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A solid-fluid mixture is generally modelled assuming that the state of stress in the
reference configuration is identically equal to zero. However, such an assumption is
not always appropriate to take into account some instability phenomena occurring
in Nature. In this contribution, the continuum mechanics point of view is used
and the reference configuration of the solid-fluid mixture has a state of stress, i.e.
the pre-stress is different from zero. The instability of the mixture with respect to

the perturbation fields given by a general plane wave is then studied.

1. Introduction

In the present macroscopic continuum theory, the balance equations of mass
and linear momentum are derived in the form given by Truesdell”8. More-
over, a set of constitutive equations is given in order to characterize the
material and to close the problem, see also!?.
energy per unit mass of the mixture and then we derive the constitutive
quantities. The solid part is considered as an elastic material and the fluid
part is non viscous. The interactions between the two species is also consid-
ered through a non dissipative and a dissipative (Darcy) terms. The Cauchy
stress tensor of a given species depends on the constitutive variables of the
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To do this, we assign the
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other species. We note that this interaction is not in contraddiction with
the second law of thermodynamics: the interaction force, in this formula-
tion, depends upon the gradient of mass densities of both species, see e.g. %9,
The propagation of harmonic waves is studied and normal modes for the
transverse and longitudinal velocities are considered. Since the perturbed
fields blow up, we have a set of instability conditions derived by the dis-
persion relations. Such conditions define the constraints of the constitutive
parameters of the model derived from the present analysis.

2. Preliminary and Balance Equations

Let Bs and By be the reference configurations of the solid and of the fiuid
constituents, respectively. The actual configuration is denoted by B. Let
x € B be the Eulerian coordinates and X, X be Lagrangian coordinates of
the solid and the fluid, respectively. From the mathematical point of view,
this means that there exist two functions y, and X7, called the current
placements of the solid and of the fluid, such that the position x € B in
the actual configuration is given by,

X:XS(Xs,t):Xf(Xf,t), VX, € By, VXye By, VteR. (1)

The derivative with respect to time of (1) gives the velocity fields v, and
v of the solid and of the fluid, respectively, i.e.,

dsx _ OXs _ _ dsx _ Oxy
@ - o Wkt =gm=20 ()

vs =V (X,1) =

where Ef and ¢ denote the time derivatives keeping X, and Xy constant.
The derivative Wlth respect to the particles X; and X give the deformation
gradients F; and F of the solid and of the fluid, i.e.,

O _yim, F, = F, (x,t) = 24

Fo=F, (x1) = X, 09X,

_I+Hf, (3)

where H, and H; are the displacement gradients of the solid and of the
fluid, respectively. In the following, the symmetric part E,

E, = 1 (H, + HT) (4)

of the displacement gradient H; of the solid constituent, also called the
infinitesimal deformation, will be extensively used.
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The balance equations of masses and of linear momenta of the solid and
of the fluid are assumed to be the following,

Jo 0
gts +V - [osvs] = 0,07, agtf +V - losvs]l = 0fTys,
v
Qast - +v'[QsVS®VS_Ts]:m5f+gsgs’ (5)
0osv
C;t f +V- [vaf ®Vf —Tf] =My, +Qfgf7

where I'sz, 'y, m, s and my, are interaction terms; T, and Ty are the par-
tial Cauchy stress tensors of the solid and of the fluid and gs and gy are the
specific external supplies of linear momenta (e.g., the gravity acceleration
g) of the solid and of the fluid.

3. Constitutive Equations

The solid and the fluid are underposed to a certain state of initial stress,
called pre-stress, that is assumed to be constant. In both components it is
assumed to be spherical, i.e.,

T§ = —p3I, Tf = —p{L (6)

We underline that T§ and Té are intended to be Cauchy stress tensors.
This means that the forces producing this kind of pre-stress are prescribed
in the actual configuration and are per unit area in the actual configuration,
too. Note that not all the forces fulfil this characteristic. The forces due to
an hydrostatic pressure acting on the mixture is one of this kind; the forces
due to the weight or to the traction in one fixed direction are not !

The characterization of the initial (reference) configuration is now com-
plete once one assigns the partial mass densities 0§ and g{; of the solid
and of the fluid constituents. We will denote the fields evaluated in this
(reference) configuration with the subscript 0 and we can write,

05 = const., ol = const., v§=v{ =0., pj=const., pl = const. (7)

Superimposed to this equilibrated and pre-stressed state, we consider an
arbitrary perturbation, that is defined by the two displacement fields uj,
and uy and by g, and gy, the change of partial mass densities, i.e.,

x=Xs+us (Xs,t) = Xpt+up (Xg,t); 05 = 05+8s, 0F = 0b+5s. (8)

The constitutive characterization of the non-simple mixture considered
in this paper is derived by Sciarra®® in 2001 in the limit of small pertur-
bation. Thus, it is reasonable to consider the solid in the regime of linear
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elasticity; the fluid is modelled as a perfect and compressible medium. The
objective form of the conservative part ¥ of the energy per unit mass (so
that ¥ is the conservative part of the specific energy) is defined as follows,
s s p(])f ~ 1 s 1 s T sTs
0¥ =T H +?Qf+§(C E’-E° — ZHS-(TOHS —H TO)
0

1 1
+—8Hs . (HS Iy — ToH® + lgHﬂ — BT I‘g) + ngsf -H*® + §Qo’yfféf:,
(9)

where the superscript (A)T denotes the transpose of a general tensor A
and the constitutive quantities have the following general form, i.e.,

- v ov _ _
my, = —msy = m = —gy (VF?)! aFs T gsa—gfvgf + D (v* —v/)
o ov

T, = g(-ﬁ?;FST, Ty=—psl, pr= nga—g;’

(10)
where the classical dissipative interaction Darcy term for the interaction
force m in the equation (10),, i.e. D (vs - vf), is added to the formula-
tion of Sciarra®. Therefore, the constitutive equations of the mixture are
completely characterized once one assigns the constitutive parameters D,
K*/, v¢; and C°. We remark that such parameters are referred to the given
reference configuration and therefore are related to the prescribed state of
pre-stress.

The scalar D and the tensor K/ represent the dissipative and the non
dissipative interaction between the species of the mixture; s is related to
the compressibility of the fluid species and C* is the fourth order elastic
tensor related to the linear elastic solid species. Furthermore, we assume
(see e.g.35),

K = —0008vssl,  C°E® = 2uE°® + Atr (E)I, (11)

where -y, is a single interaction parameter and A and u are the Lamé
coefficients evaluated for the given solid component and for the given state
of pre-stress. If we insert the constitutive equations (10) and (9) into the
balance equations (5), then the field equations take the form

005 R 00
= =gV - Ivil, 5 = eV vyl (12)
ov; s ~ Nof
Qg ot :(2“~p0)vEs+/\ssv (trEs)_ Q]:fVQf_D(Vs“Vf)7(13)
Q

A ~
[¢]
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where the coefficients ;\O,g depend on 7,5 and on the pre-stresses pe with
a and B be s and/or f (see also®). Moreover, the relation between the
infinitesimal deformation E° and the partial mass density of the solid con-
stituent is derived from the mass balance, i.e., g; = —o3trE’, in the limit
of small perturbation. Since we are interested in a solution of the form

i(wt—k-x)
b

Oa = éae Vo = ‘A’aei(wtuk'x% @ =3, fv (15)

where w is the frequency and k the wave vector, both possibly complex,
substituting the above expressions into the balance equations yields,

Ass Agr ‘A/s _ 0 Ay Ase _
(Afs Ag )(f’s>—<0>’ = Det<Asf Ag >_0’

(16)
where A,p are the suitable matrix coefficients,
1,812, 2 9 — 395
Ass = ({1 — 1p§) k* +iwD — giw JI+{A+u+ —Q—Q—-P(S) (k®k)
0
Ase = —iwDI+ X5 (k ® k)
fo.2 / ! pf
Ag = (iwD — jw ) I+ o0y | 7000} + 29—2 (k®k)
(17)

The solution of the dispersion relation given in (16)2 is not an easy task. It
can be simplified decomposing the amplitudes of the velocity fields v,, into
a solenoidal ¥} and an irrotational '[)(I)I(k part, i.e.,

Va=Va+olk, k¥i=0, V-9i=0 Vxilk=0, a=s/ (18)

corresponding to transverse and longitudinal part of the velocity fields,
respectively. Assuming that k € R3 is a real vector, then if the immaginary
part w; of the frequency w is positive, then the perturbations in the form
of plane waves expressed in (15) are attenuated. Note that this does not
mean that the system is stable under all kind of perturbations. On the other
hand it is possible to express the prediction of our assumptions claiming
that while w; is negative, the system is unstable.

For transverse waves the dispertion relation is reduced to a third degree
polynomial in w, the coefficient of which are real. Thus, the negativeness
of the immaginary part w; of the frequency w can be assured if

D>0, p)<2u (19)
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If such conditions are not fulfilled, then the system is unstable. The first
condition is a direct consequence of the Second Law of Thermodynamics
and simply tells us that the dissipation due to the Darcy term in the consti-
tutive equation (10); is not able to produce energy. The second restriction
expressed in (19) gives an explicit restriction on the value of the pre-stress
of the solid.

For longitudinal waves the dispersion relation is reduced to a fourth-
degree polynomial in w, the coefficient of which are real. We show that the
immaginary part w; of the frequency w is negative if,

1 1
P <3 (A+2p) + 500 (03)" (vrr — 2vss) s

ol 72 % 5\
/\+2u—2gp8 QO(Qo) ’Yff+25po > A%,

We remark that conditions (19), and (20) are explicit or implicit restrictions
on the values of the prestresses p§ and p(f) . Whether p§ = pg =0, then such
non-instability conditions must be satisfied. We can represent (19); and
(20) in terms of a graphic in which the coordinate axes are the prestresses
pg and pé . It is easy to show that they characterize regions of the values of
prestress that the mixture can admit.

(20)

References

1. Bowen, RM.: Compressible porous media models by use of the theory of
mixtures. Int. J. Engng. Sci. 20(6): 697 - 735 (1982)

2. Bowen, R.M.: Theory of mixtures. In Eringen AC (ed.). Continuum Physics

III. New York: Academic Press. 2 - 127 (1976)

dell’Isola, F.; Ianiro, N.; Placidi, L.; Sciarra G.: (In preparation) (2006)

4. Miiller, I. Thermodynamics. Pitman Advanced Publishing Program. Boston
(1985)

5. Sciarra, G.: Modelling of a fluid flux through a solid deformable matrix. PhD
Thesis (2002)

6. Sciarra, G.; dell’Isola, F.; Hutter, K.: A Solid-fluid mixture model allowing
for solid dilatation under external pressure. Continuum Mech. Thermodyn.
13, 287-306 (2001)

7. Truesdell, C.: Sulle basi della termomeccanica. Nota I Rendiconti Accademia
det Lincei XXII (fasc. I): 33 - 38 (1957)

8. Truesdell, C.: Sulle basi della termomeccanica. Nota II Rendiconti Accademia
dei Lincei XXII (fasc. I): 33 - 38 (1957)

9. Wilmanski, K.: Mathematical Theory of Porous Media - Lecture Notes. XXV
Summer School on Mathematical Physics, Ravello, September 2000 (2000)

w



