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Abstract: We deal with the flexure (flexion inégale) of a Saint-Venant cylinder whose sections we call Bredt-
like with variable thickness. We consider a family of sections D whose thickness is scaled by a parameter
€. This scaling allows for the construction of an g-one-parameter family of coordinate mappings from a
fixed-plane domain D onto 2. We represent the Helmholtz operator in D in terms of a fixed system of
coordinates in D and represent the shear stress field in what we call the Bredt basis field, which is not the
natural basis associated with any coordinate system. Assuming that the shear stress admits a formal £ power
series expansion, we obtain a hierarchy of perturbation problems for its coefficients, finding the well-known
Jouravski formula at the lowest iterative step and obtaining its generalization at higher steps—that is, when
the section becomes thick. Similar results are obtained for the warping, the resultant shear stress, and the
shear shape factors.

1. GEOMETRY OF Bredt-like SECTIONS WITH VARIABLE THICKNESS

We study here the plane Saint-Venant problem for shear stress in flexure for Bredt-like
sections (dell’Isola and Ruta [1]). They are obtained by symmetrically thickening a
plane curve L (middie line) along its Frenet normal with regularly varying thickness.
The middle line is given as a function of its arc length s:

L:={qePlg—o=ro(s), s€[0,]]}; (1.1)

0 is any point in the plane ? including the section, and [ is the length of £. The Frenet
orthonormal basis for the middle line is

I(s) := = ros(s), m(s) := —* araois) = —*7104(5); (1.2)

* is the Hodge operator in % (F rotation about the positive orientation of P); the comma
followed by a variable indicates a derivative with respect to that variable. The € Bredt-
like section is given by

De:={y € Ply—o0 =r(s,2) =ro(s) +2ed(s) *1(s), s€[0,], z€[-1,1]}; (1.3)
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z is the coordinate along *l(s), 8(s) is the (suitably regular) function expressing half the
thickness of the section, and € is a thickness perturbation parameter. That is, a Bredt-like
section is the collection of all symmetrically z-shifted lines along m starting from £, the
shift being a regular function of the arc length s of the middle line. We regard s,z as
rescaled coordinates over D (Nayfeh [2]). The natural (covariant) basis associated with
the s, z coordinates is (Malvern [3])
or
g1(5) == 5 = [1 - 2x(s)eBE)]N(s) +268,5(5) #1(5),

Ba(s) = 5 = eB(s) +1(5,

(1.4)

where k(s) stands for the curvature of the middle line. Henceforth, to lighten the notation
and when there is no risk of confusion, we will drop the dependence of functions on
coordinates s,z. The covariant components of the metric tensor are

g = (1—zxed)?+ (ze8,)?, g1 = g1 = 26788,  gn =¥ (1.5)
As a consequence, the determinant of the metric tensor is
g =gugn — (gn)? = (e3)*(1 —zxed)® (1.6)

The basis dual to the natural one is obtained by the standard relation g - g; = &, where
. stands for the usual scalar product in the vector space ¥ of the translations of 2:

1 1 _ Za,s __1_
& T 1 xed g = 8(1—2K£5)l+86*l' 1.7

As the section has variable thickness, the coordinate system (s,z) is not, in general, or-
thogonal (it is on the middle line, by construction). For the purpose of this article, we
need to calculate the Christoffel symbols (of second kind) associated with the coordi-

nates s, z, according to {kf,} =gkl g/ ([3]; dell'Isola and Rosa [4, 5]):

1) _ (23, +x,9) 2\ _ Ped (28,5 +%,8) | k(1 —ezkB)+28
11 1—2zxed 11 3(1 — ezx3) €8 ’

(1.8)
1 2 1 1 xed 2 2 3,
{22}:{22}:0’ {21}:{12}:_1—zxe8’ {21}2{12}:8(1—21(55)'
Because of (1.3), the center b of area of the section is given by
l g2 rls3
-0 dro— % [, 6'xxl
boo— 32079 _Jdr-5l = by — £%b, (1.9)

Ap, s

where A, is the area of the section. In all integrals, the measure of integration is omitted.
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2. HELMHOLTZ OPERATOR WITH RESPECT TO THE BREDT BASIS

The problem for the shear stress field t in the flexure of a Saint-Venant cylinder is elliptic
and defined over the € section as follows (Clebsch [6]; Fraeijs de Veubeke [7]):

divt = Yk- [*(y —b)] in D¢, 2.1)

(curlt) -e =2GVk - (y — o) in D, 2.2)

t-n=0 along d7, 2.3)

?{ t-1=2Gvk-Ag(bg —o) along L (z=0). 2.4)
L=0R,

In the former, Y, G, v are the longitudinal (Young) elastic modulus, the tangential elastic
modulus, and the Poisson ratio; e is the unit vector normal to the (positive) side of P;
n is the outer normal to dD;; Ag is the area of the inner Jordan region enclosed by £
(if any); bg is its center of area; and k is the kinematic characteristic parameter of the
flexure, representing the (linear) variation of the curvature of an initially straight axis
of the cylinder. Equation (2.1) describes the local balance of contact force; equation
(2.2) is a local compatibility condition, necessary and sufficient if the section is simply
connected; equation (2.3) expresses the condition that the lateral surface of the cylinder
be traction free; and equation (2.4) is a global compatibility condition to be used if the
section has a connection higher than 1.

It is well known that, in general, the problem has no closed-form analytical solution.
In particular, in multiply-connected sections, the presence of sources of stress due to
the lacunae makes the problem very complicated. It is clear that, for technical applica-
tions, approximate solutions can be useful. The most known technical formula for the
shear stress in the case of flexure is that due to Jouravski (Feodosyev [8]; Gjelsvik [9];
Gavarini [10]) and is based on the integral counterpart of equation (2.1). The Jouravski
formula provides a mean value for the shear stress component along L, so supplying its
accurate estimate when the section is thin. As far as we know, in the literature there is no
approximate formula providing reliable results for thick sections; besides, for sections
with a connection higher than 1, one finds formulas based on that of Jouravski, obtained
by Volterra distorsions and applications of the principle of virtual power.

The € parameter in (1.3) describes sections with the same shape that grow thicker;
we will obtain a hierarchy of perturbation problems in €. The solution of each step of
the hierarchy should provide generalized, Jouravski formulas approximating shear stress
field of thick sections.

We need to write the Helmholtz operator present in equations (2.1) and (2.4) in the
coordinate system (s,z) in D and in terms of the thickness parameter £. Besides that, to
follow what is usually required for applications, we define the Bredt basis field B as:

B: (s,2) — I(s), *1(s); (2.5)
the components of its Lie bracket (Arnold [11]) in (s,z) are

_*
(1 —2zxed)?’

0, +lj; = o KOs (2.6)

I+t = 51— oced)?
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that is, the Lie bracket of B is not, in general, the zero vector field. We may conclude
that Bis not, in general, the natural basis associated with any coordinate system. We do
not represent the shear stress in the natural basis of the chosen coordinate system, but in
the Bredt basis

t=1tlg +1lg, = hgl + 68 =tl+1, +1. 2.7

Equation (2.7) facilitates finding relations between contravariant and Bredt components
of the shear stress:

1 _ Is 2 _ _1_ _ za,s
ST et S(l—zxed)” @8)

The divergence operator is written as ([6], eq. 2.8)

. 1 . 2 t K¢, I,
ivt=(Vt)i =11 + J 24+ J— 88 4 72
dive=(VO; =1, { jl }t & { j2 }t 1—zxed 1-—zxed €8’ @9

t

V being the spatial gradient operator. We remark that, when expressed in terms of #, %,
the divergence operator is not affected by the variable thickness and the nonorthogonal
coordinates. This is physically reasonable, as the divergence operator is linked more to
the variation of the field along the middle line than to that along the thickness. This also
intuitively accounts for the success of Jouravski heuristic deduction of his formula.

From equations (1.5) and (2.8), the covariant components of the shear stress may be
found in terms of the Bredt components by 1; = g; jtj as

tl = (1 - ZKSS)IS + 285,5&-, t2 = satz- (2.10)

We need the covariant components of the shear stress to calculate the curl operator and
express it in terms of the Bredt components. We have

Ly — {12}t1_tlz+{21}t1

£d(1 — zxed)

1
(CUI'l t) e = — (Vltz - Vztl)
v @11)
_ Bhs—hg by t,;z_ Ky 2,
" ed(1—2zked)  1—zKed e5 T 1—zxed d(1 —zxed)’

We remark that equation (2.11) differs only in the fourth term from the expression one
would obtain in the case of constant thickness. We also remark that this difference is
exactly what one would expect in this case because the curl operator is linked with the
variation of the field along the thickness. As a matter of fact, the different term we
observe is proportional to the derivative of the z-component of the field with respect to
z and to the variation of the thickness along L. We will also need the expression for the
gradient of a scalar function w of coordinates s,z, as we will look for the warping of the
section. It is

w4

Vw=—g +

ow , [dw,—z8w,
as ® azg—[

5(1 —zxed) ]'* & " @12)
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equation (2.12) reduces to the expression of the gradient of a scalar function in an or-
thogonal coordinate system [11] if we let & ; = 0, as we would expect.

3. FORMAL EXPANSIONS FOR THE SHEAR STRESS

Since the thickness parameter describes a geometrical feature of the section, it is phys-
ically reasonable to let t be a function of € as well as of s5,z. We propose the following
formal series expansion for t [2]:

N
t(s,2;€) = Y, €' (s,2) +o(e"), 3.1)

n=0

where o(eV) stands for terms of order higher than €V. Similar formal expansions are
also supposed to be valid for both components of the shear stress field with respect to
the Bredt basis.

Equations (2.9), (2.11), and (3.1), when substituted into (2.1) through (2.4), lead to
the following hierarchy of perturbation problems:

N
> {€"18tom,s — K(tzn + Zinz)] + E"1enz}

2=0 =Yk~ (xFo — £201 + €° .
£5(1 — zxed) Yk (xFo — €281 + €°b;), 3.2)
N
D A Bty s + KBty + 2onz) — 28 ston 2] — €tz }
n=0 — .
£5(1 — 2xed) =2GVKk - (ro+ €20 *1), (3.3)
N
3 e"t-n=0, (3.4)
n=0
N
Y. ¢ €' =2GVk-Ag(bg —o). (3.5)
n:OZZO

In equations (3.2) through (3.5), we have dropped terms of order higher than £; in
equation (3.2), Fo := ro — by; in equation (3.4), n is the outer unit normal vector,

If the section has double connection, we will call it closed, referring to its mid-
dle line, which is homotopic to a circumference. In this case, two different connected
elements compose the boundary of the section. The outer vector field normal to the
boundary is given by

nl——1 = —€d 0 — (1+exd) x1, nl—1 = —&d 1+ (1 —exd) *1, (3.6)
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so that the boundary conditions for closed sections are, dropping terms o(e),

N
N € (8 ston + €Btzn) + €' inlo——1 =0, (3.7
n=0
N
3 | — €18l + KB11) + E"tgnl1 =0. (3.8)
n=0

If the section is simply connected, we will call it open, always referring to its middle
line, now homotopic to a segment. The boundary is composed by a unique connected
element, divided into four regular components. The outer vector field normal to the
boundary is represented by

njs—o=—1, n|,——1 = —€d 0 — (1+£xd) *1, (3.9
nj— =1, nj,—; = —&d 1+ (1 — exd) *1, (3.10)

so that boundary conditions for open sections are, always dropping terms o(e),

N
2 |€"tsn]s=0 =0, (3.11)
n=0
N
S €7 (8 stn + €Btzn) + €"tnlz=—1 =0, (3.12)
n=0
N
> (& tsmls=1 =0, (3.13)
n=0
N
z | - 8n+1 (S,Stsn + KStU’l) + entzn‘zzl =0. (314)
n=0

In the next sections, we will look for the solution of the hierarchy of perturbation prob-
lems (3.2) through (3.5), with the appropriate substitution of the boundary conditions
(3.7), (3.8), and (3.11) through (3.14), both for closed and open sections.

4. GENERALIZED JOURAVSKI FORMULAS

In the following, we deduce some generalizations of the Jouravski formula and study the
main features of the structure of the aforementioned hierarchy of problems.

First, we remark that each step of the procedure can be solved within an unknown
function of the coordinate s, which is determined only by solving the first equation of
the next step. This is a very well-known feature of some perturbation series [2].

Second, both for closed and open sections the structure of the perturbation problem
is the same except for two different boundary conditions. Anyway, in the case of open
sections, we cannot force the formal series (3.1) to fulfill four independent boundary
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conditions. This is another well-known phenomenon of perturbation procedures, in the
presence of a boundary layer (in this case, in a neighborhood of the “short” sides of the
section [1, 2, 4, 5]). We should provide two different expansions, called outer and inner
[2], and then match them. But for the aim of this article, we will content ourselves with
the outer expansion, which is valid outside the region of the boundary layer.

Third, the aforementioned features for the series (3.1) remain unchanged if we are
to study the torsion of a Saint-Venant cylinder with Bredt-like sections, as defined in
Section 1. In fact, if we modify the right-hand sides of equations (2.1) through (2.4) as
follows,

dive =0 in 20 @.1)

(curlt) -e = 2G7 in 0 4.2)

t-n=90 along 0D, 4.3)

?{ t-1=2GtAg  along  L(z=0), (4.4)
L=0R,

we have a torsion problem [6, 7] in which T, the kinematic parameter, stands for the unit

angle of twist. If we postulate for the shear stress field the formal series expansion (3.1),
we obtain a hierarchy of perturbation problems that can be easily solved, thus obtaining
again some of the results presented in [1, 4, 5].

Now, starting from open sections (simply connected), we will solve the hierarchy of
perturbation problems for the flexure, given by equations (3.2) and (3.3), with equation
(3.4) replaced by equations (3.11) through (3.14). We obtain

Y(8* T,
to= [Yk . w]l = Iyl “4.5)
t; = z{d[Kkt;0 — 2GVk - ro]l + (8 st50) *1}, (4.6)

2
to = {5 [6(8t0),~ Bto] + 7780 — Gk (e +-+1)] 4
n {55,s[(z2 + 1)Kty + (22 — 3)GVk - ro] 4.7)
2\ 22 K,stso . =
+(1-22)8 [——2—+k (Gl+YK*ro)]}*l.

Equation (4.5) is the well-known Jouravski formula [8-10]: in fact,

1. the integral on the right-hand side represents the lowest term of the first moment
of area of the section;

2. from the general theory of Saint-Venant problem [6, 7], it is known that

-1
kz-—J Y*q’ q:=/t, J:=/(*r®*r). 4.8)

2 2
In equation (4.8), ® is the tensor product between vectors of 7/, defined by

(a®b)c:=(a-c)b; q is the resultant shear stress, and J is a tensor of inertia of
the section;
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3. the Jouravski formula is usually given in the literature in components with respect
to the principal axes of inertia of the section and in terms of the resultant shear
stress q; it is easy to recognize it by substituting equation (4.8); into equation
“4.5). ~

We obtained the Jouravski formula as the solution of the first step of our perturbation
procedure; because of the physical interpretation of the perturbation parameter, this cor-
responds to sections that in the literature are referred to as thin.

Equation (4.6) is the first generalization of the Jouravski formula for sections that
are getting thicker, according to the interpretation of the successive powers of the per-
turbation parameter. We remark that the component orthogonal to 1 of this field may be
found in the literature [8-10]: it is obtained, on the basis of the Jouravski formula, by
solving the local equation of compatibility (3.3). Itis said, on heuristic grounds, that this
field is of little relevance for thin sections, if compared with that given by the Jouravski
formula; in our perturbation approach, this result appears clearly as a higher order effect.
As far as we know, the component of t; parallel to 1is not given in the literature.

We remark also that

1. equation (4.5) satisfies all boundary conditions (3.11) through (3.14);

2. equation (4.6) satisfies the boundary conditions (3.11) and (3.13) at the short sides
of the section as a mean over the thickness;

3. starting from the third step of the procedure, we cannot satisfy boundary con-
ditions at the short sides of the section because of an edge effect near the short
elements of the boundary [2].

The fact that the first two terms of the outer € expansion of the shear stress field in flexure
satisfy, at least in the mean, all boundary conditions is of great importance. In fact, when
we study torsion, even at the lowest order of the expansion, it is not possible to satisfy all
boundary conditions, and an edge boundary layer effect, named after Kelvin, arises [5].
In the case of flexure, this does not happen, as we will show also in the next section: the
first two terms of the € expansion for the resultant shear stress, which we will calculate
using equations (4.5), (4.6), and (4.8);, coincide with those obtained using equation
(4.8);. Thus, even if we have considered only the outer expansion of the shear stress,
we obtain exactly the global effects predicted by the Saint-Venant theory. We may so
conclude that in the case of flexure, the edge boundary layer effect is absent at the lowest
two orders of our perturbation procedure.

In equation (4.7), fy; is a function of s only, which is given implicitly by solving the
local equation of balance at the following step, together with the boundary conditions on
the long elements of the border.

The solutions of the first three steps of the hierarchy of perturbation problems for
sections with double connection (closed), given by equations (3.2) through (3.5), with
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the substitution of the boundary conditions (3.7) and (3.8) into (3.4), are

e s ) foo’Ls*i‘OZ 2GAgvk-(bg —0) |,
‘0“{3'[0/(5”0)_ o1 |+ ST Ii=tol, (49

t; = z{d[Kts0 —2GVK - ro]l + (8 st,0) *1}, (4.10)
2
t, = {%[a(s,stso), — 81,0) + 228 [K10 — Gk - (ko + #1)] + 5,2}1

+ {55 [(2% + 1)kts0 + (22 — 3)GVk - 1] (4.11)

+(1- )62[ LELI (Gl-}-YK*i'o)]}*],

Equation (4.9) is the Jouravski formula for thin, doubly connected sections, but in the
literature it is not usually written in that form. In fact, in technical textbooks [8-10], it
is said that, to find the (dominant component of the) shear stress for these sections, one
should consider them as indetermined structures. One should so imagine to produce a
Volterra distorsion along the middle line and to put there an unknown shear stress flow
determined by the principle of virtual power. We instead obtain equation (4.9) simply
by solving the equations of the first step of the perturbation hierarchy, in a direct and
rational way, only on the basis of equation (3.1). In the literature, the second addend
of fy is usually called torsion in the section as a whole because it has the same form
as the Bredt field in the torsion of a thin, closed section [1, 4, 5, 8-10]; on the basis of
our procedure, this similarity is more clear, as both come from the integral condition of
compatibility, equations (3.5) and (4.4) [1, 4, 5].

We remark that the generalized formulas obtained at higher steps have exactly the
same form as those obtained for open sections (equations (4.5) through (4.7)). This
is to be expected, as the structure of the hierarchy is the same in both cases; the only
difference is the different form of 7,0 caused by the use of the integral compatibility
equation (3.5).

5. APPLICATIONS AND CONCLUSIONS

As a first application of the results found solving the initial steps of the hierarchy of
perturbation problems (3.2) through (3.5), we will calculate the warping w of the section.
We have from the general theory [6, 7] neglecting contributions due to rigid body motion,

Vw=é+v{[*(b-o)]®r—sym(r®*r)}k, (5.1

where sym (a ® b) stands for the symmetric part of the indicated tensor.
We postulate a formal € power series expansion also for w:

w(s,z;€) Zew,,sz (5.2)
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By means of equation (2.11), we substitute equation (5.2) into equation (5.1) and ob-
tain the following hierarchy of perturbation problems, in which terms o(¢") have been
neglected:

N es202 [ N
Y [€" (s — 28 Wz )l + (€7 — 268" )Wy, #1] = §§—-?;£ { Y (& tenl + €1 ¥1)
n=0 n=0

— v{sym(ro ® *rg) — xbo ® ro + €20 [sym(*l ®#*rog—ro 1) — by ® l]

+ €[22 sym(x1 ® 1 - #by @ o | +€728 ¥ b, @ H }k }
5.3)

The structure of the hierarchy decouples a system of partial differential equations into
a system of ordinary differential equations that is easier to solve. Besides that, we see
from equation (5.3) that the right-hand side consists of

1. a first addend that contains the coefficients of the formal expansion of the shear
stress field; we have seen from equations (4.5) through (4.7) and (4.9) through
(4.11) that the structure of these coefficients is given in terms of the coefficient £,
and is the same both for open and closed sections;

2. asecond addend that is the same both for open and closed sections.
This means that the structure of the w, will be the same both for open and closed

sections, with the only exception of wy, influenced by the different form of £y, given by
equations (4.5) and (4.9). In fact, we have

s
I
Wo =% —vk- / [sym(ro ® #*rg) —*bo Q@ ro]l, 5.4
0
s
wi =—Vvzok - {2/ ro + [sym(ro ® *ro) — ro @ *bo|+l}, (5.5
0

both for open and closed sections. Equation (5.5), so far as we know, is not found in the
literature.

As a second application of our method, we will calculate the resultant shear stress
over the section. From the general theory of the Saint-Venant problem [6, 7], q =Y x Jk,
with q and J given by equation (4.8). As the position vector field r is given by (1.3),

1 1
T=¢[2 / 8(vro @+10)] ¢ [2 / a1 @1 +1® 4rg+ 410 ®1)|i= el + 5. (5.6)
0 0
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We postulate that the resultant shear stress also admits a formal € power series expansion:

N N
4 = 3, Fant o) = [ 3 VBt o)
D"

n=0 )

=Y x(eJ1 +€ J3)k;
the second line of equation (5.7) is implied by equation (5.6).

If we calculate the resultant shear stress according to the first line of equation (5.7)
(i.e., in terms of the fields to, t;) we obtain, both for open and closed sections,

Qo :0’ (58)
q: =Y * J1k, 5.9
q =0. (5.10)

Equation (5.8) implies that the shear stress resultant is zero when the thickness vanishes,
which has a clear physical interpretation. Equation (5.9) shows that the resultant of
the first two terms of the outer expansions for the shear stress is exactly that given by
the second line of equation (5.7). This result is used in the literature, as in technical
textbooks Jouravski shear stress field is a mean obtained starting from what we have
called q;. Equation (5.10) follows from the symmetric construction of the section; such
aresult is sometimes implicitly assumed in the literature because it is said that the shear
stress orthogonal to that of Jouravski is of little relevance, which means that its resultant
will appear at least starting from order three in €.

We remark that we obtain equations (5.8) through (5.10) both for open and closed
sections. That is, even if we have found only the outer expansion for the shear stress field
(valid outside the boundary layer), it provides exact resultants. This was to be expected,
as we remarked earlier that equations (4.5) and (4.6) satisfy, at least in the mean, all
boundary conditions—that is, the boundary layer effect is of higher order, and in flexure
a Kelvin-type effect [5] is absent.

As a last application of our perturbation method, we will calculate the shear shape
factor operator, which is a symmetric tensor K defined by an equivalence in the mechan-
ical power spent by the shear stress and the resultant shear stress [8-10]:

1 Kq 1
zqazg_§54@¢%¢wxq_Aﬂla¢y (5.11)

The area Ao, is given by the integration of /g see equation (1.6) over the fixed domain
D.
We postulate for K a formal € power series expansion:

N
K(e) = Y &Ky+o(e"). (5.12)

n=0
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Substituting the formal expansions for K (equation (5.12)), q (equation (5.7)), and t
(equation (3.1)) into the definition (5.11), we obtain another perturbation hierarchy for
the coefficients K,,:

N N
Y (£"qn- £'Kneqn)= 240, / / Y (e85 —£%2Kd) (e, - €'n), (5.13)

n=0 10 n=0

where we have dropped terms o(e¥). Using results for q, (equations (5.8) through
(5.10)), we obtain

/4 1 1

a1 -Koqy = /5 //5t0~t0, (5.14)

0 -10
1 1 I

q:-Kiq1 = / 0 / /(281:0 -t —ZK52t0 -to) =0, (5.15)
0 -10

equation (5.15) is a direct consequence of equations (4.5) and (4.6), as well as (4.9) and
(4.10). We remark that K, vanishes due to the symmetry of the section and the linearity
of the integrand in z.

It is very easy and meaningful to obtain the explicit expression of the coefficient Ko
in the case of open (simply connected) sections. Using the expressions for to, given by
equation (4.5), we obtain, after some lengthy but easy calculation,

’ [ / (J3 8+Bo) ® (J5 3%bo)

Ko=—2 /5 £ J71 - It (5.16)

0 0

It is easy to prove that, if we chose an orthonormal basis whose elements are parallel
to the principal axes of inertia of the section, as it is usually done in the textbooks, we
obtain the approximate technical result for the component Ky of the shear shape factor
tensor [8-10]. As far as we know, only in [7] both components Kj; and Ky, of K are
given, but it is not said clearly that the shear shape factor is a tensor, nor is its general
expression (5.16) given.

In our opinion, the perturbation procedure involving the Helmholtz operator given
by equations (2.1) through (2.4) is more efficient than those used in [1, 4, 5]. Indeed, it
allows for

1. the treatment of the flexure, which is the most complicated of the four cases of
simple deformation of a Saint-Venant cylinder, requiring a significantly reduced
amount of calculation;

2. the immediate deduction of nearly all results obtained in [1, 4, 5].

The problem to regularize the approximation sequence we obtain and to give conver-
gence arguments remains open; this should be possible by following the ideas given in
Wheeler and Horgan [12].
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