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Automatic Test Generation for Data-Flow Reactive Systems Modeled by Variable Driven Timed Automata

In this paper, we handle the problem of conformance testing for data-flow critical systems with time constraints. We present a formal model (Variable Driven Timed Automata) adapted for such systems inspired from timed automata using variables as inputs and outputs, and clocks. In this model we consider urgency and the possibility to fire several transitions instantaneously. We present a conformance relation for this model and we propose a test generation method using a test purpose approach. This method is illustrated with an example on a "Bi-manual command".

Introduction

Testing is one of the most popular techniques used to increase the quality of a software. Since systems are getting more and more complex, formal approaches permit to obtain efficient and rigorous testing frameworks. Testing is a large domain since many characteristics may be focused, such as conformance, performance, interoperability or robustness... In this paper we consider formal conformance testing, i.e. checking if the observable behaviour of an implementation conforms to its specification described in a formal model.

Testing techniques may be very different depending on the kind of systems we intend to validate (e.g. embedded systems, communication protocols, etc...). In this work, we handle testing for critical data-flow reactive systems with time constraints. Such systems are widely used in the industrial automation domain. Data-flow reactive systems are characterized by the fact that they interact with their environment in a continuous way by means of continuous input and output set of events (taking their values in (possibly) infinite domains), while obeying some timing constraints. In this framework, continuous means that the values of the inputs events can be updated at anytime, while the value of the outputs events can always be observed. Their particularity makes that models used in testing methods (e.g. Labelled Transition Systems with inputs, outputs and/or time) are not well adapted to describe such systems as they do not include data-flow synchronous aspects with dense time. Related work. Timed automata [START_REF] Alur | A theory of timed automata[END_REF] have been a reference model for many testing approaches for Real-time systems. [START_REF] Cardell-Oliver | Conformance testing of real-time systems with timed automata specifications[END_REF] and [START_REF] Springintveld | Timed Testing Automata[END_REF] propose methods based on characterization of states inspired from Finite State Machines (FSM) theory applied on extensions of timed automata with inputs and outputs. [START_REF] Ennouaary | Timed wp-method: Testing real-time systems[END_REF] and [START_REF] Springintveld | Timed Testing Automata[END_REF] use the region graph ( [START_REF] Alur | A theory of timed automata[END_REF]) as a basis for test case generation.

The LTS/ioco theory ( [START_REF] Tretmans | Test generation with inputs, outputs, and repetitive quiescence[END_REF]) has also inspired many testing approaches for timed systems. [START_REF] Núñez | Conformance testing relations for timed systems[END_REF] defines new conformance relations on Timed Extended Finite State Machines (TEFSM), a timed extension of FSM. Using the LTS semantics, [START_REF] Krichen | Black-box conformance testing for realtime systems[END_REF] proposes a timed extension of the ioco relation (tioco) which includes delays in the set of observable outputs. They propose two kinds of tests : one with analogclock (dense time) and one with digital-clock using a special "tick" action in the model. The Uppaal project ( [START_REF] Mikucionis | T-uppaal: Online model-based testing of real-time systems[END_REF]) uses timed automata with variables and urgency to model the systems and uses a symbolic extension of ioco to generate test cases. As the previously mentioned methods, it uses an event based semantics not adapted for data-flow synchronous systems.

Many testing methods have also been proposed for data-flow synchronous systems ( [START_REF] Bousquet | Lutess: A specification-driven testing environment for synchronous software[END_REF], [START_REF] Raymond | Automatic testing of reactive systems, madrid, spain[END_REF], [START_REF] Marre | Test sequences generation from lustre descriptions: Gatel[END_REF]). Lutess ( [START_REF] Bousquet | Lutess: A specification-driven testing environment for synchronous software[END_REF], [START_REF] Seljimi | Using clp to automatically generate test sequences for synchronous programs with numeric inputs and outputs[END_REF]) is a testing environment based on Lustre ( [START_REF] Caspi | Lustre: A declarative language for programming synchronous systems[END_REF]) using a "Lustre-like" model of the environment to lead test data generation. The recent version of Lutess uses Constraint Logic Programming. The Lurette environment ( [START_REF] Raymond | Automatic testing of reactive systems, madrid, spain[END_REF]) is similar to Lutess but uses ad-hoc notations to describe the environment. The Gatel tool ( [START_REF] Marre | Test sequences generation from lustre descriptions: Gatel[END_REF]) generates test cases with a white box approach : it translates the program and its environment specification into a system of constraints description and uses it to generate test data according to a test objective. All these synchronous approaches are widely used in the industry. However they do not permit to handle dense time. Timed Automata with urgent transitions, as studied in [START_REF] Barbuti | Timed automata with urgent transitions[END_REF], allow shorter and clear specifications and it has been proved that from a language theoretic point of view, addition of urgency does not improve the expressive power of timed automata. But model in [START_REF] Barbuti | Timed automata with urgent transitions[END_REF] is (discrete) event-based and it is not adequate for data-flow systems. To our knowledge, no approach has been proposed in the literature combining data-flow synchronous aspects and dense time. Contributions. In this paper, we introduce the Variable Driven Timed Automata (VDTA) model, a variant of timed automata [START_REF] Alur | A theory of timed automata[END_REF] with variables, which permits to describe data-flow systems with dense time. As in [START_REF] Mikucionis | T-uppaal: Online model-based testing of real-time systems[END_REF], transitions are urgent but our model permits to fire several transitions instantaneously as long as the guard is satisfied. The inputs and the outputs of the system are variables : the tester can assign new values to the input variables and observes the output ones. In the semantics of VDTA, we consider two kinds of transitions :

delay transitions for time elapsing discrete transitions including urgent transitions when the guard is satisfied, and input-update transitions when the value of an input variable changes but the guard is still not satisfied. From a testing point of view, we assume that the specification of the system under test is modeled by a VDTA. Our aim is then to derive a tester allowing to check whether an implementation (that could also be modeled by an unknown VDTA) conforms with its specification. Roughly, an implementation conforms to its specification whenever after an observable sequence of input updates and delays, the values of the output variables of the implementation are the same as the ones of the specification after the same sequence.

In order to limit the number of test cases, we propose a generation method based on a selection by a test purpose allowing to target some particular behaviors of the specification that we want to test on the implementation. We define test purposes as VDTAs equipped with a set of accepting locations playing the role of a non intrusive observer. It amounts to perform a product between the specification and the test purpose and to select the behavior leading to some particular configurations of this synchronous product (the ones that reach the accepting states of the TP). The last point is achieved by performing a coreachability analysis on a variant of the region graph derived from the VDTA and adding new constraints on the guards. Organization of the paper. The structure of the document is as follows : Section 2 presents some definitions and notations concerning the VDTA model and its semantics. In Section 3, we introduce the notion of Time Abstract Graph and we outline the problem of reachability analysis on VDTA. Section 4 presents the conformance relation called tvco, as well as the synchronous product between two VDTAs that will be used to combine the specification and the test purpose and finally describes the symbolic test case generation methodology.

Model and notations

In this section, we present Variable Driven Timed Automata (VDTA), a variant of timed automata extended with data, urgency and synchronous data-flow aspects : the model gives the possibility to fire several transitions (in case of successive true guards) in null delay. We also give the corresponding semantics.

Variable driven timed automata definition

Variables, Assignments, Constraints. Let N, Q + and R + denote the sets of natural, non-negative rationals and real numbers, respectively. Let [1..n] Dom(V i ), the domain of V . In the sequel, v i denotes a valuation of the variable V i and v the tuple of valuations of the set of variables V . A variable assignment for V is a tuple Π i∈ [1..n] ({V i } × (Dom(V i ) ∪ {⊥})) and we denote by A(V ) the set of variable assignments for V . Given a valuation

V = {V 1 , • • • , V n } be a set of variables; each variable V i ∈ V ranges over a (possibly infinite) domain Dom(V i ) in N, Q + or R + . We define Dom(V ) = Π i∈
v = (v 1 , • • • , v n ) of V and a variable assign- ment A ∈ A(V ), we define the tuple of valuations v[A] as v[A](V i ) = c if (V i , c) is an element of A and c = ⊥, and v[A](V i ) = v i otherwise.
Intuitively, an element (V i , c) of variable assignment A, requires to assign c to the variable V i if c is a constant from Dom(V i ); otherwise c is equal to ⊥ and no access to the variable V i should be done. V ar(A) denotes the set of variables of V that are updated by A. We denote Id V the identity variable assignment that let unchanged all the variables of V . We denote by G(V ) the set of variable constraints defined as boolean combinations of simple constraints of the form

V i ⊲⊳ c with V i ∈ V , c ∈ Dom(V i ) and ⊲⊳∈ {<, ≤, =, ≥, >}. Given G ∈ G(V ) and a valuation v ∈ Dom(V ), we write v |= G when G(v) ≡ true. We denote P roj Vi (G) ∈ G(V \ {V i }) the con- straint such that (v 1 , • • • , v i-1 , v i+1 , • • • , v n ) |= P roj Vi (G) if and only if there exists v i ∈ Dom(V i ) such that (v 1 , • • • , v n ) |= G.
We extend in a natural way this projection to a subset V ′ of V and we denote it

P roj V ′ (G). Let X = {X 1 , • • • , X k } be a set of clocks. A clock valuation for X is a function from X to R + . Given X, the set of valuations is denoted R X + . Given a valuation x = (x 1 , • • • , x k ) ∈ R X + and t ∈ R + , x + t stands for (x + t)(X i ) = x i + t for any X i ∈ X. Let X ′ ⊆ X, x[X ′ ← 0] is the valuation defined by x[X ′ ← 0](X i ) = 0 for any X i ∈ X ′ and x[X ′ ← 0](X i ) = x i otherwise.
We denote by G(X) the set of clock constraints defined as boolean combinations of simple constraints of the form

X i ⊲⊳ c with X i ∈ X, c ∈ N and ⊲⊳∈ {<, ≤, =, ≥, >}. Given G X ∈ G(X) and x ∈ R X + , we write x |= G X when G(x) ≡ true.
VDTA and Semantics. Variable Driven Timed Automata (VDTA) is a variant of timed automata. The main difference with timed automata with variable is that actions are assignments of variables and constraints are defined over clocks and variables. The particularity of this model is that all transitions are urgent, meaning that they must be fired as soon as guards are satisfied.

Definition 1 (VDTA). A Variable Driven Timed Automaton (VDTA) is a tuple

A = L, X, I, O, l 0 , G 0 , ∆ A , where -L is a finite set of locations, l 0 ∈ L is the initial location, -X = {X 1 , X 2 , . . . , X k } is a finite set of clocks, -I = {I 1 , I 2 , . . . , I n } is a finite set of input variables, -O = {O 1 , O 2 , . . . , O m } is a finite set of output variables, -G 0 ∈ G(I, O) is the initial condition, a constraint with variables in I ∪ O. -∆ A ⊆ L × G(I, O, X) × A(O) × 2 X × L is the transition relation: l, G, A, X , l ′ ∈ ∆ A is a transition such that
• l and l ′ are the source and the target locations of the transition.

• G is a is a boolean combination of elements of G(I), G(O) and G(X). • An output assignment A ∈ A(O).

• X ∈ 2 X is a set of clocks that are reset when triggering the transition.

In the sequel, we write l

G,A,X ----→ l ′ when l, G, A, X , l ′ ∈ ∆ A and G A (l) = {G ∈ G(I, O, X) | ∃l ′ ∈ L, l G,A,X ----→ l ′ }.
The environment of a system modeled by a VDTA observes all the variables. The set I of input variables represents the variables to which the environment (e.g. the tester) can assign a value whereas the set O of output variables represents the variables for which the values are updated by the system while triggering a transition. Furthermore, we assume that all the transitions are urgent, meaning that as soon as the guard of a transition is satisfied, the transition is triggered. We also assume that the assignment of new values to the input variables is performed instantaneously. Finally, note that in each location the environment can choose any value for the input variables.

Remark 1. One can also add invariants w.r.t. the input variables in locations in order to model some environment constraints.

Example 1. We illustrate the previous definition with the following example describing the behavior of a Bi-manual command system [START_REF] Houda | A new modality for almost everywhere properties in timed automata[END_REF]. Consider the control program of a device designed to start some machine when two buttons (L and R for left and right buttons) are pushed within 1 time unit. If only one button is pushed (then L or R is true) and a delay of 1 time unit is performed (time-out has occurred), then the whole process must be started again. After the machine has started (s=1), it stops as soon as one button is released, and it can start again only after both buttons have been released (L and R are both false).

l0 l1 l2 l3 L = 0 ∧ R = 0 L = 1 ∨ R = 1; t := 0 L = 0 ∧ R = 0 ∧t < 1 L = 1 ∧ R = 1 ∧ t ≤ 1; s := 1 L = 0 ∨ R = 0; s := 0 t ≥ 1
Fig. 1. From the initial location l 0 , if L and R are both set to 1, the system must go instantaneously to l 2 after starting the machine (s := 1). This is done by taking in urgency and successively two transitions. 2. If the system reaches l 1 with L = 0 and R = 1, then in order to reach l 2 or l 0 , it must leave l 1 strictly before 1 time unit, otherwise, the system moves instantaneously to the location l 3 . This is possible since transitions are urgent.

These two use cases illustrate the utility of this new formalism : such behaviours are not natural to describe in usual event based models, even with Uppaal ( [START_REF] Mikucionis | T-uppaal: Online model-based testing of real-time systems[END_REF]).

Our attempts to model this system with UPPAAL 4.0 failed as invariants are bounded constraints and timing constraints are not allowed on urgent transitions which does not ease to model the urgency that can happen in l 1 .

Definition 2 (deterministic VDTA).

A VDTA A = L, X, I, O, l 0 , G 0 , ∆ A is deterministic if the initial condition G 0 is satisfied by at most one valuation (i 0 , o 0 ), and

-for all l ∈ L, for all G, G ′ ∈ G A (l) s.t. G = G ′ , G ∩ G ′ is unsatisfiable.
In the reminder of this paper, we shall only consider deterministic VDTAs.

The semantics of a VDTA is presented in terms of timed transition systems (TTS).

Definition 3. The semantics of a VDTA

A = L, X, I, O, l 0 , G 0 , ∆ A , is a TTS defined by the tuple [[A]] = S, s 0 , Σ, → where -S = L × Dom(I) × Dom(O) × R X
+ is the (infinite) set of states, -s 0 = (l 0 , i 0 , o 0 , x 0 ) is the initial configuration where x 0 is the clock valuation that maps every clock to 0 and

(i 0 , o 0 ) is the only solution of G 0 , -Σ = A(I) ∪ A(O) ∪ R X
+ is the (infinite) set of actions, and -→ is the transition relation with the following three types of transitions:

T1 (l, i, o, x) A -→ (l ′ , i, o[A], x[X ← 0]) if there exists (l, G, A, X , l ′ ) ∈ ∆ A such that (i, o, x) |= G, T2 (l, i, o, x) A -→ (l, i[A], o, x) with A ∈ A(I) if ∀(l, G, A ′ , X , l ′ ) ∈ ∆ A , (i, o, x) |= G. T3 (l, i, o, x) δ -→ (l, i, o, x+δ) with δ > 0 if for every δ ′ < δ, for every symbolic transition (l, G, X ′ , l ′ ) ∈ ∆ A , we have (i, o, x + δ ′ ) |= G.
The semantics considers two kinds of transitions: discrete transitions (T1 and T2) and delay transitions (T3). They concern the update of either input or output variables. There are two sorts of discrete transitions: urgent transitions (T1) and input-update transitions (T2). Delay transitions (T3) represent the elapse of time. Urgent transitions (T1) are fired as soon as constraints are satisfied by the current configuration of the system. Input-update transitions (T2) only allow to change the values of input variables; they are fired when the environment chooses to update them and when the guards are not satisfied. Input-update transitions and delay transitions are fired only when no urgent transition can be fired. Compared with the model in [START_REF] Barbuti | Timed automata with urgent transitions[END_REF], in our model, events (input-update) from the environment are not explicitly specified. This make VDTA specification shorter and clearer.

Notations. When necessary, we denote -→ Ti for transitions of type

T i , i = 1...3. Given a state s = (l, i, o, x) ∈ S, Out(s) = o gives access to the output value of [[A]] in state s. We write s a -→ when there exists s ′ such that s a -→ s ′ . For a sequence σ = a 1 .a 2 . . . . .a k-1 .a k of Σ * , s σ -→ s ′ if there exists {s i } i=1..k-1 such that s a1 -→ s 1 a2 -→ . . . . . a k-1 ---→ s k-1 a k -→ s ′ and we write s σ -→ if there exists s ′ such that s σ -→ s ′ .

Given a state s of [[A]], a run is a sequence of alternating states and actions

s = s 0 a 1 s 1 • • • a n s n in S.(Σ.S) * such that ∀i ≥ 0, s i ai+1 -→ s i+1 .

Run(s, [[A]]) denotes the set of runs that can be executed in [[A]] starting in state s and we let Run([[A

]]) = Run(s 0 , [[A]]). The trace ρ(r) of a run r = s 0 a 1 s 1 • • • a n s n is given by the sequence ρ(r) = P roj S (r) = a 1 • • • a n ∈ Σ * . T

r([[A]]) = {ρ(r)|r ∈ Run([[A]])} is the set of traces generated by A. Example 2. Back to Example 1, some possible runs derived from

[[A]] are -(l 0 , (0, 0, 0, 0)) L:=1 ---→ (l 0 , (1, 0, 0, 0)) IdO --→ (l 1 , (1, 0, 0, 0)) 0.3 --→ (l 1 , (1, 0, 0, 0.3)) -(l 0 , (0, 0, 0, 0)) L:=1,R:=1 -------→ (l 0 , (1, 1, 0, 0)) IdO --→ (l 1 , (1, 1, 0, 0)) s:=1 ---→ (l 2 , (1, 1, 1, 0))
We now define the classic P red operator of a set of states

Q: P red(Q) = {s ∈ S | ∃s ′ ∈ Q, a ∈ Σ, s a -→ s ′ }. Note that P red : 2 S → 2 S
is monotonic. We also define P re 0 (Q) = Q and for i ≥ 0, P red i+1 (Q) = P red(P red i (Q)). We consider the CoReach( ) operation allowing to compute the states from which a state in Q can be reached:

CoReach(Q) = µX.Q ∪ pre(X). Following [?], we have that CoReach(Q) = i≥0 P red i (Q).
Stable VDTA and Observed runs. In a VDTA, all transitions are urgent and several transitions can be triggered in null delay. We then consider stable states that are states from which no urgent transition can be fired. Formally a state s of

[[A]] is stable whenever for every A ∈ A(O), s

A -→. A stable run is a run that ends in a stable state. To leave this state, either the input values need to be updated or we need to let the time elapse. A VDTA A is stable if there is no loop of unstable states in

[[A]].
In the context of VDTA, a test activity consists in executing on the implementation a sequence in (A(I) ∪ A(O) ∪ R + ) * , and in checking whether the output values of the implementation coincide with those in the last state of the specification after the sequence being executed. It is worth noticing that on the implementation (seen as a VDTA) many variations on outputs can occur in zero time unit and these output changes can not be observed. Thus in our testing framework, we will assume that outputs are observed only when the implementation is in stable states. Given a stable state s, we will thus be interested in the next stable state (recall that VDTA are deterministic) the implementation can reach from s after the execution of an input-update A i ∈ A(I) followed by a sequence in (A(O) ∪ R + ) * . This leads us to introduce the notion of observed runs. Given two stable states s, s ′ ∈ S, we write:

-s Ai =⇒ s ′ if there exists a sequence σ = σ 1 • • • σ n ∈ (A(O) ∪ {0}) * such that s Ai -→ s" σ -→ s ′ , i.e. s ′
is the unique stable state that can be reached from s after updating the input variables with A i , only triggering urgent transitions in zero time unit.

-

s δ =⇒ s ′ if there exists a sequence σ = σ 1 • • • σ n ∈ ({Id O } ∪ R + ) * such that s σ -→ s ′ and δ = δi∈P rojO(σ) δ i , i.e. s ′
is the stable state that can be reached by letting the time elapse during δ units of time with no output update.

Let us denote by Obs(A) = (S, s 0 , A(I) ∪ R + , =⇒) the TTS inductively generated from [[A]] starting from s 0 (that is supposed to be stable) using the two previous rules. The set of observed runs of A is then given by the set ObsRun(A) = Run(Obs(A)), whereas the set of observed traces is given by ObsT r(A) = T r(Obs(A)). Finally, we define s Safter α = {s ′ | s α =⇒ s ′ }3 and A Safter α = s 0 Safter α.

Time-Abstract Graph and reachability analysis

The reachability analysis amounts to checking whether, from the initial state, we can reach a target state (or location). We provide a symbolic backward reachability analysis for VDTA. The algorithm iteratively computes (urgent, input-update, time-elapsing) predecessors of states using a new representation of VDTA called time abstract graph. A Time abstract graph decomposes the clock constraints into atomic clock constraints simplifying the computation of time-elapsing predecessors as transitions are urgent.

Time-Abstract graph construction

From a VDTA, one can build a time abstract graph whose transitions are of two sorts: urgent transitions (U1) and time-elapsing urgent transitions (U2). Time-elapsing urgent transitions correspond to atomic timing context changing and urgent transitions allow to change the contents of output variables. Timeelapsing transitions are labelled with the special action Id O that let unchange the value of the output variables. The construction of time-abstract graphs is based on the standard notion of region [START_REF] Alur | A theory of timed automata[END_REF] introduced for the reachability analysis of timed automata. We assume the reader is familiar with the region construction of [START_REF] Alur | A theory of timed automata[END_REF] for timed automata. For the sake of completeness, we recall here the main definitions and properties we will use further.

Let X = {X 1 , X 2 , . . .} be a finite set of clocks. Recall that the value of each clock X i ∈ X is denoted by x i . For x i ∈ R + , ⌊x i ⌋ and x i denote the integer part and the fractional part of x i , respectively.

Definition 4 (Clock Region). We consider a constant K ∈ N. A clock region is an equivalence class of the relation

≃ K over clock valuations. For two valuations x, x ′ ∈ R X + , we have x ≃ K x ′ iff the following conditions hold: 1. ∀X i ∈ X, x i ≤ K ⇔ x ′ i ≤ K, 2. ∀X i ∈ X, x i ≤ K ⇒ (⌊x i ⌋ = ⌊x ′ i ⌋ and x i = 0 ⇔ x ′ i = 0), 3. ∀X i , X j ∈ X, x i ≤ K and x j ≤ K ⇒ ( x i ≤ x j ) ⇔ x ′ i ≤ x ′ j .
We let Reg K (X) be the set of clock regions for a constant K. We recall that the size of Reg K (X) is in 2 O(m. log Km) where m = |X| (see [START_REF] Alur | A theory of timed automata[END_REF]). When the constant K is clear from the context, we denote by [x] the clock region that contains x, and by [[r]] the set of clock valuations whose clock region is equal to r. We say that a region r ′ is a successor of r and we write r

′ ∈ Succ(r) if there are v ∈ [[r]], v ′ ∈ [[r ′ ]] and δ ∈ R + such that v ′ = v + δ.
A region r ′ is the immediate successor of r, and we write r ′ = I Succ(r), if r ′ ∈ Succ(r) \ {r} and there is no region r" ∈ Succ(r) \ {r, r ′ } such that r ′ ∈ Succ(r"). Note that a region can be represented by a diagonal clock constraint that involves comparisons of two clocks. If r is a region, then G r denotes the unique clock constraint such that r ⊆ [[G r ]]. States of time-abstract graphs are pairs of a location and a region.

Given a state (l, r), Gds

A (ℓ, r) = {G | ℓ G,A,X ----→ ℓ ′ and [[r]] ⊆ [[P roj I∪O (G)]]
} is the set of constraints whose timing part is satisfied by the region r. So, in (l, r), we only need to change values of input variables in order to satisfy a constraint of Gds A (ℓ, r).

Definition 5 (Time-abstract graph). The time-abstract graph (TAG) of a VDTA

A = L, X, I, O, l 0 , G 0 , ∆ A for a constant K is the VDTA RG K (A) = Reg K (A), X, I, O, (ℓ 0 , r 0 ), G 0 , ∆ RG where -Reg K (A) = L × Reg K (X) is the set of states of RG K (A) -The initial state is (ℓ 0 , r 0 ) where r 0 = { 0} -The transition relation, ∆ RG ⊆ Reg K (A) × G(I, O, X) × A(O) × Reg K (A)
is such that:

U1 (ℓ, r) P rojX (G)∧Gr,A,X ------------→ (ℓ ′ , r ′ ) iff ∃ℓ G,A,X ----→ ℓ ′ in A s.t. [[r]] ⊆ [[P roj I∪O (G)]] and r ′ = r[X ← 0] U2 (ℓ, r) G ′ ∧G r ′ ,IdO,IdX -----------→ (ℓ, r ′ ) with G ′ = ¬(∨ G∈GdsA(ℓ,r) P roj X (G)) and r ′ = I Succ(r)
In a TAG, the timing information is also encoded in the states. We move from one state to its time-successor whenever the clocks contrainst (corresponding to the region of the time-successor) is satisfied and when the input and output constraints of the outgoing urgent transitions are not satisfied. The values of input variables can change when no urgent transition can be fired.

Proposition 1. For every VDTA A, for every natural K larger than the largest integer constant in the clock constraints of A, ObsT r(RG K (A)) = ObsT r(A).

We observe that for every natural K larger than the largest integer constant in the clock constraints of A, for every σ ∈ ObsT r(A), Out(A Saf ter σ) = Out(RG K (A) Saf ter σ). In the sequel, we shall only consider such K. 

Example 3. Figure 2 represents the time-abstract graph of the VDTA in Example 1. In the figure, we have sometimes omitted to represent timing constraints on time-elapsing transitions for clarity reasons

l0, t = 0 l0, 0 < t < 1 l0, t = 1 l0, t > 1 l1, t = 0 l1, 0 < t < 1 l1, t = 1 l2, t = 0 l2, 0 < t < 1 l2, t = 1 l2, t > 1 l3, t = 0 l3, 0 < t < 1 l3, t = 1 l3, t > 1 L ∨ R ∧t = 0 t := 0 L ∧ R ∧t = 0 s := 1 L ∨ R ∧ t = 0 s := 0 L ∧ R ∧t = 0 L ∧ R ∧t = 0 L ∨ R ∧0 < t < 1 t := 0 L ∧ R ∧0 < t < 1 L ∧ R ∧0 < t < 1 s := 1 L ∨ R ∧0 < t < 1 s := 0 L ∨ R ∧t = 1 t := 0 L ∨ R ∧t > 1 t := 0 L ∧ R ∧t = 1 L ∧ R ∧0 < t < 1 L ∨ R ∧t = 1 s := 0 L ∧ R ∧ t > 1 L ∨ R ∧t > 1 s := 0 t = 1 L ∧ R ∧0 < t < 1 L ∧ R ∧t = 1 L ∧ R L xor R L xor R L ∨ R L ∧ R L ∧ R L ∧ R L ∨ R L ∨ R

Backward Reachability Analysis

The ] is infinite. We consider a symbolic algorithm that works on TAG representations instead of VDTA. We define abstract predecessors for configurations of TAG. A configuration of a TAG is a couple of the form (q, G) where q is a state of RG K (A) and G is a constraint of G(I, O). We consider urgent abstract predecessors (aP red u ), time-elapsing abstract predecessor (aP red δ ) and input-update abstract predecessors (aP red e ) defined over as follows:

aP red u (q, G) = {(q ′ , P roj X (G ′ ) ∧ P roj V ar(a) (G) | q ′ G ′ ,a,Y ----→ U1 q ∧ P roj I∪X (G ′ )[a] ⊆ P roj I (G)} aP red δ (q, G) = {(q ′ , P roj X (G ′ ) ∧ G | q ′ G ′ ,IdO,IdX --------→ U2 q} aP red e (q, G) = (q, (¬ G ′ ∈GdsA(q) P roj X (G ′ )) ∧ P roj I (G))
For a set of configuration Q and θ ∈ {u, i, δ}, we define the monotonic operators aP red θ (Q, G) = q∈Q aP red θ (q, G). We define the abstract predecessor aP red(q, G) = aP red u (q, G) ∪ aP red δ (q, G) ∪ aP red e (q, G). For a set of configurations Q, aP red(Q) = q∈Q aP red(q). Finally,

CoReach(Q) = µX.Q ∪ aP re(X)
We can show the following proposition that allows to use CoReach a instead of Coreach during the reachability analysis.

Proposition 2. Given q = (l, [x]) and G ∈ G(I, O), CoReach a (q, G) = µX.(q, G)∪ aP red(X)) is effectively computable.
CoReach a is the least fixpoint of the function λX.X ∪ aP red(X) and aP red : 

2 Q → 2 Q is a monotonic function where Q = L × Reg K (X) × C M (I, O
(l, i, o, x) ∈ Coreach(l ′ , G ′ ∧ [x ′ ]) iff ((l, [x]), i, o) ∈ Coreach a ((l ′ , [x ′ ]), G ′ )
4 Automatic test generation

Principle

Conformance testing consists in checking that an implementation exhibits an observable behavior consistent with its specification. We consider conformance testing of critical timed systems modelled with VDTA. We define a conformance relation to ensure that an implementation under test (Imp) conforms to its specification. The main idea of this relation is that all behaviours of the implementation have to be allowed by the specification. Especially: 1. Imp is not allowed to update a variable in a time (too late or too early) when it is not allowed by the specification. 2. Imp is not allowed to omit to change a memory-variable at the time it is required by the specification.

The conformance relation. We assume that Imp and A are both modeled by compatible VDTA (i.e. they share the same input and output variables). Moreover, we assume that the tester can observe all output variables of the implementation. The tester can only update the input variables of the implementation or let the time elapse. As previously mentioned, the tester can observe the change of the output variables of the implementation only when this one has reached a stable state. As in the ioco theory [START_REF] Tretmans | Test generation with inputs, outputs, and repetitive quiescence[END_REF], some states may stay infinitely blocked, but at the moment we do not consider this point in our conformance relation.

Roughly, an implementation conforms with a specification whenever it produces the same outputs as the ones of the specification at the same instants. In this relation, we intend to check if the values of output variables of the implementation are correct after any sequence of inputs. These inputs may be of two kinds : assignment of input variables or time elapsing. Since our model permits to fire several transitions in zero time, we decided that the implementation has to reach a stable state before checking correctness of its outputs. For example, if we consider an input followed by several assignments of the same output variable in zero time (e.g. L := 1 followed s := 3 and s := 2), our conformance relation only considers the last value (s := 2). Note that it would have been possible to define another relation, similar to tioco [START_REF] Krichen | Black-box conformance testing for realtime systems[END_REF], permitting to consider all kinds of assignments for conformance. The tester who knows the specification plays in the following way:

either the tester updates the input variables and then observes how the implementation reacts once the implementation is stabilized. In case of non conformance (i.e. if the outputs of the implementation differ from the one of the specification), the tester returns a fail verdict; -or the tester chooses to let the time elapse for a while; doing so, it observes possible output changes from the implementation. In case such changes are not allowed by the specification at the time a new output observation is performed, the tester returns a fail verdict since the implementation does not conform to the specification; -or the tester can choose to stop the game and in that case, it returns a pass verdict meaning that, up to this point, no fault occurred. The tester observes behaviours of the implementation through the values of the output variables in stable states. If their content changes, the tester checks whether the new values are expected by the specification.

Test purpose

The test selection algorithm we propose is based on the notion of Test Purpose (TP). In practice, a test purpose allows to select some behaviors of the specification that we want to test. A test purpose is modeled by a VDTA as follows: Definition 7. A test purpose TP of a specification A = L, X, I, O, l 0 , G 0 , ∆ A is a deterministic VDTA S, X ∪ X ′ , I, O, s 0 , G 0 , ∆ T P such that -S is a finite set of locations with a special trap location Accept T P ∈ S, s 0 is the initial location; -I, O and X are respectively the input, output and clock variables of the specification; TP is thus allowed to observe the configurations of A; -G 0 ∈ G(I, O) is the initial condition (the same as the one of A); -X ′ is the set of private clocks of T P , with

X ′ ∩ X = ∅ -∆ T P ⊆ S × G(I, O, X, X ′ ) × Id O × 2 X ′ × S is the transition relation 4 .
Note that T P is non intrusive with respect to the specification. Indeed, according to Definition 7, it does not reset clocks of the specification S and does not assign new values to the output variables. Moreover, we remark that all the test purposes are complete, meaning that whatever is the observation of variables or clocks either a transition is taken or the current location does not change.

Example 4. Some test purposes for the VDTA A in Fig. 1 are presented below. 4(c) has its own clock variable x; it also specifies which behaviour of the implementation should be tested, but also the behaviour of the implementation that should not be tested (from the location Reject, the location Accept, cannot be reached anymore).

s0 L == 1 ∧ R == 1 s1 s == 1 Accept (a) s0 L == 1 ∧ R == 1 ∧ S == 1 Accept (b) s0 x ≥ 2 s == 1 ∧ x < 2 Reject Accept (c)
-The test purpose in Fig. 4(a) requires that s will be eventually set to 1 after the first time at which L and R are equal to 1. Between the first time in which L and R are simultaneously equal to 1 and the time in which s is set to 1, the test purpose allows, in s 1 , the changing of values L, R and s. The test purpose in Fig. 4(b) requires to have s equal to 1 in the same time that L and R are equal to 1. -With the test purpose described in Fig. 4(c), we are only interested in testing behaviours of the implementation for which s is set to 1 at most 2 time units after the beginning of the session. ⋄

Building the symbolic test case

Given a specification A and a test purpose T P , we now describe how to derive test cases that target the behaviour of the test purpose while checking for the conformance of the implementation with respect to the specification. It consists in three steps:

Step 1. We first perform the synchronous product between the specification A and the test purpose in order to characterize in A the sequences that are accepted by the test purpose T P . Definition 8 (Synchronous product). Given A = L, X, I, O, l 0 , G 0 , ∆ A a specification and a test purpose T P = S, X ′ ∪ X, I, O, s 0 , G 0 , ∆ T P , the synchronous product of A and T P is the VDTA A×T P = L×S, X∪X ′ , I, O, (l 0 , s 0 ), G 0 , ∆ A×T P where ∆ A×T P is defined by the following rules (R

1 , R 2 , R 3 ): l G,A,X ----→ l ′ ∈ L s ∈ S G s = G ′ ∈GT P (s) ¬G ′ (l, s) G∧Gs,A,X -------→ (l ′ , s) (R 1 ) l ∈ L s G,IdO,X ′ ------→ s ′ G l = G ′ ∈GA(l) ¬G ′ (l, s) G l ∧G ′ ,IdO,X ′ ---------→ (l, s ′ ) (R 2 ) l G,A,X ----→ l ′ s G ′ ,IdO,X ′ -------→ s ′ (l, s) G∧G ′ ,A,X ∪X ′ ---------→ (l ′ , s ′ ) (R 3 )
Evolutions (transition firing) in the test purpose and the specification depend on clock values and variable values. An urgent transition can be fired in the specification (and not in the test purpose) when the clocks values and the variables values satisfy no constraint on transitions from the current location in the test purpose; this situation is described by the rule R 1 . Conversely, an urgent transition can be fired in the test purpose (and not in the specification) when no urgent transition is firable in the specification; this situation is described by the rule R 2 . They both trigger an urgent transition whenever the values of the variables satisfy the guards of the specification and test purpose transitions. Recall that the test purpose and the specification are deterministic; in consequence when a transition in the specification is firable, there is at most one firable transition in the test purpose and reciprocally. This situation is described by the rule R 3 . Given a specification A and a test purpose T P , we denote A T P = A × T P . Note that A is the master of this composition in the sense that it is the only one able to change the values of the input and output variables. Due to rule R 1 and R 3 , there is no imposed restriction with respect to the behaviour of A. In other words,the definition of A T P = A × T P does restrict the constraints that allow, in A, to execute some output updates. Since input-update and delay can only be performed when the constraints that allow an output update are unsatisfiable, we can show that T r(A) = T r(A T P ) and ObsT r(A) = ObsT r(A T P ). In the sequel, we shall denote Accept the set of states of A T P of the form (l, Accept T P ).

Remark 2. A T P has at most |L|×|S| locations and (l,s)∈L×S ((|G A (l)|×|G T P (s)|)+ 2) transitions.

Step 2: Test Selection. From A T P , we build the corresponding region graph to abstract away the time: RG(A T P ) = Q, X, I, O, q 0 , G 0 , ∆ RG . We denote by P ass the set of locations of the form (Accept, r) ∈ Q. From the test generation point of view, our aim is to generate test cases that allow to reach the Accept location. We thus consider the set of constrained configurations Q P ass = {(q, true) | q ∈ P ass} and we compute the set of coreachable corresponding constraints. It is given by CoReach a (Q P ass ) = ∪ P ∈QP ass CoReach a (P ). Intuitively, during the computation of CoReach a (Q P ass ), if we encounter a symbolic state (q, G) of RG K (A T P ) with G as constraint on the input/output variables, then there will exist a path giving a way to move from q to P ass by letting the time elapse or by changing inputs conveniently in encountered locations along the path. Note that when computing CoReach a (q, G) for a given symbolic state (q, G) of RG K (A T P ), we can tag visited locations q of RG K (A T P ) with adequate constraints on the input/output variables. We call a symbolic test case, a path from the initial location of RG K (A T P ) to a P ass location.

Test case execution

We assume that we have selected a symbolic test case that is a path in RG K (A T P ) that ends in a location of the form (Accept, r) of P ass for some region r. Let T C = p 0 .p 1 . . . p n be such a symbolic test case where in each position p k = ((l k , r k ), I k ) with k = 1..n, l k denotes a location of the specification, with l n = Accept T P , r k denotes a region and I k denotes a constraints (invariant) over input/output variables computed w.r.t. CoReach a (Q pass ). We provide an on-the-fly testing algorithm for T C. The algorithm works as follows:

Let j be the position in the symbolic test case that contains the current stable state st j = ((l j , r j ), i j , o j , x j ) and Otr j = σ 1 • • • σ j ∈ (A(I) ∪ R + ) * be the sequence played on the implementation so far.

Begin loop (a) If (l j , r j ) ∈ P ass and Out(Imp Saf ter Otr j ) = o j then exit loop and return the verdict "pass". (b) Choose either to delay, or to perform an input-update

The decision is to perform an input-update. i. Select an assignment A j such that (i j [A J ], o j , x j ) satisfies the constraint on the transition, in T C, starting from ((l j , s j ), r j ) and compute st j+1 = st j Safter A j ii. update the inputs of the implementation according to A j iii. If Out(Imp Saf ter Otr j .A J ) = o j+1 exit loop and return the verdict "fail"; else st j becomes st j+1 . The decision is to delay i. Pickup δ ∈ R + such that (i j , o j , x j + δ) satisfies the constraint on the transition, in T C, starting from (l j , r j ).

ii. If an output update occurs on Imp within δ ′ ≤ δ time units then compute st j+1 = st j Safter δ ′ iii. If Out(Imp Saf ter Otr j .δ ′ ) = o j+1 exit loop and return the verdict "fail"; else st j becomes st j+1 . End loop

Conclusion

In this work, we have been interested in the automatic test generation for dataflow systems. In order to model such systems, we have presented the Variable Driven Timed Automata model (VDTA) : a variant of timed automata with continuous variables partitioned into two sets : input variables and output ones. Input variables permit to control the system and output variables are considered as the observable outputs. Transitions are urgent and it is possible to fire several transitions in zero time in a synchronous way. We have also proposed a new conformance relation adapted to our model, and a test generation method with a selection based on a test purposes.

An interesting extension of this work would be to handle blocking states in the conformance relation. Besides, we also intend to consider assignments of variables with operations depending on other variable values (e.g. x := y + 3). Since reachability and coreachability problems become undecidable, we propose to use abstract interpretation and approximation techniques.

Appendix: Proof of Proposition 1

Proposition 1 is a corollary of Lemma 7 and Lemma 6 Proposition 1 Let A be a VDTA, for every K greater or equal to the maximal constants clocks in A are compared to, we have that:

ObsT r(RG

K (A)) = ObsT r(A) Property 1 (Time Additivity in Obs(A)). Let δ ′ , δ" ∈ R + . It holds that: (l, i, o, x) δ ′ =⇒ (l ′ , i ′ , o ′ , x ′ ) and (l ′ , i ′ , o ′ , x ′ ) δ ′′ =⇒ (l ′′ , i ′′ , o ′′ , x ′′ ) if and only if (l, i, o, x) δ ′ +δ ′′ =⇒ (l ′′ , i ′′ , o ′′ , x ′′ ) Lemma 1. (l, i, o, x) is stable if and only if ((l, [x]), i, o, x) is stable.
Proof. (if) Part: Assume that (l, i, o, x) is stable, then by definition, for every [START_REF] Barbuti | Timed automata with urgent transitions[END_REF] x |= P roj I∪O (G). Consider now the location (l, [x]), urgent transitions starting from this location are of the form:

A ∈ A(O), (l, i, o, x) A -→, or equivalently for all G ∈ G A (l), for every tr G = (l G,A,X ----→ l ′ ) either (1) (i, o) |= P roj X (G) or
-t = ((l, [x]) G∧G [x] ,A,X --------→ U1 (l ′ , [x ′ ])), with [x ′ ] = [x][X ← 0]
. For this transition, tr G can not be triggered in A because of (1) or [START_REF] Barbuti | Timed automata with urgent transitions[END_REF]. If (i, o) |= P roj X (G), then obviously t can not be triggered. If x |= P roj I∪O (G), then as G [x] = P roj I∪O (G), it is not possible to trigger t.

-t = ((l, [x]) G ′ ∧G [x ′ ] ,IdO,∅ ----------→ U2 (l ′ , [x ′ ])), with [x ′ ] = I Succ([x]) and G ′ = G [x ′ ] ∧ (¬ G∈GdsA(l,[x]) P roj X (G)). As [[G [x ′ ] ∧ G [x] ]] = ∅, we get that x |= G [x ′ ]
and t can not be triggered.

(only if) Part: Assume that ((l, [x]), i, o, x) is stable, then for every a ∈ A(O), it holds that ((l, [x]), i, o, x) A -→; or equivalently, for every tr G = ((l, [x]) G,A,X ----→ (l ′ , [x ′ ])), either (i, o) |= P roj X (G) or x |= P roj I∪O (G).
We show that no urgent transition (of type T1) can be fired from (l, i, o, x). By contradiction, if a transition of type T1 can be fired from (l, i, o, x), then there would exist a transition

tr = l G ′ ,A ′ ,X ′ ------→ l ′ such that (i, o) |= P roj X (G ′ ) and x |= P roj I∪O (G ′ ).
Using a dual argument to the proof of the if part, we get that there is a transition of type T1 from ((l, [x]), i, o, x), meaning that the latter state is not stable. This is a contradiction. o,x) is not stable and, according to Lemma 1, ((l, [x]), i, o, x) is not stable.

Lemma 2. Given

A ∈ A(O) \ {Id O }, (l, i, o, x) A -→ (l ′ , i ′ , o ′ , x ′ ) iff ((l, [x]), i, o, x) A -→ ((l ′ , [x ′ ]), i ′ , o ′ , x ′ ) Proof. First note that if (l, i, o, x) A -→ (l ′ , i ′ , o ′ , x ′ ) then (l, i,

(if) Part: Consider

A ∈ A(O) \ {Id O }. Assume that (l, i, o, x) A -→ (l ′ , i ′ , o ′ , x ′ ), then there exists tr = (l G,A,X ----→ l ′ ) such that (i, o) |= P roj X (G), x |= P roj I∪O (G), i ′ = i, o ′ = o[A] and x ′ = x[X ← 0]. By definition, there exists in RG K (A) a transition (l, [x]) G ′ ,A,X -----→ (l ′ , [x][X ← 0]) with G ′ = P roj X G ∧ G [x] . As G [x] is the unique atomic clock constraint that contains [x], we have that x |= G [x] and then the transition ((l, [x]), i, o, x) A -→ ((l ′ , [x ′ ]), i ′ , o ′ , x ′ ) exists. (only if) Part: Conversely, assume that ((l, [x]), i, o, x) A -→ ((l ′ , [x ′ ]), i ′ , o ′ , x ′ ).

Then there exists in RG

K (A) a transition tr = (((l, [x]), i, o, x) G,A,X ----→ ((l ′ , [x ′ ]), i ′ , o ′ , x ′ )) such that (i, o) |= P roj X (G), x |= P roj I∪O (G), i ′ = i, o ′ = o[A] and [x ′ ] = [x][X ← 0]. But tr is construted using some transition l G ′ ,A,X -----→ l ′ such that P roj X (G) = P roj X (G ′ ), P roj I∪O (G) = G [x] and [[P roj I∪O (G)]] ⊆ [[P roj I∪O (G ′ )]].
As (i, o) |= P roj X (G), x |= P roj I∪O (G) we have that x |= P roj I∪O (G ′ ) and then the transition (l, i, o, x)

A -→ (l ′ , i ′ , o ′ , x ′ ) exists.
Remark 3. For every state q of RG K (A), it holds that G∈G RG K (A) (q) P roj X (G) is a tautology. 

Lemma 3. Let δ ∈ R + . Then, ((l, [x]), i, o, x) δ -→ ((l ′ , r), i, o, x ′ ) implies (l, i, o, x) δ -→ (l, i, o, x ′ ) Proof. Assume that ((l, [x]), i, o, x) δ -→ ((l, r), i, o, x ′
δ ′ -→ (l, i, o, x+δ ′ ) and (l, i, o, x+δ ′ ) A -→ (l ′ , i, o ′ , x"). Thus there exists tr = l G ′ ,A,X ′ -----→ l ′ such that (i, o) |= P roj X (G ′ ), x+δ ′ P roj I∪O (G ′ ), o ′ = o[A], and x" = x[X ′ ← 0]. Note that by definition, x + δ ′ ∈ [x].
Moreover, as tr is a transition of A, there exists a transition (l, [x])

P rojX (G ′ )∧G [x] ,A,X ′ --------------→ (l ′ , [x"]) in RG K (A). Clearly, (i, o) |= P roj X (G ′ ) and x + δ ′ |= G [x]
involving that there is a urgent transition of type T1 from ((l, [x]), i, o, x) when we delay for δ ′ . As urgent transition of type T1 are taken prior to delay transition of type T3, we get ((l, [x]), i, o, x) δ -→ and this is a contradiction with the hypothesis. 

Lemma 4. Let x and x

′ such that [x ′ ] = I Succ([x]) and let δ ∈ R + . (l, i, o, x) δ -→ (l, i, o, x ′ ) if and only if ((l, [x]), i, o, x) δ.IdO ---→ ((l ′ , [x ′ ]), i, o, x
G ′ ∧G [x ′ ] ,IdO,∅ ----------→ (l ′ , [x ′ ]) such that [[G [x ′ ] ]] ⊆ [[P roj I∪0 (G ′ )]] and for every G" ∈ Gds A (l, [x]), it holds that [[P roj I∪0 (G ′ )]] ∩ [[P roj I∪0 (G")]] = ∅. As x |= G [x ′ ] ,
((l, [x]), i, o, x + δ) IdO --→ ((l, [x ′ ]), i, o, x ′ ) with x ′ = x + δ. In conclusion we have shown that ((l, [x]), i, o, x) δ -→ ((l, [x]), i, o, x ′ ) IdO --→ ((l, [x ′ ]), i, o, x ′ ). (only if) part: if ((l, [x]), i, o, x) δ.IdO ---→ ((l ′ , [x ′ ]), i, o, x ′ ) then we have ((l, [x]), i, o, x) δ -→ ((l, [x]), i, o, x ′ ) IdO --→ ((l, [x ′ ]), i, o, x ′ ) with x ′ = x+δ. Using lemma 3, we get that (l, i, o, x) δ -→ (l, i, o, x ′ ). Corollary 1. Let δ ∈ R + . Then, (l, i, o, x) δ -→ (l ′ , i ′ , o ′ , x ′ ) if and only if it exists in [[RG K (A)]] a sequence of transitions ((l, [x]), i, o, x) δ1.IdO ----→ ((l ′ 1 , [x ′ 1 ]), i ′ 1 , o ′ 1 , x ′ 1 ) δ2.IdO ----→ . . . δn.IdO ----→ ((l ′ , [x ′ ]), i ′ , o ′ , x ′ )
with δ = n i=1 δ i . Proof. The proof relies on Lemma 4 Lemma 5. Let A ∈ A(I). Then, (l, i, o, x)

A -→ (l, i ′ , o, x) if and only if ((l, [x]), i, o, x) A -→ ((l ′ , [x]), i ′ , o, x) Proof. (if) Part: Assume that (l, i, o, x) A -→ (l ′ , i ′ , o, x) with i ′ = i[A] can be triggered in [[A]]
, then no transition of type T1 can be triggered from (l, i, o, x).

Thus, for every t G = (l G,A,X ----→ l ′ ), it holds that (i, o) |= P roj X (G) or x |= P roj I∪O (G). For contradiction, assume that ((l, [x]), i, o, x) A -→. In that case, there exists in RG K (A) an urgent transition tr = (l, [x])

G ′ ,A ′ ,X ′ ------→ (l", r) such that (i, o) |= P roj X G ′ , P roj I∪O (G ′ ) = G [x]
and x |= P roj I∪O (G ′ ). In turns, this implies the existence of a transition l G",A ′ ,X ′ ------→ l" with P roj X (G ′′ ) = P roj X G ′ and [[P roj I∪O (G ′ )]] ⊆ P roj I∪O (G"). It entails that there exists a transition (l, i, o, x) 

A ′ -→ (l", i, o[A ′ ], x[X ′ ← 0]) in [[A]]
(l, i, o, x) AI =⇒ (l ′ , i ′ , o ′ , x ′ ) if and only if ((l, [x]), i, o, x) AI =⇒ ((l ′ , [x ′ ]), i ′ , o ′ , x ′ ) Proof. (if) Part: Assume that (l, i, o, x) AI --→ (l ′ , i ′ , o ′ , x ′ ), then there exist a set {A k | k = 1..n} ⊆ A(O) ∪ {0} and a sequence of transitions in [[A]] such that (l, i, o, x) AI --→ (l 0 , i 0 , o 0 , x 0 ) A1 --→ . . . An --→ (l n , i n , o n , x n ) W.L.O.G, assume that every A k belongs ⊆ A(O); then there is a set of transitions {l k-1 G k ,A k ,X k ------→ l k | k = 1..n} such that: -i 0 = i[A I ], o 0 = o, x 0 = x and for every 1 ≤ k ≤ n, i k = i o -for every 0 ≤ k ≤ n -1, (i k , o k , x k ) |= G k -for every 1 ≤ k ≤ n, o k = o k-1 [A k ] and x k = x k-1 [X k ← 0] -(l n , i n , o n , x n ) = (l ′ , i ′ , o ′ , x ′ )
Applying Lemma 5 and Lemma 2 we get the existence of the sequence of transitions ((l,

[x]), i, o, x) AI --→ (l 0 , [x 0 ]), i 0 , o 0 , x 0 ) A1 --→ . . . An --→ (l n , [x n ]), i n , o n , x n ) where (l n , [x n ]), i n , o n , x n ) = (l ′ , [x ′ ]), i ′ , o ′ , x ′ ). Moreover, according to Lemma 1, both (l, [x]), i, o, x) and (l ′ , [x ′ ]), i ′ , o ′ , x ′ ) are stable states and finally, (l, [x]), i, o, x) AI =⇒ (l ′ , [x ′ ]), i ′ , o ′ , x ′ ). (only if) Part: Similar to the (if) Part. Lemma 7. It holds that (l, i, o, x) δ =⇒ (l ′ , i ′ , o ′ , x ′ ) if and only if ((l, [x]), i, o, x) δ =⇒ ((l ′ , [x ′ ]), i ′ , o ′ , x ′ ).
Proof. This is a direct consequence of Lemmas 4 and 2 using a construction similar to the one of the previous lemma.

Appendix: Proof of Proposition 3

We give a proof of Proposition 3 that establishes the link between CoReach and CoReach a . The proposition show that we can use CoReach a instead of CoReach during the reachability analysis. Proposition 3 Let G ′ ∈ G(I, O) be a constraints over input and outputs variables. It holds that

(l, i, o, x) ∈ CoReach(l ′ , G ′ ∧ [x ′ ]) iff ((l, [x]), i, o) ∈ CoReach a ((l ′ , [x ′ ]), G ′ )
Note that CoReach and CoReach a are least fixpoint of the monotonic operators P red and aP red. Then using Lemma 8, Lemma 9, Lemma 10 all presented below, we will show in Lemma 11 that aP red can be used instead of P red when computing predecessors of states. First of all let us make more precise the computation of predecessors of states of VDTA.

Predecessors

The semanctics [[A]] of a VDTA A is a Σ -LT S with three kind of transitions. Then, for each state s = (l, i, o, x) we consider three sorts of predecessors:

the urgent predecessor P red u is defined by

P red u (l ′ , i ′ , o ′ , x ′ ) = { (l, i, o, x) | ∃a ∈ A(O) s.t (l, i, o, x) A -→ T1 (l ′ , i ′ , o ′ , x ′ )}
the input-update predecessor P red e is defined by

P red e (l ′ , i ′ , o ′ , x ′ ) = { (l, i, o, x) | ∃a ∈ A(I)(l, i, o, x) A -→ T2 (l ′ , i ′ , o ′ , x ′ )} Note that by definition (l, i, o, x) ∈ P red e (l ′ , i ′ , o ′ , x ′ ) iff l = l ′ , o = o ′ ,∃a ∈ A(I) s.t i ′ = i[A]
and (l, i, o, x) → T1 -the time elapsing predecessor P red δ is defined by

P red δ (l ′ , i ′ , o ′ , x ′ ) = { (l, i, o, x) | ∃ δ ∈ R + s.t (l, i, o, x) δ -→ T3 (l ′ , i ′ , o ′ , x ′ )} Note that by definition (l, i, o, x) ∈ P red δ (l ′ , i ′ , o ′ , x ′ ) iff l = l ′ , i = i ′ , o = o ′ , and ∀0 ≤ δ ′ < δ, (l, i, o, x + δ ′ ) → T1 Finally we define P red(l, i, o, x) = P red u (l, i, o, x) ∪ P red e (l, i, o, x) ∪ P red δ (l, i, o, x)
For θ ∈ {u, i, δ}, and a set of state Q, we define P red θ (Q) = s∈Q P red θ (s). Note that P red θ : 2 S → 2 S is monotonic and then P red : 2 S → 2 S defined by P red(Q) = s∈Q P red(s) is also monotonic. For a constraint G ∈ G(I, O, X) and a location l, the configuration (l, G) denotes a set of states and it is defined by (l, G) = {(l, i, o, x) | (i, o, x) |= G}.

Relation between P red and aP red

Let G ′ ∈ G(I, O) be a constraints over input and outputs variables. We provide proofs to following lemmas. The proofs use results in Lemma 1, Lemma 2, and Lemma 5.

Lemma 8. (l, i, o, x) ∈ P red u (l ′ , G ′ ∧ [x ′ ]) if and only if ((l, [x]), i, o) ∈ aP red u (l ′ , [x ′ ]), G ′ ). Proof. (if) Part: We assume that (l, i, o, x) ∈ P red u (l ′ , G ′ ∧ [x ′ ]) and we show (l, [x]), i, o) ∈ aP red u ((l ′ , [x ′ ]), G ′ ). If (l, i, o, x) ∈ P red u (l ′ , G ′ ∧ [x ′ ]) then there exists A ∈ A(O) and (l ′ , i ′ , o, ′ , x ′ ) ∈ (l ′ , G ′ ∧ [x ′ ]) such that (l, i, o, x) A -→ (l ′ , i ′ , o, ′ , x ′ ) and by Lemma 2 we have that that (l, [x]), i, o) A -→ (l ′ , [x ′ ]), i ′ , o ′ ). It remains to show that there is a symbolic state in Z ∈ aP red(l ′ , [x ′ ]), G ′ ) such that (l, [x]), i, o) ∈ Z. By definition, aP red u ((l ′ , [x ′ ]), G ′ ) = {(q, P roj X (G ′ ) ∧ P roj V ar(a) (G) | q G,A,Y ----→ U1 (l ′ , [x ′ ]) ∧P roj I∪X (G)[A] ⊆ P roj I (G ′ )} If (l, i, o, x) A -→ (l ′ , i ′ , o, ′ , x ′ ), then there exists tr = l G l ,A,X -----→ l ′ such that (i, o) |= P roj X (G l ), x |= P roj I∪O (G l ), i ′ = i, o ′ = o[A], x ′ = x[X ← 0]. As tr exists,
we have that (l, [x]) ,A,[x ′ ]). Let Z = ((l, [x]), P roj X (G l ) ∧ P roj var(a) (G ′ )), we have that Z ∈ aP red(l ′ , [x ′ ]), G ′ ). It is not difficult to convince that ((l, [x]), i, o) ∈ Z. As we already have that (i, o) |= P roj X (G l ), it remains to establish that (i, o) |= P roj var(a) (G ′ ). This is true as, by hypothesis we have that and that sequence is such that x 0 = x, x k = x ′ , x l = x l-1 + δ l =i j-1 = i j = i = i ′ and o j-1 = o j = o = o ′ for every j ∈ {1..k}. This is because the time-elapsing operation does not change inputs and outputs. As (i ′ , o ′ ) |= G ′ we get that (i j , o j ) |= G ′ for every j ∈ {1..k}. Additionnaly each transition ((l, r j-1 ), i j-1 , o j-1 , x j-1 ) δj ,IdO ----→ ((l, r j ), i j , o j , x j ) implies that (i j , o j ) |= P roj X (G l ) where G j is the constraint on the transition (l, r j-1 )

P rojX (G l )∧G [x]

Gj ,IdO

-----→ (l, r j ) that must exist. Proof. This is a direct consequence of Lemmas 8, 9 and 10.
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 3 ) and C M (I, O) denotes the set of constraints on input/outputs the maximal constant occuring in them is lower or equal to M . Q is finite. Using fixpoint computation results in [?], we get the termination of the computation of CoReach. Moreover, we can show that Let G ′ ∈ G(I, O) be a constraints over input and output variables. It holds that
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  ). Then, by definition x ′ = x+δ and for every transition ((l, [x])G,A,X ----→ (l ′ , r ′ ), for every δ ′ < δ, P roj I∪O (G) = G [x] and either (i, o) |= P roj X G or x + δ ′ |= P roj I∪O G. Assume now that (l, i, o, x)δ -→, then there exists δ ′ < δ and A ∈ A(0) such that (l, i, o, x)

  ′ ) Proof. (if) Part: Assume that (l, i, o, x) δ -→ (l, i, o, x ′ ), then x ′ = x + δ and by definition, for every l G,A,X ----→ l ′ and for every δ ′ < δ either (i, o) |= P roj X (G) or x + δ ′ |= P roj I∪O (G). By definition, there exists in RG K (A) a transition (l, [x])

  and (i, o) |= P roj X (G ′ ), a delay transition of amount δ can be fired from((l, [x]), i, o, x), meaning that the transition ((l, [x]), i, o, x) δ -→ ((l, [x]), i, o, x + δ) exists. Additionnaly, as x ′ = x + δ and x ′ |= G [x ′ ] ,we get the existence of the urgent transition (of type T1)

  which discards the existence of the input update transition (l, i, o, x)A -→ (l ′ , i ′ , o ′ , x ′ ).So the contradiction. (only if) Part: Similar to the (if) part Lemma 6. Let (l, i, o, x) and (l ′ , i ′ , o ′ , x ′ ) be two stable states, then

-

  (i ′ , o ′ ) |= G ′ , (i, o) |= P roj X (G l ), P roj I∪X (G l )[A] ⊆ P roj I (G ′ ), i ′ = iand o ′ = o[A]. (only if) Part: Similar to the (if) Part. Lemma 9. (l, i, o, x) ∈ P red e (l ′ , G ′ ∧ [x ′ ]) if and only if ((l, [x]), i, o) ∈ aP red e ((l ′ , [x ′ ]), G ′ ) Proof. (if) Part: We assume that (l, i, o, x) ∈ P red e (l ′ , G ′ ∧ [x ′ ]) and we show that ((l, [x]), i, o) ∈ aP red e ((l ′, [x ′ ]), G ′ ). By definition (l, i, o, x) ∈ P red e (l ′ , G ′ ∧ [x ′ ]) implies that there exists A ∈ A(I), (l ′ , i ′ , o ′ , x ′ ) ∈ (l ′ , G ′ ∧ [x ′ ]) such that (l, i, o, x) A -→ (l ′ , i ′ , o ′ , x ′ ) with l ′ = l, i ′ = i[A], o ′ = o, x ′ = x and by Lemma 5 we have that ((l, [x]), i, o) A -→ ((l, [x]), i ′ , o). Now we show that ((l, [x]), i, o) ∈ aP red e ((l, [x]), G ′ ) where aP red e ((l, [x]), G ′ ) =   (l, [x]),   ¬ G∈GdsA(l,[x]) proj X (G)   ∧ P roj I (G ′ )   and it is equivalent to show that (i, o) |= (¬ G∈GdsA(l,[x]) proj X (G)) ∧ P roj I (G ′ ) Obviously, we have that (i, o) |= P roj I (G ′ ) because (i ′ , o ′ ) |= G ′ and o ′ = o. Now it remains to show that (i, o) |= (¬ G∈GdsA(l,[x]) proj X (G)). Observe that for every G such that a transition (l, [x]) G,A,∅ ----→ U1 (l ′′ , r ′′ ) exists in RG K (A), it holds that [x] ⊆ P roj I∪O (G) and there is a symbolic transition in A tr = l G l ,A,Y -----→ l ′ such that P roj X (G l ) = P roj X (G). Since (l, i, o, x) A -→ (l ′ , i ′ , o ′ , x ′ ), then for every l G l ,A,X -----→ l ′ it is true that (i, o) |= P roj X (G l ) or x |= P roj I∪O (G l ). In particular, for every constraint G l in the set C = {G l | l G l ,A,X -----→ l ′ ∧ x |= P roj I∪O (G l )} we will have that (i, o) |= P roj X (G l ) or equivalently (i, o) |= G l ∈C P roj X (G l ) that in turn is equivalent to (i, o) |= ¬ G l ∈C P roj X (G l ). Note that C = Gds A (l, [x]) and then we get that (i, o) |= (¬ G∈GdsA(l,[x]) proj X (G)). (only if) Part: Similar to the (if) Part. Lemma 10.(l, i, o, x) ∈ P red δ (l ′ , G ∧ [x ′ ]) if and only if there exists k > 1 such that ((l, [x]), i, o) ∈ aP red k δ ((l ′ , [x ′ ]), G ′ ) Proof. (if) Part: We assume that (l, i, o, x) ∈ P red δ (l ′ , G ′ ∧ [x ′ ]) and we show that ((l, [x]), i, o) ∈ aP red δ ((l ′ , [x ′ ]), G ′ ). By definition (l, i, o, x) ∈ P red δ (l ′ , G ′ ∧ [x ′ ]) implies that there exists δ ∈ R + , (l ′ , i ′ , o ′ , x ′ ) ∈ (l ′ , G ′ ∧ [x ′ ]) such that (l, i, o, x) δ -→ (l ′ , i ′ , o ′ , x ′ ) with l ′ = l, i ′ = i, o ′ = o, x ′ = x + δ. Let k denote the distance (or the number of distinct regions) from [x] to [x ′ ]. Then there are δ 1 , δ 2 , . . ., δ k in R + and regions r 0 , r 1 ,r 2 , . . ., r k such that δ = k l=1 δ l , r 0 = [x], r k = [x ′ ], r j = [x + j l=1] and r j = I Succ(r j-1 ) with j ∈ {1..k}. Now we show that ((l, [x]), i, o) ∈ aP red k δ ((l, [x]), G ′ ) whereaP red δ ((l, [x ′ ]), G ′ ) = {((l, [x ′ ]), G ′ )} ∪ {(q ′ , P roj X (G q ) ∧ G ′ ) | q ′ Gq,IdO,∅ ------→ U2 (l, [x])}We consider the two cases: If k = 1 then [x] = [x ′ ] and we need to show that (l,[x]), i, o) ∈ ((l, [x ′ ]), G ′ ) or equivalently we show that (i, o) |= G ′ . Because (l, i, o, x) δ -→ (l ′ , i ′ , o ′ , x ′ ) with l ′ = l, i ′ = i, o ′ = o and [x] = [x ′ ] we have that ((l, [x]), i, o) δ -→ ((l ′ , [x ′ ]), i ′ , o ′ )meaning that ((l, [x]), i, o) ∈ aP red 1 δ ((l ′ , [x ′ ]), i ′ , o ′ ) and by hypothesis (i ′ , o ′ ) |= G ′ and i ′ = i, o ′ = o. -If k > 1 then by Lemma 4 there exists a sequence of transitions ((l, r 0 ), i 0 , o 0 , x 0 ) δ1,IdO ----→ ((l, r 1 ), i 1 , o 1 , x 1 ) δ2,IdO ----→ . . .

  δ k ,IdO ----→ ((l, r k ), i k , o k , x k )

(

  only if) Part: Similar to the (if) Part. Lemma 11.(l, i, o, x) ∈ P red(l ′ , G ∧ [x ′ ]) if and only if ((l, [x]), i, o) ∈ aP red((l ′ , [x ′ ]), G ′ )

  simple backward control algorithm could work on [[A]]. It starts in the set of target states. Then it computes predecessors from which we can reach the target state within 1 step, 2 steps, etc... until an initial state is reached or until the computation terminates. But such a simple algorithm could not terminate because [[A]

Safter stands for "after stabilization".

As for the specification, we assume that the guards are given by a boolean combination of elements of G(I), G(O), G(X) and G(X ′ )
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