par-
ticular, three ingredients of algorithm CFHLC - node pé#titng, imputation of LV values and control
of information decay - are described therein. It has to behasized that the theoretical framework
proposed is generic and that, regarding implementationsaategy implementing one of the previous
ingredients may be plugged into the generic scheme. Forck insight, the sketch of the algorithm is
presented in Figurd. Stagel implements genome scanning through contiguous windowsrepassing
up to some hundreds of SNPs. St&gdentifies cliques of pairwise-dependent variables, theddence
being controlled by a given threshold. The next ph@%&yilds as many LCM models.€. as many LVs)
as there are such previous cliques identified. The LCM patenmiare learnt through phagewhich
subsequently allows the imputation of the values of eachdiafl individuals considered in the study.
A validation stageX) controls that the unescapable information decay accowipathe subsuming pro-
cess is not too drastic. Now, such LVs satisfying the vaitteprocedure are considered as observed
variables for the next step of the AHC procedure (stagdwrough5). The AHC process stops when
no more clique or relevant LCM is identified. Then, the FHLCbtresponding to the current window
is constructed through a procedure growing trees from kaveoot, starting from the nodes in initial
0 layers {.e. layers only including initial OVs) (phasg). Finally, the FHLCM modelling the studied
genome or genome region is the mere collection of window FMEQohase).
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Figure 5: Scheme of algorithm CFHLC. The light shade indisahe observed variables whereas the
dark shade points out the latent variables.

3 Evaluation of the CFHLC approach

3.1 Protocol description

Relying on data for which the causal SNP is known, the guite d¢if our evaluation protocol consists of
the following steps: (i) build the FHLCM corresponding t@ethenome or genomic region under study,
(i) carry on an association test between the phenotypebterl” and each node of the FHLCM, (iii)
compare the p-values obtained for three node sets: a sataédo the causal SNR.€. a leaf of the
FHLCM); CAs, the set of causal SNP’s ancestor nodes and Ciisset of causal SNP’s non-ancestor
nodes.

lllustrating the trends for all three node sets has first dmeved through graphical visualization:
we have plotted the mean p-values obtained for the causaltBBIEAs of a given layer and the CNAs
belonging to the same layer in the FHLCM. Furthermore, tvatstéiave been performed to confirm or
invalidate the dissimilarity of the p-value distributioredative to both CA and CNAs sets. We first used
a non-parametric standard test, the Wilcoxon rank-sum test

Recently, a method, called local FDR (false discovery rdita$ been proposed to estimate the specific
probability, given the p-value, for being under the null bthpesis B]. The method relies on a mixture
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distribution of p-values depending on the unobserved staftthe null hypothesis (true or false). In the
present work, the local FDR method has proven useful to fioehypare the proportion of CAs and CNAs
under the alternative hypothesis.

3.2 Assessment of genetic associations adapted to the FHLGMmework

To measure the association strength between a varklithe FHLCM (OV or LV) and the phenotype
Y, we used standard tests for independence. We applie@ittest instead of the well-knowé hi?
test. Indeed, the former corresponds to the likelihoodrast (LRT) whereas the latter is just an ap-
proximation of the LRT. For samples of reasonable sizesthéest and the“'hi? test will lead to the
same conclusions. But for relatively small sample sizel800 individuals) as is the case for the real
dataset analyzed, large divergences between results peeter. For thé:? test, the degree of freedom
is(n—1) x (m —1),in our casgn — 1), wheren is the cardinality ofX andm is the cardinality oft”
(here, constant and equallp

Due to information decay through bottom to top, in an FHLCMyould be nonsense to apply the
same threshold to assess significance for two variablesgielg to different layers. Therefore, to assess
the significance of associations, we had to implement a p@ermutation procedure dedicated to the
computation of the per-test type | error rat€ in order to control the family-wise type | error rate.

« controls the probability to make one or more false disc@gegaimong all hypotheses when performing
multiple association tests. For a givarvalue, the larger the number of variables to be tested, therlo
o/ must be. An advantage of our FHLCM strategy relies on thetfaatt there are less variables in the
higher layers than in the lower ones. Thus, an increasé isfexpected as the layer level increases.

In the standard permutation procedure dedicated to thisaquurpose 2], the labels of the target
variableY (in genetic association studies, the phenotype) are pedhaugiven number of times, amongst
individuals, which provides a set of permutatidfs For each permutation, a test betwéérand each
variable tested for association is rung. a Chi? test, and the maximum statistinaz(T") obtained
over all tests is saved. When the number of permutationsfficigatly large, themax(T') distribution
represents a good empirical approximation of the null higesis distribution, that is the no dependence
hypothesis. In our model, LVs may present various cardigalithus requiring association tests involv-
ing different degrees of freedom. Therefore, we can not @mthenax(T') statistics with one another.
That is the reason why we had to adapt the standard permutagthod to this characteristic. The adap-
tation is straightforward: instead of relying on the maximstatistic distribution, we use the distribution
of minimum p-values. Indeed, p-values are comparableesime degree of freedom is taken into account
in a p-value and the minimum p-value can replace the maximtatissc max(7) in the distribution
construction.

The adapted permutation procedure is described in AlgarithThe procedure performs, permu-
tations. For each permutation, and each FHLCM’s layer,pedeence tests are run for any varialilg
belonging to FHLCM’s laye¥ and the target variablg. For each permutation, the minimum of the p-
values over all variables belonging to FHLCM's layeés identified, which will constitute the distribution
of minimal p-values for this layer. Given a specified famiyse error ratey, this distribution then allows
to extract the correspondinrg threshold. Thisy’ value, specific to each layer, is to be compared with the
p-value resulting from the association test between virial) (belonging to layef) andY. Thus can
be assessed association significance, corrected for favisly type | error, or should one write instead,
controlled forlayer-wisetype | error.
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Algorithm 1 PermutationProcedufé, Dx,Y, Dy, n,, c)
INPUT:

X, Dx: a set ofn, candidate variables (observed or latekt)= X1, ..., X,,, and the corresponding data observed or imputed:for
individuals,

Y, Dv: atarget variablé@” and the corresponding data observedifandividuals,

np: the number of permutations,

«: the family-wise error rate.

OUTPUT:
{a’(1),...,a’ (n,)}: the set of per-test error rates respectively computechfgers! to n,.

cfore=1ton,
distribminpPvalues(£) — 0
: end for

wN P

4: for p = 1ton,

5! Dy, « permuteLabels(Dy)

6 fore =1ton;

7 pValues(p, £) — 0

8 for each variablex,, in layer¢

9: pValuey, ¢, » +— runAssociationTest(X,, Dyp)
10: pValues(p, £) «— pValues(p, £) UpValuey, ¢, -
11 end for

12 distribmin Pvalues () «— distrTibminPvalues (£) U minx, (pValues(p, £))
13 end for

14: end for

15: for ¢ = 1ton,
16: o' (¢) «— quantile(distribminpvalues(£), @)
17: end for

4 Results and discussion

Algorithm CFHLC has been implemented in C++, relying on theB™ library dedicated to BNs (http://
bayesian-programming.org). CFHLC was run on a standarsbpat computery GHz, 2 GB RAM).
We have performed intensive testing to evaluate the retevah using FHLCMs for genetic associa-
tion purpose. Tests have been performed both on simulatédesi biological data. To implement
layer-wisetype | error correctiong threshold has been set €005, with a number of permutations
equal to1000, quite standard values for this aim. The local FDR-basedatehas been run through
Kerfdr, an R package implementing a semi-parametric ambrbased on kernel estimators (http://cran.r-
project.org/web/packages/kerfdr/).

We will display the—log1o(p-value) values instead of the p-values themselves.lbe;((p-value)
values neab point out independence and the previous indicator incexa#tl the strength of the depen-
dence.

4.1 Simulations
4.1.1 Generation of realistic genetic data

To assess the ability of FHLCM's LVs to capture indirect gémassociations, we have simulated geno-
typic and phenotypic data under various scenarii. In paldic we have considered different scenarii
combining various minor allele frequencies, genotypetingdaisks and disease models. We have repli-
cated each scenari0 times. SNP data without missing values have been generateg software
HAPGEN (http://www.stats.ox.ac.ukimarchini/software/gwas/hapgen.html) with referencedtgpes
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of the HapMap phase Il coming from U.S. residents of norttzerth western European ancestry (CEU)
(http://hapmap.ncbi.nim.nih.gov/). The simulated dada been generated f@b00 controls andl 000
cases (unrelated individuals) and consists of unphaseoky@n data relative to 4.5 Mb region con-
taining around 00 SNPs. Among the simulated SNPs, HAPGEN selects one SNP kelvatisal marker
associated with the simulated phenotype (affected/uctai®. The MAF (minor allele frequency) at the
causal SNP is specified to belong to interval [0.1-0.2], {0.2] or [0.3-0.4]. Different heterozygous
genotype relative risks are considerdd4, 1.6 or 1.8. The disease model is specified among additive,
dominant, multiplicative or recessive. Combining all poais conditions led to testingyx 3 x 4 scenarii.
Quality control of genotypic data has been carried out: SMiEFsMAF less thar().05 and SNPs deviant
from the Hardy-Weinberg Equilibrium (HWE) with a p-valueltae 0.001 have been removed.

4.1.2 Comparing CA nodes to CNA nodes

In the following, the data analysis may entail the generadibup to7 layers in the FHLCM. We will not
report results obtained for layers with numbers aliniedeed, such layers do not provide sufficient data
to compute representative medians or draw informative ledspOn average, over &l600 FHLCMs (36
scenariix 100 replicates), the percentages of nodes are distributedlaw/$89.1% in layer0, 9.5% in
layer1, 1.2% in layer2 and0.2% in layer3.

Figure 6 compares the histograms eflog;o(p-value) values resulting from association test’of
with the CAs and with the CNAs, respectively. The comparigbthese two histograms reveals a large
dissimilarity between the two distributions. The majori%) of —log1o(p-value) values relative to
CAs is greater than, whereas it is the case for onh% for CNAs. Indeed, we observe that large
—logi0(p-value) valuesd.g, greater thars) are common for the former and are very rare for the latter.
The Wilcoxon rank-sum test shows a p-value less thtart®, which confirms that CA and CNA p-values
follow two different distributions.

Now distinguishing between layers, Figufenore thoroughly describes thelog;o(p-value) values
observed for the tests relative to CAs and CNAs. Laympresents the association test between the phe-
notype and the causal SNP and serves as the reference vauemivid the reader that there are as many
association tests between causal marker and phenotyperasatte different scenario3q) in our evalu-
ation protocol. In Figur&, we observe that the association strength with CAs slowtyefeses when the
layer number increases, whereas the association streitht@WAs dramatically falls ta-logo(p-value)
values below).4, corresponding to p-values greater titafr Although CNAs reveal false positive asso-
ciations (less thah0% have a p-value belo@.01), these results clearly highlight a general trend: indirec
associations are captured by the CAs while it is not the aarsa farge majority of CNAs.

4.1.3 CA versus CNA node comparison including significancesaessment

Figure9 emphasizes the general trend-efog;o(p-value) values on CAs and CNAs, and compares the
median—log1o(p-value) value obtained for each layer to the correspandaiue associated with the
significance threshold’ specific to this layer (see Subsect®R). Figure9 reveals that up to the second
layer, significant associations are identified for CAs. Intcast, regarding CNAs, in all layers, median
—logio(p-value) values are smaller than the corresponéitgyo(c’) values. Focusing on the CNA
distribution, the rate of p-values lower thahvalue (false positives) i$.7%.

Relying on the local FDR method, Figugadisplays the trend for CA and CNA nodes and confirms
the aforedescribed contrast between both node sets. Reg&@A4 nodes, known to be associated with
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Figure 6: Histograms of-log;o(p-value) values resulting from association tests betwkemphenotype
and the causal SNP’s ancestor nodes or between the phelaoiyplee causal SNP’s non-ancestor nodes.
These histograms compile all studied scenarii: MAF ([0.2};,J0.2-0.3] and [0.3-0.4]), GRR1(4, 1.6
and1.8) and disease model (additive, dominant, multiplicativd eecessive). The X-axis indicates the
proportion of nodes showing alogo(p-value) value in the corresponding interval indicatecthsy Y-
axis.

the disease, the probability that the association test berobd under the alternative hypothesis is pre-
vailing, as expected: mixture and alternative hypothesissidies are close to one another. In the right
section of Figure8 (a), the presence of the small peak related to the (true)hypibthesis calls for the
following comment: for the p-values corresponding to thaaaned probit rangg€2, 2]), the proba-
bility that this p-value be observed under the true null lizpeis is not close t0 as it is elsewhere in
the figure; indeed, this probability is greater than the polity of the alternative hypothesis for p-value
probit intervall0, 2]. The pointed area designates false negatives. In cortrdSgure8 (b) showing the
trend for CNAs, as expected, the curves relative to mixtmek taue null hypothesis are superimposed.
Knowing that CNAs are not associated with the disease, theeaelated to false null hypothesis points
out false positives.

The existence of false positives (FPs) can partly be exgthiry the presence of indirect dependences
between the causal SNP and the CNAs of the causal tree (#edrdgaining the causal SNP), nodes
abbreviated as CT-CNAs. At the opposite, no FPs are expémt&NAS present in the non-causal trees
(NCT-CNAs). Actually, more thafi3% of FPs are CT-CNAs, which represents o2ly% of CNAs. The
rate of FPs in CT-CNAs i$6.07% whereas it isl0 times less in NCT-CNAs.

When applying the local FDR method to CT-CNA and NCT-CNA pues, we confirm that the
mixture distributions of both hypotheses greatly differmajor part of CT-CNA p-values follows the
alternative hypothesis (see Figuk® (a)), while it is the case for only a very small part of NCT-CNA


fig3_hist_chi2_p-values_of_ancestors_non-ancestors.eps

14

-1 O
2_ ! S o
5 | : 8
© - ' o
> 2 : : E
1 . g o
o | |
S : : B
< |
(@)) 0 — |
Q i
1 1
| , : -8
o o L BB T T = TY/=—

I I I I I I I
0 1(CAs) 1(CNAs) 2(CAs) 2(CNAs) 3(CAs) 3(CNAs)

Layer

Figure 7: Boxplot of—log1o(p-value) values for the different layers of the FHLCM, réisig from as-
sociation tests between the phenotype and the causal SNE&star nodes or between the phenotype
and the causal SNP’s non-ancestor nodes. Laymdicates the result of the association test between the
phenotype and the causal SNP (mean over all scenarii). §aeelifor details about the scenarii.
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Figure 8: Mixture distributions oprobit(p-values depending on the unobserved status of the null hy-
pothesis (true or false) - CA nodesrsusCNA nodes, simulated data, all scenarii -. (a) Mixture distr
tion learnt for CA p-values. (b) Mixture distribution learfor CNA p-values. See Figufor definitions

of CA and CNA nodes and details about the scenarii. The Higidn under the true null hypothesis
corresponds to the thick (blue) line, whereas the distidbutelative to the false null hypothesis is dis-
played through a thin (red) line. The third line correspotudthe mixture. Therobit tranformation is
the inverse cumulative distribution function associatéith the standard normal distribution.

p-values (see Figurg0 (b)). Thus, we conclude that a prominent part of false pasiissociations are
due to indirect dependences between CT-CNAs and the phamoty
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Figure 9: Median-log1o(p-value) values for the different layers of the FHLCM, réisig from tests of

association with the phenotype (for the definition of ereder/’, see last paragraph 8f2). CAs: causal

SNP’s ancestor nodes; CNAs: causal SNP’s non-ancestosndke Figuré for more details about
layer0.
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Figure 10: Mixture distributions gfrobit(p-valueg depending on the unobserved status of the null hy-
pothesis (true or false) - CT-CNA nodesrsusNCT-CNA nodes, simulated data, all scenarii -. (a) Mix-
ture distribution learnt for CT-CNA p-values. (b) Mixturésttibution learnt for NCT-CNA p-values.See
Figure6 for definitions of CT-CNA and NCT-CNA nodes and details ahihetscenarii. The distribution
under the true null hypothesis corresponds to the thicke{ldine, whereas the distribution relative to the
false null hypothesis is displayed through a thin (red).liflee third line corresponds to the mixture. The
probit tranformation is the inverse cumulative distribution ftian associated with the standard normal
distribution.

4.1.4 Comparison between various genetic scenarii

We recall the reader that we have evaluated the behaviolHlo€M'’s LVs under several genetic config-
urations: minor allele frequency (MAF) range at the cauddP Between [0.1-0.2], [0.2-0.3] or [0.3-0.4];
heterozygous genotype relative risklod, 1.6 or 1.8; additive, dominant, multiplicative or recessive dis-
ease model. As previously done, we nhow compare associasmdsults between three node sets, the
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causal SNP, CAs and CNAs, now distinguishing betweeB@ficenarii. Figured1and12 respectively
focus on CAs and causal SNPs, and CNAs and causal SNPs. Gagaysimilar tendencies are observed
over all scenarii: the association strength continuoushps from bottom to fourth layer; in the case of
CNAs, an overwhelming majority of results point out abseatassociation, whichever the FHLCM's
layer concerned.
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Figure 11:—log1o(p-value) median values for the different layers of the FiM,Cesulting from associ-
ation tests between the phenotype and the causal SNP'sancedes. The different windows represent
possible genetic scenarii. At the top of each window, theyeaof the simulated causal SNP’s minor
allele frequency and the disease model assumption areatedi¢additive, dominant, multiplicative or
recessive). The three different symbols used refer to ay manotype relative risks considered for the
simulated causal SNP (see Legend). The result for lagerresponds to tests of association between the
phenotype and the causal SNP (overlal replications).
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Figure 12: Median of-logio(p-value) values for the different layers of the FHLCM, résig from
tests of association between the phenotype and the cau®d 8bh-ancestor nodes. See Figlifigfor
parameter description and more details about layer

When considering the easiest case (MAF rarg€.3-0.4, GRR= 1.8 and multiplicative model),
over all layers, the CAs present strong associatioh®do(p-value) > 7). Regarding a less ideal
but more plausible configuration (MAF range 0.2-0.3, GRR= 1.6 and additive model), the median
—log1o(p-value) value computed for CAs decreases ffoBmat layero, to reacht.6, 3.2 and2.2 at layers
1,2 and3, respectively. On the contrary, when the model is recesiesassociation with the causal SNP
is low and the CAs can not capture anything (similar resuttsodtained with most of the methods ded-
icated to association studies). As regards the causal SivR'sancestors, null associations are reported
in all configurations.
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Figure 13: Boxplot of—logio(p-value) values for the different layers of the FHLCM, résig from
tests of association of the phenotype with the causal SNfesstor nodes or with the causal SNP’s non-
ancestor nodes. Lay@rrepresents the tests of association between the phenatgpina causal SNP
(marker19). In layer3, no CNAs are observed in the FHLCMs.

4.2 Application to real data

We have evaluated our hierarchical Bayesian network approa a real genotypic dataset fron8@0

kb region flanking theCYP2D6gene on human chromosome 22g13. This gene has been shovay to pl
a confirmed role in drug metabolisrf][ The studied genomic region consists3afSNP markers geno-
typed for268 individuals and has been downloaded from the R package griaghdeveloped by Verzilli
and collaboratorsl[8]. This genomic region has been used in several studiesstpteposed LD-based
methods dedicated to fine mapping. Strong evidence has Ibeegtti that the SNP9 at positions50 kb

is the marker most significantly associated witiP2D6gene (whose "location” is referred to 525.3

kb position) [L7]. For this reason, we considered the SNRas the causal marker in our experiment.

To take into account the stochastic nature of our algorittandom initialization of parameters dur-
ing the EM algorithm), we present the resultslof0 runs 6.4 s per run on average, on a standard PC
computer8 GHz, 2 Go RAM)).

On average, over all000 FHLCMs (1000 replicates), the percentages of nodes are distributed as
follows: 82.62% in layer0, 16.89% in layer1, 0.39% in layer2 and0.10% in layer3. Figure13 shows
the —log1o(p-value) values of association tests relative to CAs and&£Ms expected in view of exper-
iments led on simulated data, the CAs succeed in capturifigeict association, in particular in layer
with a median value of.5, corresponding to p-values lower than0~5. In the other layers, the strength
of associations is lower but remains relatively high as yet& showing a median value df equivalent
to a p-value ofl0~%. As previously seen, when we focus on CNAs, we observe vensfeong associa-
tions. The majority of p-values (ov80%) are greater tha.01.

Finally, in addition to intensive evaluation performed amuslated benchmarks, similar tests con-
ducted on real data confirm that the FHLCM-based methodésaet to detect causal regions.
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5 Conclusion

Using both intensive testing on simulated and real geneiia,dhe research work reported here demon-
strates the ability of FHLCM's latent variables to guarantiata dimension reduction while allowing
efficient identification of genetic associations. In ourrliehical Bayesian network proposal, the two
keys to efficient association capture are the following or{@sthe causal SNP’s ancestor nodes suc-
ceed in capturing indirect associations with the phenatgipén contrast, the causal SNP’s non-ancestor
nodes globally show very weak associations. These two ctaistics allow to distinguish between true
and false indirect genetic associations. We have addrékeezfficiency question, performing associa-
tion studies simulated under four realistic disease modeise disease severities and three ranges for
causal marker’s minor allele frequency. We have adaptection for multiple hypothesis testing to a
multi-layered framework. We have also started investayaticonnected to power analysis, relying on the
local FDR approach.

Complementary points will be addressed in future worksstFive will investigate whether bene-
fitting from the ability of FHLCMSs to encode conditional ingendences between variables could help
reinforcing the dismissing of false indirect associatiome will evaluate an association analysis proce-
dure implementing, for instance, tests for conditionakipendence.

Second, we will adapt our Bayesian network-based methaattdd genome-wide association stud-
ies. A protocol involving far more intensive tests as in thesent preliminary work is planned, relying on
both genome-scale simulated and real data. In addition,lgawdeeper into the study of our method'’s
power to identify robust associations between a causal $idR&inary quantitative trait.

Finally, the ability of FHLCMs to implement relevant modedi for biological data will be further
investigated to cope with more complex association analyseleed, in the present work, we made the
assumption that the causal genetic factor restrains toquamarker. But reality is more complex. The
causal genetic factor might be the share haplotype, carthie mutation which appeared in the past, for
an ancestor individual. In this case, the latent variabiesur hierarchical model could also be able to
represent this type of causal genetic factor. Thus, bebigie subsumption role, latent variables might
play a role in interpreting association studies.

References

1. David J. Balding. A tutorial on statistical methods forpptation association studiedNature
Genetics7:781-790, 2006.

2. Phillip I. Good.Permutation, parametric, and bootstrap tests of hypotheSpringer, 3rd edition,
December 2004.

3. Mickael Guedj, Stephane Robin, Alain Celisse, and Gregarel. Kerfdr: a semi-parametric
kernel-based approach to local false discovery rate eitima BMC bioinformatics 10:84+,
March 2009.

4. Han, B., Kang, H. M., Seo, M. S., Zaitlen, N., Eskin, and Hficient association study design
via power-optimized tag snp selectionnals of Human Genetic§2(6):834-847, November
2008.



20

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

. L. K. Hosking, P. R. Boyd, C. F. Xu, M. Nissum, K. CantoneJl.Purvis, R. Khakhar, M. R.

Barnes, U. Liberwirth, K. Hagen-Mann, M. G. Ehm, and J. H.eRil Linkage disequilibrium
mapping identifies a 390 kb region associated with cyp2dé goay metabolising activityThe
Pharmacogenomics Journ&(3):165-175, 2002.

. International HapMap Consortium. The internationalrhap project. Nature 426(6968):789—

796, December 2003.

. Daphne Koller and Nir FriedmanProbabilistic Graphical Models: Principles and Technigue

(Adaptive Computation and Machine Learninghe MIT Press, August 2009.

. Y. Liang and A. Kelemen. Statistical advances and chgéisrfor analyzing correlated high di-

mensional snp data in genomic study for complex dise&@sistics Survey2:43-60, 2008.

. A. P. Morris and L. R. Cardorlandbook of statistical geneticgolume 2, chapterWhole genome

association, pages 1238-1263. Wiley Interscience, 3tibadR2007.

Raphael Mourad, Christine Sinoquet, and Philippe Leragarning hierarchical bayesian net-
works for genome-wide association studies.18th International Conference on Computational
Statistics (COMPSTATpages 549-556, 2010.

Patrick Naim, Pierre-Henri Wuillemin, Philippe Ler8&livier Pourret, and Anna BeckdRéseaux
bayésiens3 edition, 2007.

Ara V. Nefian. Learning snp dependencies using embedalgsstan networks. IEEEE Compu-
tational Systems, Bioinformatics Conferen2@06.

N. Patil, A. J. Berno, D. A. Hinds, W. A. Barrett, J. M. D@s8. R. Hacker, C. R. Kautzer, D. H.
Lee, C. Marjoribanks, D. P. McDonough, B. T. Nguyen, M. C. NgrJ. B. Sheehan, N. Shen,
D. Stern, R. P. Stokowski, D. J. Thomas, M. O. Trulson, K. Ra¥yK. A. Frazer, S. P. Fodor, and
D. R. Cox. Blocks of limited haplotype diversity revealedtigh-resolution scanning of human
chromosome 21Science (New York, N.Y294(5547):1719-1723, November 2001.

Cristian Pattaro, Ingo Ruczinski, Daniele M. Fallindaiovanni Parmigiani. Haplotype block
partitioning as a tool for dimensionality reduction in srgsaciation studiesBMC Genomics
9:405, August 2008.

Judea PearPRrobabilistic reasoning in intelligent systems : netwookglausible inferenceMor-
gan Kaufmann, Santa Mateo, CA, USA, September 1988.

D. J. Schaid. Evaluating association of haplotypes irétits. Genetic Epidemiology7:348—364,
2004.

loanna Tachmazidou, Claudio J. Verzilli, and Maria Dido Genetic association mapping via
evolution-based clustering of haplotyp@&4.0S Geneti¢s3(7):e111+, July 2007.

Claudio J. Verzilli, Nigel Stallard, and John C. WhiakBayesian graphical models for genome-
wide association studie$he American Journal of Human Genetig9:100-112, 2006.

Yi Wang, Nevin Lianwen Zhang, and Tao Chen. Latent tredeteand approximate inference in
bayesian networkdMlachine Learning32:879-900, 2006.

Nevin L. Zhang. Hierarchical latent class models fostdu analysis.The Journal of Machine
Learning Researctb:697-723, 2004.



21

21. Nevin L. Zhang and Thomas Kocka. Efficient learning oféuiehical latent class models. Rvo-
ceedings of the 16th IEEE International Conference on Tails Artificial Intelligence (ICTAI)

pages 585-593, 2004.

22. Y. Zhang and L. Ji. Clustering of snps by a structural egorhm. Ininternational Joint Confer-
ence on Bioinformatics, Systems Biology and Intelligemh@ating pages 147-150, 2009.









LABORATOIRE D'Il NFORMATIQUE DE NANTES-ATLANTIQUE

Forests of hierarchical latent models for association
genetics
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Abstract

Genome wide association studies address the localizatidantification of causal mutations responsible for com-
mon, complex human genetic diseases. Nevertheless, $kihaa been revealed to be a formidable challenge because
of the huge amount and the complexity of the data to analyzéherontier between machine learning and statistics,
probabilistic graphical models, such as hierarchical Barenetworks, are potentially powerful tools to tacklesthi
issue. In this research work, we evaluate a novel methoddbaséorests of hierarchical latent class models. We
show the relevance of using this class of models for the marpd genetic association studies.

We correct for multiple testing and cope with cardinalitydregeneity amongst the model’s latent variables. For this
purpose, we designlayer-wisepermutation procedure. We empirically prove, using bothusated and real data,
the ability of the model’s latent variables to capture irdirgenetic associations with the disease. Strong asiensat
are evidenced between the disease and the causal gendtarsiancestor nodes in the forest. At the opposite, very
weak associations are obtained regarding the causal genatker's non-ancestor nodes.
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