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Abstract

In this paper, we prove a general halfspace theorem for constant
mean curvature surfaces. Under certain hypotheses, we prove that,
in an ambient space M3, any constant mean curvature H0 surface on
one side of a constant mean curvature H0 surface Σ0 is an equidistant
surface to Σ0. The main hypotheses of the theorem are that Σ0 is
parabolic and the mean curvature of the equidistant surfaces to Σ0

evolves in a certain way.

1 Introduction

One problem in the theory of constant mean curvature surfaces (cmc sur-
faces) is to know when two surfaces with the same constant mean curvature
can coexist in the same ambient space M3. More precisely, if Σ1 and Σ2 are
two properly immersed constant mean curvature H0 surfaces in a Rieman-
nian 3 manifoldM3 (these surfaces are called H0 surfaces), is the intersection
Σ1 ∩Σ2 empty?

If we consider two spheres in R3 with the same radius, we can put them
such a way that they do not meet. But inside a sphere of radius one, there
is no compact constant mean curvature one surface.

If we consider non intersecting properly immersed minimal surfaces in
R3, D. Hoffman and W. Meeks [11] proved that these minimal surfaces are
parallel planes. For example, any minimal surface on one side of a plane is
a plane. This result is called a halfspace theorem.

This result can also be stated in an other way. Let us consider a properly
immersed minimal surface Σ in R3 with compact boundary and P a plane.
We assume that Σ lies on one side of P , then the distance between Σ and P
satisfies d(P,Σ) = d(P, ∂Σ) i.e. the distance is achieved along the boundary.
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Such a result is called a maximum principle at infinity. A very general
maximum principle at infinity was proved by W. Meeks and H. Rosenberg
in [14].

In a general setting, if Σ0 is a properly embedded constant mean curva-
ture H0 surface in M3, a halfspace theorem with respect to Σ0 says that H0

surfaces Σ that lies on one side of Σ0 are “classified”. Often, the classifica-
tion implies that Σ has to be an equidistant surface to Σ0. In this case, the
halfspace theorem can be interpreted as a maximum principle at infinity.

For example, A. Ros and H. Rosenberg [21] proved in R3 that no H0

surface can lie in the mean convex side of a properly embedded H0 surface
Σ0 (H0 > 0). We notice that this result says that any H0 surface in the mean
convex side of Σ0 is an equidistant surface to Σ0 but, since the equidistant
surface to Σ0 do not have constant mean curvature H0, no such surface can
exist.

Other halfspace theorems were proved by several authors. We have half-
space theorems with respect to horospheres in H3 [20], horocylinders in
H2 ×R [10], vertical minimal planes in Nil3 and Sol3 [5, 6], rotationnal cmc
1/2 surfaces in H2 ×R [18] and entire minimal graph in Nil3 [6]. We notice
that, in [6], B. Daniel, W. Meeks and H. Rosenberg prove that the only min-
imal surfaces on one side of an entire minimal graph in Nil3 are the vertical
translate of the entire graph. Since the distance between an entire graph
and one of its translate is not constant, the classification is of a different
nature.

The aim of this paper is to give a general situation where a halfspace
theorem is true. More precisely, we prove that, under some hypotheses, a
H0 surfaces that lies on one side of a given H0 surface is necessarily an
equidistant surface.

Let M3 be a complete Riemannian 3 manifold which is geometrically
bounded and Σ0 a properly embedded constant mean curvature H0 surface.
Our main theorem says principally the following (see Theorem 7, for a precise
statement)

Theorem. Let Σ0 →֒M3 be as above. We assume that Σ0 is parabolic.

1. Assume that the equidistant surfaces to Σ0 has mean curvature less
than H0 in the non mean convex side of Σ0. Then any H0 surface
that lies in the non mean convex side of Σ0 and is well oriented is an
equidistant surface to Σ0.

2. Assume that the equidistant surfaces to Σ0 has mean curvature larger
than H0 in the mean convex side of Σ. Then any H0 surface that lies
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in the mean convex side of Σ0 is an equidistant surface to Σ0.

In this result, the two important hypotheses are the parabolicity of Σ0

and the value of the mean curvature of the equidistant surfaces. In fact, Σ0

will be assumed to satisfy some other technical hypotheses (see Theorem 7).
The “well oriented” hypothesis means that, along the surface, the mean
curvature vector points to Σ0. When Σ0 is a minimal surface (H0 = 0),
the hypothesis on the mean curvature of the equidistant surfaces is that the
mean curvature vector does not point to Σ0. In fact the hypothesis about
the mean curvature of the equidistant surface says that the mean curvature
evolves like the one of concentric spheres: inside the sphere of radius 1 the
mean curvature is larger than 1 outside it is less than 1.

If we consider M3 = R3 and Σ0 is a plane. Σ0 is parabolic and the
equidistant surface are also planes, thus the mean curvature hypothesis is
satisfied. The theorem then applies and we recover the classical halfspace
theorem.

Let us see why the hypotheses are important. We consider M3 = H2×R

and the upper halfspace model for H2 i.e. H2 = {(x, y) ∈ R×R∗
+} with the

metric 1
y2
(dx2 + dy2). In Ω = {(x, y) ∈ R × R∗, x > 0}, we consider the

function u(x, y) = ln

√
x2+y2+y

x . This function is a solution to the minimal
surface equation (its graph in H2 × R is a minimal surface). As x → 0,
u(x, y) → +∞ and, as y → 0, u(x, y) → 0. Let Σ be the graph of u. The
minimal surface Σ lies on one side of the minimal surface Σ0 = H2 × {0}
and is asymptotic to it; so there is no halfspace theorem for Σ0. In fact the
mean curvature of the equidistant surfaces to Σ0 is 0. So the mean curvature
hypothesis of the theorem is satisfied but Σ0 is not parabolic. The surface Σ
lies also on one side of the minimal surface Σ1 = {x = 0}×R. This times, Σ1

is parabolic (it is a flat R2) but the hypothesis for the mean curvature of the
equidistant surfaces is not satisfied. Thus, both hypotheses are important
in our statement.

Let us make a remark about the halfspace theorem of B. Daniel, W. Meeks
and H. Rosenberg with respect to entire minimal graph in Nil3 (Theorem 1.4
in [6]). Among all entire minimal graphs, certain are not parabolic, so their
result is really of a different nature from the one we prove.

The paper is divided as follows. In the first section, we recall some
definition about constant mean curvature surfaces and we write the Stokes
formula in a general framework that we need.

In Section 3, we explain what is a parabolic manifold and we give a
result that explain when the parabolicity is preserved by quasi-isometry.
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In Section 4, we explain what kind of ambient space we consider in our
halfspace theorem.

Section 5 is devoted to the proof of the first step of our main theorem.
It consist in proving that, if a H0 surface lies on one side of an other one, we
can assume it is stable. In section 6, we state our main theorem and finish
its proof.

In the last section, we apply our main theorem to some ambient spaces
that have a Lie group structure. In this way, we recover known halfspace
theorems [11, 20, 10, 5, 6] and prove new results.

The author would like to thank H. Rosenberg for many interesting and
helpful discussions

2 Preliminaries

In this section we recall some facts about cmc surfaces: what is the stability
and what can be said about self-intersection. We also explain what is the
Stokes formula in the setting of rectifiable boundary. Finally we define the
area estimate we will use in the following sections.

2.1 Stability

Let S be a cmc surface in a Riemannian 3-manifold M . On S, the stability
operator L acts on smooth functions with compact support on S by

Lu = −∆u− (2Ric(~n, ~n) + |A|2)u,

where Ric(~n, ~n) is the Ricci curvature of the ambient manifold, ~n is the unit
normal vector to the surface and |A| the norm of the second fundamental
form of S. L is also called the Jacobi operator of S.

The cmc surface S is said to be stable if the stability operator is non-
negative on the set of smooth functions with compact support i.e., for any
smooth function u with compact support,

0 ≤
∫

S
uLu =

∫

S
‖∇u‖2 − (2Ric(~n, ~n) + |A|2)u2.

The stability operator appears as the second derivative of the area for normal
variations of the surface S or as the first derivative of the mean curvature
(see [2]).
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2.2 Stokes formula

Let Ω be a domain in Rn with a rectifiable boundary of finite Hn−1 mea-
sure. This is the same as saying that the current [Ω] associated to Ω has
a rectifiable boundary ∂[Ω]. By Theorem 4.1.28 and Theorem 4.5.6 in [7]
(see also 4.5.12 in [7] and 12.2 in [17]), for any smooth vector field X with
compact support in Rn, the Stokes formula can be written:

∫

Ω
divX(x)dLnx =

∫

∂Ω
X(x) · ~n(Ω, x)dHn−1x (1)

where ~n(Ω, x) is a unit vector called the exterior normal of Ω at x (see
4.5.5 in [7] for a definition in this situation). This exterior normal is defined
Hn−1 almost everywhere along ∂Ω. We notice that the definition of ~n(Ω, x)
is local and coincides with the classical unit outgoing normal vector for
smooth boundaries.

Moreover, the Hn−1 measure of ∂Ω is equal to the mass of the n − 1
current ∂[Ω].

2.3 Self intersection

Now let us consider D2, an open disk in R2, and D1, the open disk with the
same center and half radius. On D2 × R, we consider a Riemannian metric
g. Let f1, · · · , fn be smooth pairwise different functions on D2 such that
their graphs have constant mean curvature H0 with respect to the metric
g and the mean curvature vector points downward. Let p in D2 such that
fi(p) = fj(p) and ∇(fi − fj)(p) = 0, p is a singular intersection point. The
structure of the set {fi = fj} near p is then described by Theorem 5.3 in
[4]: it is the union of 2d embedded arcs meeting at p. Moreover such points
are isolated.

Let f0 be a smooth function on D2 such that ∇(f0 − fi) does not vanish
at any point where f0 = fi. We notice that if p satisfies fi(p) = fj(p) and
∇(fi − fj)(p) 6= 0, the level set {fi = fj} is locally an embedded arc. This
implies that Ii,j = {fi = fj} is locally either a smooth arc or the union of
embedded arcs meeting at a point. Thus Ii,j ∩D1 is compact.

We define the function f by f(p) = mini fi(p). Let Ωi be the open subset
Ωi = {p ∈ D1| f(p) = fi(p) and ∀j 6= i f(p) < fj(p)}. The question is: what
is the Stokes formula for such a domain Ωi?

First we see that ∂Ωi is included in the sets Ii,j and the boundary of D1.
This implies that ∂Ωi is a 1-rectifiable subset of finite H1 measure. Thus
the above formula (1) can be applied. But we need to understand what is
~n(Ωi, x) and where it is defined.
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Let p be a point in ∂Ωi\∂D1. First, since the singular intersection points
form a discrete set, this set is finite in D1 and has vanishing H1 measure.
So we assume that p is not such a point. We denote by Λ(p) the set of
indices j such that p ∈ ∂Ωj . Then i ∈ Λ(p) and, for any j ∈ Λ(p), we have
f(p) = fj(p). There are two situations.

First, the vectors ∇(fj−fl)(p) for j 6= l and j, l ∈ Λ(p) are not all linearly
dependent (this implies that the intersection of the tangent planes to the
graphs of the fj, j ∈ Λ(p), is a point). In this case, near p the domain Ωi is
included in an angular sector of angle strictly less than π. This implies that
the exterior normal ~n(Ωi, p) does not exist. This is the same for ~n(Ωj, p),
j ∈ Λ(p).

Let us assume now that the vectors ∇(fj−fl)(p) for j 6= l and j, l ∈ Λ(p)
are all linearly dependent: the intersection of the tangent planes to the
graphs is now a line (this is the case when Λ(p) has only two elements). In
this case, all the curves Ij,l, j, l ∈ Λ(p), are tangent at p. Let Lj be the
differential of fj at p. For any x ∈ R2, we define L(x) = minj∈A(p) Lj(x).
Since the Lj are linear and different, there exists, in fact, a unique subset
{j1, j2} ⊂ Λ(p) such that L(x) = min(Lj1(x), Lj2(x)). {L = Lj1} and
{L = Lj2} are half-planes and we denote by ~η the unit vector normal to
{Lj1 = Lj2} and pointing in {L = Lj2}. Thus, for any λ < 1, the affine
angular sector {p + x, λ‖x‖ < ~η · x} is included in Ωj2 near p and the
affine angular sector {p + x, λ‖x‖ < −~η · x} is included in Ωj1 near p. This
implies that ~n(Ωj1 , p) = ~η, ~n(Ωj2 , p) = −~η and ~n(Ωj, p) is not defined for
any j ∈ Λ(p)\{j1, j2}. In this case we say that p is in the set Γj1,j2 = Γj2,j1 .

Finally, with this definition, if X is a smooth vector field with compact
support in D1, we get the following Stokes formula:

∫

Ωi

divX(x)dL2x =
∑

j 6=i

∫

Γi,j

X(x) · ~n(Ωi, x)dH1x.

2.4 Area bounds

In this subsection, we define a notion of area bound. LetM be a Riemannian
3-manifold. Let p be a point in M and P be a plane in TpM . Let (e1, e2, e3)
be an orthonormal basis of TpM such that P is the plane generated by e1
and e2. We denote by Op,P (t) the image by the exponential map at p of
the ellipsoid {(x, y, z) ∈ TpM |x2 + y2 + 4z2 ≤ t2} where (x, y, z) are the
coordinates in TpM with respect to (e1, e2, e3).

Let V (Op,P (t)) be the volume of Op,P (t) and A(∂Op,P (t)) be the area
of its boundary. We notice that, for t small, V (Op,P (t)) ∼ (2/3)πt3 and
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A(∂Op,P (t)) ∼ 4παt2 with α < 1.

Definition 1. Let (Si)i∈I be a family of immersed surfaces in a Riemannian
3-manifold M . We say that the family satisfies a uniform area estimate of
at most one leaf if for any p ∈M and P a plane in TpM there exists t0 > 0
and β < 1 such that, for any t < t0 and i ∈ I,

A(Si ∩Op,P (t)) ≤ 2βπt2.

Remark 1. If S is an immersed surface and p is a point in S, we have

lim inf
t→0

A(S ∩Op,TpS(t))

t2
≥ π.

Thus the area estimate of at most one leaf prevents S to pass at p more
than one time with the same tangent plane.

3 Parabolic manifolds

In this section, we recall some definitions about the conformal type of Rie-
mannian manifolds and we explain when the conformal type is preserved
by quasi-isometries. We refer to [8] for a general presentation of conformal
types.

Let (M,g) be a Riemannian manifold. A continuous function u on a
domain Ω ∈ M is superharmonic if, for any precompact domain U ⊂⊂ Ω
and any harmonic function v ∈ C2(U) ∩ C0(U ), v ≤ u on ∂U implies v ≤ u
on U . If u1, · · · , un are superharmonic functions, we remark that u = inf i ui
is also a superharmonic function.

Definition 2. Let (M,g) be a Riemannian manifold.

1. If ∂M = ∅, M is parabolic if any bounded superharmonic function on
M is constant.

2. If ∂M 6= ∅, M is parabolic at infinity if any bounded non-positive
superharmonic function on M with u = 0 on ∂M is constant.

When ∂M 6= ∅, M is often said to be “parabolic” instead of “parabolic
at infinity”, but we prefer to use different terminologies. In fact, there are
a lot of equivalent characterizations of parabolicity (see [8]) and we will use
certain of them below. As an example, a Riemannian manifold M without
boundary is parabolic if and only if there exists a sequence (ϕn)n of smooth
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functions with compact support in M such that 0 ≤ ϕn ≤ 1, (ϕ−1
n (1))n is

an increasing exhaustion by compact subsets of M and

lim
n→+∞

∫

M
‖∇ϕn‖2 = 0.

We remark that a subdomain of a parabolic manifold, viewed as a manifold
with boundary, is parabolic at infinity.

Let (M,g) and (N,h) be two n-dimensional Riemannian manifold and
let F be a map from M to N . If k ≥ 1, we say that F is k quasi-isometric or
a local k quasi-isometry if, for any p ∈ M and v ∈ TpM , we have 1

k‖v‖g ≤
‖TpF (v)‖h ≤ k‖v‖g. If M and N has no boundary and F : M → N is a k
quasi-isometric diffeomorphism, M is parabolic if an only if N is parabolic.
For parabolicity at infinity, we do not have such a result. In fact we have
the following proposition:

Proposition 1. Let (M,g) and (N,h) be two n-dimensional Riemannian
manifold such that ∂M 6= ∅ and N has no boundary. We assume that
(N,h) is parabolic and that there exists F : M → N an injective local k
quasi-isometry. Then M is parabolic at infinity.

Proof. Let us assume that M is not parabolic at infinity, then it exists
a harmonic function uM such that 0 < uM ≤ 1, uM = 1 on ∂M and
infM uM = 0 (see [8], uM (x) is the probability that a Brownian motion from
x hits the boundary of M). Let η ∈ (0, 1) be a regular value of uM and
ϕ ∈ C∞(R, [0, 1]) be a function such that ϕ = 0 on [(1 + η)/2,+∞) and
ϕ = 1 on (−∞, η].

Since F is a quasi-isometry, DF is invertible and g̃ = F∗(g) is well de-
fined. g̃ is a section over F (M) of the symmetric 2-tensor bundle. Moreover
g̃ is positive definite and we have 1

k2
h ≤ g̃ ≤ k2h.

We denote by v the function uM◦F−1 on F (M) and we consider µ = ϕ◦v.
The function µ is C∞ on F (M) and vanishes on v−1([(1 + η)/2, 1]). This
domain contains a neighborhood of F (∂M) = ∂F (M). So we can extend the
definition of the function µ by 0 to the complement of F (M). The function
µ is then C∞ on N with µ = 1 on v−1([0, η]).

On N , we define h̃ = (1 − µ)h + µg̃ (µg̃ is well defined on N since µ
vanishes outside F (M)). h̃ is a global section of the symmetric 2-tensor
bundle and we have:

1

k2
h ≤ ((1− µ) +

1

k2
µ)h ≤ h̃ ≤ ((1− µ) + k2µ)h ≤ k2h

So h̃ defines a Riemannian metric on N and idN : (N,h) → (N, h̃) is a local
quasi-isometry.

8



Since (N,h) is parabolic, so is (N, h̃). Let ṽ be the function defined
by η outside F (M) and by min(η, v) on F (M); ṽ is continuous on M . On
v−1([0, η]), h̃ = g̃ so v−1([0, η]) with the metric h̃ is isometric by F with
uM ([0, η]) ⊂ M . Thus, on v−1([0, η]), ∆h̃ṽ = ∆g̃v = (∆guM ) ◦ F−1 = 0
since uM is harmonic. On the complement to v−1([0, η]), ṽ is constant so
∆h̃ṽ = 0. Therefore, ṽ is a positive superharmonic function on (N, h̃) (it
is locally the infimum of two harmonic function) and it is bounded from
above by η. ṽ is then constant and equal to η. This implies that uM = η
on u−1

M ([0, η]) which contradicts infM uM = 0. This ends the proof of the
proposition.

4 Regular ε-neighborhood

In this section, we explain what kind of ambient space we will consider in
our main theorem. Let Σ be a properly embedded constant mean curvature
H0 surface in an ambient 3-manifoldM . The ε-tubular neighborhood of Σ is
the set of points inM at distance less than ε from Σ. We can define the map
F : Σ × [−ε, ε] → M, (x, t) 7→ expx(t~n(x)) where ~n(p) is the unit normal
vector such that the mean curvature vector of Σ at p is −H0~n(p). The image
of F is the ε-tubular neighborhood of Σ. When F is a diffeomorphism, it
gives a global parametrization of the neighborhood. Besides if H0 > 0, the
image of F (Σ× [−ε, 0]) is the mean convex side of the tubular neighborhood
and F (Σ × [0, ε]) is the non-mean convex side. When H0 = 0, no such
distinction can be done.

We want to take this situation as a model for our ambient spaces.

Definition 3. Let (Σ,dσ20) be a 2-dimensional complete Riemannian man-
ifold. An outside ε-half neighborhood of Σ is the 3-manifold with boundary
M+(ε) = Σ×[0, ε] with a Riemannian metric ds2 = dσ2t +dt2 where t 7→ dσ2t
is a smooth family of Riemannian metric on Σ such that ds2 is complete.

An inside ε-half neighborhood of Σ is the 3-manifold with boundary
M−(ε) = Σ × [−ε, 0] with a Riemannian metric ds2 = dσ2t + dt2 where
t 7→ dσ2t is a smooth family of Riemannian metric on Σ such that ds2 is
complete.

It seems that we define twice the same object but we prefer to use two
different terms for the model of the mean convex side (the inside ε-half
neighborhood) and the non-mean convex side (the outside ε-half neighbor-
hood).
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LetM±(ε) be a ε-half neighborhood of Σ. If ε′ ≤ ε, the submanifold Σ×
[0, ε′] ⊂M+(ε) is denoted byM+(ε

′) and is an outside ε′-half neighborhood.
M−(ε

′) = Σ× [−ε′, 0] ⊂M−(ε) is an inside ε′-half neighborhood.
We denote by Σt the submanifold Σ × {t}, Σ0 with its induced metric

is then isometric to (Σ,dσ20). Σ is then isometrically embedded in M±(ε).
Σ and Σ0 will be often viewed as the same object. We denote M∗

±(ε) =
M±(ε)\Σ0. We also define the distance function d as d(x, t) = |t|, d is then
the distance from Σ0. Σt is the equidistant surface from Σ0 at distance |t|.
OnM±(ε), we define the projection map π :M±(ε) → Σ0 by π(x, t) = (x, 0).
We denote by πt the restriction of π to Σt.

Let ~ξ denote the unit vectorfield
∂

∂t
. In the following, we always consider

−~ξ as the unit normal vector to the surface Σt. This is the normal vector
field w.r.t. we will compute the mean curvature. For (x, t) ∈ M±(ε), this
implies that div ~ξ(x, t) = 2H(x, t) where H(x, t) is the mean curvature of Σt

at (x, t).

Definition 4. Let H0 ≥ 0 be a constant.

• We say that M+(ε) satisfies the H ≤ H0 hypothesis if, for any t ∈
[0, ε], the mean curvature of Σt is less than or equals to H0 at any
point.

• We say that M−(ε) satisfies the H ≥ H0 hypothesis if, for any t ∈
[−ε, 0], the mean curvature of Σt is larger than or equals to H0 at any
point.

Definition 5. Let (Σ,dσ20) be a complete 2-dimensional Riemannian man-
ifold. Let M±(ε) be an outside or inside ε-half neighborhood. We say that
M±(ε) is regular if

1. there is k > 0 such that πt is a k quasi-isometric map for any t with
|t| ≤ ε.

2. there is C such that the norm of the second fundamental form of Σt is
bounded by C for any t with |t| ≤ ε.

3. M±(ε) is geometrically bounded.

Let S be a properly immersed cmc H0 surface (H0 ≥ 0) in M±(ε) with
S ⊂ M∗

±(ε) and possibly nonempty boundary in Σ±ε. Along S, we always

consider the unit normal vector ~N such that the mean curvature vector is
H0

~N . We denote by D the connected component of M±(ε)\S that contains
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Σ0. Consider a point p in S∩∂D. Let ∆ ⊂ S an embedded neighborhood of
p. Let us consider the map F : ∆× (−η, η) →M±(ε), (q, t) 7→ expq(t ~N(q)).
F is an embedding if η is small enough and its image is a neighborhood
of p in M±(ε). We say that the mean curvature vector of S at p points
into D (resp. not into D) if, for any sequence (pn)n in D with pn → p,
pn ∈ F (∆ × [0, η)) (resp pn ∈ F (∆× (−η, 0])) for large n.

We say that S is well oriented if, for any point in S ∩ ∂D, the mean
curvature vector of S points into D (resp. not into D) when S # M+(ε)
(resp. S # M−(ε)) (see Figure 1). We notice that, when S is minimal
(H0 = 0), S can be assumed to be orientable by considering a covering
space. Moreover it can always be considered as well oriented.

S

Σ0

D
~N

~ξ
p

∆

Σε ∂S

Figure 1: A well oriented surface S

5 Construction of stable constant mean curvature

surface

Let M±(ε) be an ε-half neighborhood of a surface (Σ,dσ20) such that Σ0 has
constant mean curvatureH0. The main result of our paper says under which
hypotheses we have a halfspace theorem for Σ0 : Any properly immersed
constant mean curvature H0 surface in M±(ε) is an equidistant surface to
Σ0. In this section, we explain that, if such a constant mean curvature H0

surface exists, we can assume that it is stable.

Theorem 2. Let (Σ0,dσ
2
0) be a complete orientable Riemannian surface, ε

be a positive constant and H0 be a non-negative constant. Let M±(ε) be an
inside or outside ε-half neighborhood of Σ. We consider a properly immersed
constant mean curvature H0 surface S in M±(ε) with possibly nonempty
boundary in Σε and S ⊂ M∗

±(ε). We assume that the lower bound of the
distance function d on S is 0.
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1. If S # M+(ε) is well oriented and M+(ε) satisfies the H ≤ H0 hy-
pothesis, there exist ε′ > 0 and a properly immersed constant mean
curvature H0 surface S′ in M+(ε

′) with non empty boundary in Σε′

such that S′ ⊂ M∗
+(ε

′), S′ is stable, well oriented and the distance
function d on S′ is not constant.

2. If S #M−(ε) and M−(ε) satisfies the H ≥ H0 hypothesis, there exist
ε′ > 0 and a properly immersed constant mean curvature H0 surface
S′ in M−(ε

′) with non empty boundary in Σε′ such that S′ ⊂M∗
−( ε

′),
S′ is stable and the distance function d on S′ is not constant.

The remaining part of the section is devoted to the proof of this result.
But let us begin by some remarks on the proof and the result.

The first remark is that, for H0 = 0, both cases are in fact the same
since the good orientation hypothesis has no meaning and the outside and
inside half neighborhoods play the same role for minimal surfaces.

Besides the proof of both cases are very similar. So we write a detailed
proof only for the first case with H0 > 0. Then we explain what are the
important changes to do in the other cases.

One more remark about this result is that, if S is stable or if a surface
S ∩M±(ε

′), for ε′ < ε, is stable then this surface gives the surface S′ we
look for. If no such surface is stable, the surface S′ produced by the proof
is, in fact, embedded and well oriented in both cases.

A large part of the proof is inspired by the work of A. Ros and H. Rosen-
berg in [21] and L. Hauswirth, P. Roitman and H. Rosenberg in [9].

5.1 S # M+(ε) and H0 > 0

Let us consider S in M∗
+(ε) with H0 > 0. First we need to introduce objects

that will be used in the proof.

5.1.1 Definition of the barriers

Let x0 be a point in Σ and η0 > 0 such that the exponential map expx0
for

the metric dσ20 is a diffeomorphism from the disk of radius η0 in Tx0
Σ into

a neighborhood Dη0 of x0. Since S is properly immersed, there is ε0 such
that Dη0 × [0, ε0] ∩ S = ∅. In Dη0 × [0, ε0] we consider the chart expx0

×id
defined on ∆η0 × [0, ε0] where ∆η0 is the Euclidean disk in Tx0

Σ of radius
η0. Let η be small and consider in ∆η0 × [0, ε0] the surfaces of revolution
Cη,t parametrized by

Xη,t(u, v) =
(
(t− η

6
cos v) cos u, (t− η

6
cos v) sinu,

η

6
(1 + sin v)

)

12



where (u, v) ∈ [0, 2π] × [−π/2, π/2], t ≤ η0 and η ≤ min(η0, ε0) (see Ap-
pendix A).

Let η be sufficiently small so that the surfaces Cη,t are well defined for
t ∈ [η/2, η]. We denote by K the compact domain of ∆η0 × [0, η/3] bounded
by Cη,η/2 and containing the origin. For t ∈ [η/2, η], we denote by Qt the
domain of ∆η0 × [0, η/3] bounded by Cη,η/2 and Cη,t (Qt ⊂ Qη). Qη is
foliated by the surfaces Cη,t for t ∈ [η/2, η]. As explained in Appendix A,
on these surfaces, the mean curvature vector does not point to K and its
norm is larger than 1/η. We denote by Kbar, Qbar,t and Cη,t the images of
K, Qt and Cη,t in Dη0 × [0, ε0] ⊂ M+(ε0) (see Figure 2), we also denote

◦
Qbar,t = Qbar,t \ Cη,t. In fact, Kbar ∪Qbar,η ⊂M+(η/3) and these subsets do

not meet S. Let ~ξbar be the unit vector normal to Cη,t which does not point

to Kbar. ~ξbar is a unit vector field on Qbar,η. Since div ~ξbar is the opposite
of the mean curvature of Cη,t, the value of the Euclidean mean curvature

implies that η can be chosen sufficiently small such that div ~ξbar is as small
as we want. So we choose η such that div ~ξbar ≤ 2H0 and η/3 is a regular
value of the function d on S.

We write ε1 = η/3. From now on, we work in M+(ε1) and we consider
the restriction of S to M+(ε1) which we still call S.

S

Qbar,η

Cη,t

Kbar

Figure 2: The domains Kbar and Qbar,η

As explained above, if S is stable Theorem 2 is already proved so we
can assume S is not stable. Hence there exists an exhaustion (Kn)n of Σ by
compact subsets such that, for any n, Sn = S ∩ (Kn × [0, ε1]) is not stable.

We denote by D the connected component of M+(ε1)\S that contains
Σ0 and Dn = D ∩ (Kn × [0, ε1]). We notice that Kbar ∪ Qbar,η ⊂ Dn for
large n. Since S is well oriented, the mean curvature vector of S points into
Dn along S ∩ ∂Dn. Let ϕn be the first eigenfunction of the Jacobi operator
of Sn; ϕn vanishes on ∂Sn, is positive in the interior of Sn and satisfies

13



−Lϕn + λ1,nϕn = 0 where L is the stability operator and λ1,n is a negative
constant. Perturbing Kn, we can assume that 0 is not an eigenvalue of
−L, hence there is a smooth function vn on Sn, vanishing on the boundary
such that −Lvn = 1 in Sn. By the boundary maximum principle, the outing

derivative
∂ϕn

∂ν
is negative along ∂Sn. Thus for an small enough, the function

un = ϕn + anvn is positive in the interior of Sn.
Let ~N(x) be the unit normal to Sn such the mean curvature vector

is H0
~N(x). For t0,n > 0, we define, on Sn × [0, t0,n], the map F (x, t) =

expx(tun(x) ~N (x)), we assume t0,n small such that F is an immersion. We

then denote Q̃n
uns = Sn × [0, t0,n] with the induced metric F ∗ds2. In Q̃n

uns

we consider the surfaces Sn
t = Sn×{t} which foliates Q̃n

uns. Let
~ξuns be the

unit vector field defined on Q̃n
uns normal to Sn

t . We have div ~ξuns = −2Ht

where Ht is the mean curvature of Sn
t . Moreover, we have:

d

dt |t=0
2Ht = −L′u = −λ1,nϕn + an > 0

so, choosing t0,n small enough, we getHt > H0. We defineQn,0
uns = F (Q̃n

uns)∩
Dn and Dn = Dn \Qn,0

uns (see Figure 3). In fact, t0,n is also chosen such that
Dn−1∩(Kn−2×[0, ε1]) ⊂ Dn∩(Kn−2×[0, ε1]). This implies that the sequence
(Dn)n is increasing with respect to compact subsets. We can also assume
that ∪nDn = D.

Sn

F (Snt0,n)Qn,0
uns Dn F∗~ξuns

Figure 3:

The surface Sn
t0,n is immersed by F in M+(ε1) and the normal vector

F∗(~ξuns) points to Dn along Sn where Sn = F (Sn
t0,n) ∩ ∂Dn (see Figure 3).

Let x be a point in Sn
t0,n and consider Dx ⊂ Sn

t0,n a small open geodesic disk
which is embedded in M+(ε1) by F . Let ψ be a smooth function on Sn

t0,n
vanishing outside Dx and positive in Dx. We then define on Sn

t0,n × [0, 2tx]

G(p, t) = expF (p)(tψ(p)F∗(~ξuns(p)))

14



If we choose tx small enough, we can assume that G is an embedding on
Dx × [0, 2tx]. In G(Dx × [0, 2tx]), we define ~ξx the unit vector field normal
to the embedded surfaces Sx

t = G(Dx × {t}) with ~ξx = F∗(~ξuns) along Sx
0 .

Since the mean curvature of Sx
0 is larger than H0, if tx is small enough, we

can assume that div ~ξx < −2H0.
For δ ∈ [1, 2], we denote Qx,δ = G(Dx × [0, δtx]) (see Figure 4) and

◦
Qx,δ = G(Dx × [0, δtx)). Now we define

Qn,1
uns = Dn ∩

⋃

x∈Sn
t0

Qx,1.

Since F∗(~ξuns) points to Dn along Sn, any point at Sn is at a positive
distance from Dn \ Qn,1

uns.

Sn

F (Snt0,n)

Dn
Qx,2

Qx,1

Figure 4:

Let t1,n > 0 be small and, for µ ∈ (0, 1], let us define Qn
par,µ = Kn ×

[0, µt1,n]. t1,n is chosen such that Qn
par,1 ⊂ Dn and Qn

par,1 ∩Qn,1
uns = ∅. Qn

par,1

is foliated by the equidistant surfaces to Σ0 and we have div ~ξ ≤ 2H0 since
the H ≤ H0 hypothesis is satisfied.

5.1.2 Construction of compact stable constant mean curvature

surfaces

With the notations of the preceding subsection, we have the following lemma.

Lemma 3. There exists ε2 ∈ (0, ε1) and p0 ∈ S such that, for large n,
there exists a stable constant mean curvature H0 embedded surface S′

n in
(Dn+1∩(Kn×R))\(Kbar∪Qn+1

par,1/2) with boundary on ∂Kn×R and Kn×{ε2}
and S′

n ∩ [π(p0), p0] 6= ∅. Moreover the surfaces S′
n are well oriented i.e. the

mean curvature vector points into the connected component of (Dn+1∩(Kn×

15



R))\S′
n which contains Kn×0 and the surfaces S′

n, n large, satisfy a uniform
local area estimate of at most one leaf.

Before the proof of Lemma 3, let us explain why we introduced the
subsets Kbar, Qbar,t, Qn,1

uns, Qx,δ and Qn
par,µ. In fact the subsets Qbar,t, Qn,1

uns,
Qx,δ and Qn

par,µ are used as barriers to prevent the surface S′
n from touching

Kbar, Sn and Σ0. So Qn,1
uns and Qn

par,µ are used to prescribe the boundary
of S′

n. Once we have the sequence S′
n, we construct S′ as the limit of this

sequence. We then use Kbar as a barrier to control the possible limits of the
sequence.

Let us come back to the proof.

Proof of Lemma 3. We begin by fixing n ∈ N. Let F be the family of open
domains Q in Dn+1 \ Kbar with rectifiable boundary such that Sn+1 ⊂ ∂Q.
In the following, ∂cQ will denote the complement of Sn+1 in ∂Q. On F , we
define the functional:

F (Q) = A(∂Q) + 2H0V (Q)

where V (Q) is the volume of Q and A(∂Q) is the H2 measure of ∂Q. We
recall that A(∂Q) is also the mass of the current ∂[Q], it is interpreted as
the area of the boundary of Q. The idea is to find Q0 ∈ F which minimizes
F in F then the part of the boundary of Q0 in Dn+1 will be the surface S′

n

we look for.

Claim 4. Let Q be in F .

1. If Q∩Qbar,2η/3 6= ∅, there exists t ∈ [2η/3, η] such that Q \Qbar,t ∈ F
and F (Q \ Qbar,t) ≤ F (Q).

2. If Q ∩ Qn+1
par,1/2 6= ∅, there exists µ ∈ [1/2, 1] such that Q \ Qn+1

par,µ ∈ F
and F (Q \ Qn+1

par,µ) ≤ F (Q).

Proof of Claim 4. Let Q be in F and assume that Q ∩ Qbar,2η/3 6= ∅ as in
Assertion 1 (see Figure 5).

Since ∂Q has finite H2 measure, the coarea formula implies that there
exists t ∈ [2η/3, η] such that H1(∂cQ∩Cη,t) < +∞. ThusH2(∂cQ∩Cη,t) = 0;
this set is negligible in the following computations.
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Q

∂cQ

~ξbar

Kbar

Cη,t Q ∩Qbar,t

Sn+1

∂Kn+1

S

Figure 5:

First Q ∩ Qbar,t 6= ∅ has a rectifiable boundary, thus applying Equa-

tion (1) of Subsection 2.2 with div ~ξbar ≤ 2H0, we have:

2H0V (Q ∩Qbar,t) ≥
∫

Q∩Qbar,t

div ~ξbardLds2

≥
∫

∂(Q∩Qbar,t)
〈~ξbar(x), ~n(Q ∩Qbar,t, x)〉dH2

ds2

≥
∫

Q∩Cη,t

〈~ξbar(x), ~n(Q ∩Qbar,t, x)〉dH2
ds2

+

∫
◦

Qbar,t∩∂cQ
〈~ξbar, ~n(Q ∩Qbar,t, x)〉dH2

ds2 .

We notice that the computation are made with respect to the metric ds2

and results of Subsection 2.2 are still valid in this setting. On Cη,t ∩ Q, we

have ~ξbar(x) = ~n(Q ∩Qbar, x) everywhere, thus:

A(Q ∩ Cη,t) =
∫

Q∩Cη,t

〈~ξbar, ~n(Q∩Qbar, x)〉dH2
ds2

≤ −
∫

◦

Qbar,t∩∂cQ
〈~ξbar, ~n(Q ∩Qbar, x)〉dH2

ds2 + 2H0V (Q ∩Qbar)

≤ A(
◦

Qbar,t ∩ ∂cQ) + 2H0V (Q ∩Qbar).

This implies that

F (Q \ Qbar,t) = A(∂Q) −A(
◦

Qpar,t ∩ ∂cQ) +A(Q ∩ Cη,t) + 2H0(V (Q)− V (Q ∩Qbar))

≤ F (Q).

Assertion 1 is then proved. Assertion 2 follows from the same arguments;
Figure 6 shows the situation.
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Q

S

Σµ

Kn+1

Sn+1

Q ∩Qn+1
par,µ

~ξ

∂cQ

Figure 6:

Let Kn+1/2 be a compact subset of Σ such that

Kn ⊂
◦
Kn+1/2 ⊂ Kn+1/2 ⊂

◦
Kn+1.

Claim 5. Let Q be in F . If Qn+1,1
uns ∩ (Kn+1/2 × [0, ε1]) 6⊂ Q, there exists

Q′ ∈ F such that Qn+1,1
uns ∩ (Kn+1/2 × [0, ε1]) ⊂ Q′ and F (Q′) ≤ F (Q).

Proof of Claim 5. Let Q be in F as in the claim. The subset Qn+1,1
uns ∩

(Kn+1/2 × [0, ε1]) is compact so there exists a finite number of points xi ∈
Sn+1
t0,n+1

such that

Qn+1,1
uns ∩ (Kn+1/2 × [0, ε1]) ⊂

⋃

i

Qxi,3/2

As in proof of Claim 4, there is δ1 ∈ [3/2, 2] such that H2(∂cQ∩Sx1

δ1tx1
) =

0. We denote O1 = (Qx1,δ1 ∩Dn+1)\Q. The boundary of O1 is composed of

a part ∂1O1 = ∂cQ∩
◦

Qx1,δ1 , a second part ∂2O1 ⊂ Sx1

δ1tx1
in the complement

of Q and a third one of vanishing H2 measure (see Figure 7). In Qx1,δ1 , we

have the unit vector field ~ξx1
which satisfies div ~ξx1

< −2H0. Then:

2H0V (O1) ≤ −
∫

O1

div ~ξx1

≤ −
∫

∂O1

〈~ξx1
(x), ~n(O1, x)〉

≤ −
∫

∂2O1

〈~ξx1
(x), ~n(O1, x)〉 −

∫

∂1O1

〈~ξx1
(x), ~n(O1, x)〉.
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S

Sn+1Q
x1

~ξx1

O1

∂1O1

∂2O1

Figure 7:

where, for simplicity, we have omitted to write the measures. On ∂2O1,~ξx1
=

~n(O1, x) thus

2H0V (O1) +A(∂2O1) = 2H0V (O1) +

∫

∂2O1

〈~ξx1
(x), ~n(O1, x)〉

≤ −
∫

∂1O1

〈~ξx1
(x), ~n(O1, x)〉

≤ A(∂1O1)

The interior Q1 of Q∪O1 is an element of F (the boundary is still rectifiable)
and

F (Q1) = 2H0(V (Q) + V (O1) +A(∂Q) +A(∂2O1)−A(∂1O1)

≤ F (Q)

Now considering O2 = (Qx2,δ2 ∩Dn+1) \Q1 and Q2 the interior of Q1 ∪O2,
we prove by the same argument that Q2 ∈ F and F (Q2) ≤ F (Q1). Doing
this a finite number of times, we construct the subset Q′.

Let us now consider (Qk)k a minimizing sequence for F . Because of
the claims, we can assume that the sequence satisfies Qk ∩ Qbar,2η/3 = ∅,
Qk ∩Qn+1

par,1/2 = ∅ and Qn+1,1
uns ∩ (Kn+1/2× [0, ε1]) ⊂ Qk. By the compactness

theorem for integral currents (see Theorem 5.5 in [17]), there is Q∞ a cluster

19



point of the sequence for the flat topology. As a limit of a subsequence
of (Qk)k, Q∞ is a domain in Dn+1 with a rectifiable boundary such that
Q∞∩Qbar,2η/3 = ∅, Q∞∩Qn+1

par,1/2 = ∅ and Qn+1,1
uns ∩(Kn+1/2× [0, ε1]) ⊂ Q∞.

Moreover Q∞ minimizes F since the area functional A(∂Q) is lower semi-
continuous for the flat convergence and V (Q) is the integral over Q of the
volume differential form. Since Q∞ minimizes F , the part of ∂Q∞ inside
the interior of Dn+1 is a local isoperimetric surface in the sense of [16], by
regularity theory (see Corollary 3.7 in [16]) we obtain that this part of ∂Q∞ is
a smooth surface which we denote by S ′

n+1. SinceQ∞ minimizes F , S ′
n+1 has

constant mean curvature H0 with mean curvature vector pointing outside
of Q∞ and it is stable (see computations in [2]). Since Q∞ ∩ Qbar,2η/3 = ∅,
Q∞ ∩ Qn+1

par,1/2 = ∅ and Qn+1,1
uns ∩ (Kn+1/2 × [0, ε1]) ⊂ Q∞, the part of the

boundary of S ′
n+1 in Kn+1/2× [0, ε1] is only in Kn+1/2×{ε1} (here we speak

about a non necessarily regular boundary).

Once all the surfaces S ′
n+1 are constructed, we choose ε2 < ε1 a constant

which is a regular value of the distance function for all the S ′
n+1 (such a ε2

exists since for each n the set of critical value of the distance function along
S ′
n+1 has vanishing Lebegues measure) and we define S′

n = S ′
n+1 ∩ (Kn ×

[0, ε2]). We notice that S′
n may be empty for small n if ε2 is too small; but,

for large n, S′
n 6= ∅. Let p0 ∈ S ∩M+(ε2) be a point such the geodesic arc

[p0, π(p0)] does not meet the surface S. For n large enough π(p0) ∈ Dn and
p0 6∈ Dn, this implies that S′

n ∩ [p0, π(p0)] 6= ∅. These surfaces S′
n are in fact

the ones we want to construct. First the surface is well oriented since it is a
part of the boundary of Q∞. For the area estimate, let us consider a point p
in D and P a plane in the tangent space. Since ∪nDn = D and the sequence
(Dn)n is increasing with respect to compact subsets, there is t0 and n0 such
that, for t ≤ t0 and n ≥ n0, Op,P (t) is a subset of Dn. Since Q∞ minimizes
F we have F (Q∞) ≤ F (Q∞ \Op,P (t)) and F (Q∞) ≤ F (Q∞ ∪Op,P (t)), this
implies that:

A(S′
n ∩Op,P (t)) + 2H0V (Q∞ ∩Op,P (t)) ≤ A(∂Op,P (t) ∩ Q∞)

A(S′
n ∩Op,P (t)) ≤ A(∂Op,P (t) \ Q∞) + 2H0V (Op,P (t) \ Q∞)

Thus, taking the sum and dividing by two,

A(S′
n ∩Op,P (t)) ≤ A(∂Op,P (t))/2 +H0V (Op,P (t))

which is uniformly less that 2βπt2 for some β < 1 and t small because of the
asymptotic behaviour of A(∂Op,P (t)) and V (Op,P (t)) (see Subsection 2.4).
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5.1.3 Construction of the surface S′

The last step of the proof of Theorem 2 is to obtain a limit to the sequence
(S′

n)n. We choose ε3 less than ε2 and we consider k ∈ N. For every n ≥ k+1
and p ∈ S′

n ∩ (Kk × [0, ε3]) the distance from p to the boundary of Sn is
bounded from below by a constant depending only on k and ε3. From
the stability of Sn, this implies that the norm of second fundamental form
of S′

n is bounded in Kk × [0, ε3]. Besides the sequence (S′
n)n satisfies a

uniform local area estimate. The curvature and area estimates imply that
the sequence of surface has a subsequence that converge to a stable cmc H0

surface in Kk × [0, ε3]. Because of the area estimate, the convergence has
multiplicity one and the limit surface is embedded. Since the surfaces S′

n

cut the geodesic arc [π(p0), p0] we can assume that this is also the case for
this limit surface. Then by a diagonal process, we obtain a stable cmc H0

surface S∞ in Σ × [0, ε3]. We have S∞ ∩ [π(p0), p0] 6= ∅ thus S∞ 6⊂ Σε3 .
Moreover S∞ is well oriented as limit of well oriented surfaces.

One thing we have to check is that S∞ is, in fact, in Σ×(0, ε3]. If it is not
the case, S∞ touches Σ0 and by the maximum principle we have S∞ = Σ0.
By construction, the sequence S′

n never enters in Kbar so it is the same for
S∞ and we obtain S∞ 6= Σ0.

Moreover S∞ is not included in an equidistant surface Σt. By construc-
tion, S∞ is between Σ0 and S and infS d = 0, this implies that d can not
be constant along S∞.

Now choosing ε′ a regular value of the distance function d on S∞ (we
assume that ε′ is part of the image of d along S∞), we can consider S′ =
S∞ ∩Σ× [0, ε′]: S′ then has its non empty boundary in Σ×{ε′}. S′ is then
a complete stable cmc H0 surface which is properly embedded in Σ× [0, ε′].
Moreover S′ is well oriented and d is not constant along S′.

5.2 H0 = 0

In this case, the cases 1 and 2 of Theorem 2 are the same, so assume that
S # M+(ε). The proof is essentially the same, the only difference comes
from the fact that the “well oriented” hypothesis has no more meaning.

So as above we define, Kbar, Qbar,t and ξbar such that div ξbar ≤ 0. This
gives a ε1.

We introduce the compact Kn and the domain Dn. As above we assume
the instability of Sn and consider ϕn such that Lϕn = λ1,nϕn, vn such that

−Lvn = 1 and un = ϕn + anvn. Let ~N(x) be the unit normal to Sn. For
t0,n > 0 we define, on Sn× [−t0,n, t0,n], the map F (x, t) = expx(tun(x) ~N (x))
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and assume that t0,n is small enough to ensure that F is an immersion.
Sn × [−t0,n, t0,n] with the metric F ∗ds2 is foliated by Sn

t = Sn × {t}. Be-
cause of −Lun = −λ1,nϕn+an > 0, if t0,n is chosen small enough, the mean
curvature vector of F (Sn

t0,n) and F (Sn
−t0,n) is non vanishing and points “out-

side” F (Sn × [−t0,n, t0,n]).
Thus for any x ∈ Sn

t0,n ∪ Sn
−t0,n we can define as above Qx,δ and ~ξx with

div ~ξx < 0. Then we defineQn,0
uns = F (Sn×[−t0,n, t0,n])∩Dn, Dn = Dn\Qn,0

uns

and
Qn,1

uns = Dn ∩
⋃

x∈Sn
t0,n

∪Sn
−t0,n

Qx,1

With these notations, the end of the proof is the same.

5.3 S # M−(ε) and H0 > 0

When S # M−(ε), the differences comes from the fact that the surface is
not assumed to be well oriented.

As above, we define, Kbar, Qbar,t and ~ξbar such that div ~ξbar ≤ −2H0.
This gives ε1. We introduce the compact subsets Kn and the domain Dn.

We use the instability of S to define ϕn such that Lϕn = λ1,nϕn, vn
such that −Lvn = 1 and un = ϕn + anvn. If ~N(x) is the unit normal to
Sn such that the mean curvature vector is 2H0

~N(x), we define F (x, t) =
expx(tun(x) ~N (x)) on Sn × [−t0,n, 0] with t0,n > 0 small so that F is an
immersion. Sn×[−t0,n, 0] with the metric F ∗ds2 is foliated by Sn

t = Sn×{t}
and we extend to Sn × [−t0,n, 0] the definition of ~N as the unit normal
vectorfield to the surfaces Sn

t .
Since −Lun = −λ1,nϕn + an > 0, if t0,n is small enough, the mean

curvature of F (Sn
−t0,n) computed with respect to ~N is less than H0. We

define Qn,0
uns = F (Sn × [−t0,n, 0]) ∩Dn and Dn = Dn \ Qn,0

uns.
As above for any x ∈ Sn

−t0,n , we consider Dx ⊂ Sn
−t0,n a small open

geodesic disk which is embedded in M+(ε1) by F . Let ψ be a smooth
function on Sn

t0,n vanishing outside Dx and positive in Dx. We then define
on Sn

−t0,n × [0, 2tx]

G(p, t) = expF (p)(−tψ(p)F∗( ~N(p)))

If we choose tx small, we can assume that G is an embedding on Dx×[0, 2tx].
In G(Dx×[0, 2tx]), we define ~ξx the unit vector field normal to the embedded
surfaces Sx

t = G(Dx × {t}) with ~ξx = −F∗( ~N) along Sx
0 . Since the mean
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curvature of Sx
0 is less than 2H0, if tx is small, we can assume that div ~ξx <

2H0.
We denote Qx,δ = G(Dx × [0, δtx]) for δ ∈ [1, 2]. We also define

Qn,1
uns = Dn ∩

⋃

x∈Sn
t0

Qx,1.

Since the surface Sn can be not well oriented, we need to introduce new
barriers. For any x ∈ Sn, we consider ∆x ⊂ Sn a small open geodesic disk
which is embedded in M+(ε1). Let η be a smooth function on Sn vanishing
outside ∆x and positive in ∆x. We define on Sn × [0, 2tx]

Z(p, t) = expp(tη(p) ~N (p))

with tx small enough such that Z is an embedding on ∆x × [0, 2tx]. In
Z(∆x × [0, 2tx]), we define ~ξxori the unit vector field normal to the surfaces

Sx
ori,t = Z(∆x × {t}) with ~ξxori =

~N along ∆x. Since the mean curvature

vector of Sn is H0
~N , if tx is small enough we have div ~ξxori < 2H0.

We denote Qx,ν
ori = Z(∆x × [0, νtx]) and

◦

Qx,ν
ori = Z(∆x × [0, νtx)), for

ν ∈ [1, 2] and :

Qn,1
ori = Dn ∩

⋃

x∈Sn

Qx,1
ori

Let Sn be part of the boundary of Dn in F (Sn
−t0) ∪ Sn; this the part of

∂Dn is not in Σ0 and ∂Kn×R. Any point in Sn is at positive distance from
Dn \ (Qn,1

uns ∪Qn,1
ori).

Then we define Qn
par,µ = Kn × [−µt1, 0] and introduce ~ξpar = −~ξ. We

have div ~ξpar = − div ~ξ ≤ −2H0 because of theH ≥ H0 hypothesis inM−(ε).
An equivalent of Lemma 3 can be proved. The idea is now to minimize

the functional F (Q) = A(∂Q) − 2H0V (Q) where Q ∈ F and F is the
same family of domains in Dn+1. We first remark that Claim 4 is still true.
Claim 5 is replaced by

Claim 6. Let Q be in F .

1. If Qn+1,1
uns ∩ (Kn+1/2 × [−ε1, 0]) 6⊂ Q, there exists Q′ ∈ F such that

Qn+1,1
uns ∩ (Kn+1/2 × [−ε1, 0]) ⊂ Q′ and F (Q′) ≤ F (Q).

2. If Qn+1,1
ori ∩ (Kn+1/2 × [−ε1, 0]) 6⊂ Q, there exists Q′ ∈ F such that

Qn+1,1
ori ∩ (Kn+1/2 × [−ε1, 0]) ⊂ Q′ and F (Q′) ≤ F (Q).
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Proof of Claim 6. The proof of both items are the same so let us prove the
second one (the situation is very similar to the one of Claim 5 so we refer
to Figure 7). Let Q be in F and Qn+1,1

ori ∩ (Kn+1/2 × [−ε1, 0]) 6⊂ Q. As in

the proof of Claim 5, the subset Qn+1,1
ori ∩ (Kn+1/2 × [−ε1, 0]) is compact so

there exists a finite number of points xi ∈ Sn+1 such that

Qn+1,1
ori ∩ (Kn+1/2 × [−ε1, 0]) ⊂

⋃

i

Qxi,3/2
ori .

As in claims 4 and 5, there is ν1 ∈ [3/2, 2] such thatH2(S∩Sx1

ori,ν1tx1
) = 0.

Then we denote O1 = (Qx1,ν1
ori ∩Dn+1)\Q. The boundary of O1 is composed

of a part ∂1O1 = ∂cQ ∩
◦

Qx1,ν1
ori and a second part ∂2O1 ⊂ Sx1

ori,ν1tx1
in the

complement of Q and a third part of vanishing H2 measure. In Qx1,ν1
ori , we

have the unit vector field ~ξx1

ori which satisfies div ~ξx1

ori < 2H0. Then:

2H0V (O1) ≥
∫

O1

div ~ξx1

ori

≥
∫

∂O1

〈~ξx1

ori, ~n(O1, x)〉

≥
∫

∂2O1

〈~ξx1

ori, ~n(O1, x)〉+
∫

∂1O1

〈~ξx1

ori, ~n(O1, x)〉.

On ∂2O1, ~ξ
x1

ori = ~n(O1, x) thus

A(∂2O1)− 2H0V (O1) =

∫

∂2O1

〈~ξx1

ori, ~n(O1, x)〉 − 2H0V (O1)

≤ −
∫

∂1O1

〈~ξx1

ori, ~n(O1, x)〉

≤ A(∂1O1).

Q1 = Q ∪O1 is an element of F since the boundary is still rectifiable and

F (Q ∪O1) = −2H0(V (Q) + V (O1)) +A(∂Q) +A(∂2O1)−A(∂1O1)

≤ F (Q).

Repeating this a finite number of times we construct the subset Q′.

As in proof of Lemma 3, we obtain a minimizer Q∞ and a smooth surface
S ′
n+1 which gives us S′

n. The uniform area estimate is also proved by the
same way.

Once the sequence S′
n is constructed, the end of the proof of Theorem 2

is the same as in the first case.
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6 The halfspace theorem

In this section we prove our main theorem.

6.1 Some preliminary computations

We begin by some computations. Let Σ be a Riemannian surface andM±(ε)
be an ε-half neighborhood of Σ. Let S be a constant mean curvature H0

surface in M±(ε). We denote by ∇ the connection on M±(ε) and we denote
by ∇̃ and ∆̃ the connection on S and its associated Laplace operator.

Let f be a function on R, we want to compute ∆̃f(d). Along S, we
denote by (~e1, ~e2, ~e3) an orthonormal basis of TM±(ε) such that ~e3 is normal
to S and the mean curvature vector to S is H0~e3. For any function g defined
in M±(ε) we have :

∆̃g =

2∑

i=1

〈∇~ei∇g,~ei〉+ 2〈∇g,H0~e3〉

Thus if g = f ◦ d, we get:

∆̃f ◦ d = f ′′(d)

2∑

i=1

〈∇d, ~ei〉2 + f ′(d)

(
2∑

i=1

〈∇~ei∇d, ~ei〉+ 2〈∇d,H0~e3〉
)

For any point in M±(ε), we denote by (~a1,~a2) an orthonormal basis
of TΣt which diagonalized the shape operator of Σt. Let κ1 and κ2 the
associated principal curvature such that ∇~ai

~ξ = κi~ai for i = 1, 2. (~a1,~a2, ~ξ)

is then an orthonormal basis of TM±(ε), we write ~a3 = ~ξ and we have
∇~a3~a3 = 0. Moreover, we define (λji )1≤i,j≤3 such that

~ei =

3∑

j=1

λji~aj

Using these expressions and working in M+(ε) where ∇d = ~a3, we have:

∆̃f ◦ d = f ′′(d)(λ31
2
+ λ32

2
) + f ′(d)

(
2∑

i=1

〈λ1iκ1~a1 + λ2iκ2~a2, λ
1
i~a1 + λ2i~a2 + λ3i~a3〉+ 2H0λ

3
3

)

= f ′′(d)(1 − λ33
2
) + f ′(d)

(
κ1(λ

1
1
2
+ λ12

2
) + κ2(λ

2
1
2
+ λ22

2
) + 2H0λ

3
3

)

= f ′′(d)(1 − λ33
2
) + f ′(d)

(
(κ1 + κ2) + 2H0λ

3
3 − κ1λ

1
3
2 − κ2λ

2
3
2
)
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Since the vector (λ13, λ
2
3, λ

3
3) has norm 1, there exists (ϕ, θ) ∈ [0, π]×[0, 2π]

such that
(λ13, λ

2
3, λ

3
3) = (sinϕ cos θ, sinϕ sin θ,− cosϕ)

The “−” sign in the last coordinate is there in order to make ϕ close to 0
in the proof below. Besides, if M+(ε) satisfies the H ≤ H0 hypothesis and
f is an increasing function, we obtain:

∆̃f◦d ≤ f ′′(d)(1−cos2 ϕ)+f ′(d)(2H0(1−cosϕ)−(κ1 cos
2 θ+κ2 sin

2 θ) sin2 ϕ)

∆̃f ◦ d ≤ f ′′(d) sin2 ϕ+ f ′(d)(2H0(1− cosϕ)− (κ1 cos
2 θ+ κ2 sin

2 θ) sin2 ϕ)
(2)

If we work in M−(ε), we have ∇d = −~a3 thus:

∆̃f ◦ d = f ′′(d)(λ31
2
+ λ32

2
)− f ′(d)

(
2∑

i=1

〈λ1iκ1a1 + λ2iκ2a2, λ
1
i a1 + λ2i a2 + λ3i a3〉+ 2H0λ

3
3

)

= f ′′(d)(1 − λ33
2
)− f ′(d)

(
κ1(λ

1
1
2
+ λ12

2
) + κ2(λ

2
1
2
+ λ22

2
) + 2H0λ

3
3

)

= f ′′(d)(1 − λ33
2
)− f ′(d)

(
(κ1 + κ2) + 2H0λ

3
3 − κ1λ

1
3
2 − κ2λ

2
3
2
)

The vector (λ13, λ
2
3, λ

3
3) has still norm 1, so there exists (ϕ, θ) ∈ [0, π] ×

[0, 2π] such that

(λ13, λ
2
3, λ

3
3) = (sinϕ cos θ, sinϕ sin θ,− cosϕ)

If M−(ε) satisfies the H ≥ H0 hypothesis and f is an increasing function,
we obtain:

∆̃f ◦ d ≤ f ′′(d)(1 − cos2 ϕ) + f ′(d)(2H0(cosϕ− 1) + (κ1 cos
2 θ + κ2 sin

2 θ) sin2 ϕ)

≤ f ′′(d) sin2 ϕ+ f ′(d)(2H0(cosϕ− 1) + (κ1 cos
2 θ + κ2 sin

2 θ) sin2 ϕ)

Since cosϕ− 1 ≤ 0, we get:

∆̃f ◦ d ≤
(
f ′′(d) + f ′(d)(κ1 cos

2 θ + κ2 sin
2 θ)
)
sin2 ϕ (3)

6.2 The main theorem

Let us now state and prove our main result.

Theorem 7. Let (Σ,dσ20) be a complete orientable Riemannian surface,
ε be positive and H0 non-negative. Let M±(ε) be an inside or outside ε-
half neighborhood of Σ. We consider a properly immersed constant mean
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curvature H0 surface S in M±(ε) with possibly non-empty boundary in Σε

and S ⊂M∗
±(ε).

We assume that (Σ,dσ20) is parabolic. We also assume that M±(ε) is
regular.

1. If S # M+(ε) is well oriented and M+(ε) satisfies the H ≤ H0 hy-
pothesis, the distance function d is constant on S.

2. If S #M−(ε) andM−(ε) satisfies the H ≥ H0 hypothesis, the distance
function d is constant on S.

Theorem 7 says that the equidistant surfaces are the only possible con-
stant mean curvatureH0 surfaces inM±(ε) (with good orientation inM+(ε)).
If no equidistant surface has mean curvature H0, no cmc H0 surface exists
in M±(ε).

As for Theorem 2, the proof of both cases are very similar so we will
mainly focus on the first one.

6.2.1 S #M+(ε) and H0 > 0

Let us consider S in M+(ε) and assume that S is not in one equidistant
surface Σt (d is not constant along S). Let µ < ε be the lower bound of
d on S, we notice that this lower bound is never reached because of the
H ≤ H0 hypothesis and the maximum principle.

The space N+(ε − µ) = Σ × [µ, ε] with the Riemannian metric ds2 can
be seen as an outside (ε − µ)-half neighborhood of (Σ,dσ2µ). Since M+(ε)
is regular, (Σ,dσ2µ) is parabolic (πµ : Σµ → Σ0 is quasi-isometric) and
N+(ε− µ) is regular.

S can be viewed as properly immersed in N+(ε−µ); thus we can assume
that infS d = 0 in the statement of Theorem 7.

Thus S # M+(ε) satisfies all the hypotheses of Theorem 2. So there
are ε′ > 0 and a surface S′ properly immersed in M+(ε

′) with nonempty
boundary in Σε′. S

′ is well oriented, has cmc H0 and is stable, moreover the
distance function d on S′ is not constant.

Let ε1 be less that ε′; for any point in S′ ∩M+(ε1), the geodesic dis-
tance to ∂S′ is lower bounded by ε′ − ε1. Since S′ is stable and M+(ε

′)
is geometrically bounded, the norm of the second fundamental form of S′

is bounded in M+(ε1). Choosing ε1 sufficiently close to infS′ d, there is a
constant c > 0 such that, along S′ ∩M+(ε1), |〈 ~N, ~ξ〉| > c where ~N is the
normal to S′. Thus π is a local quasi-isometry from S′ to Σ0.
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Let D by the connected component of M+(ε1) \ S′ which contains Σ0.
Let p be in S′∩M+(ε1) and q = π(p), along the geodesic segment [q, p] there
is a point p′ ∈ S′ which is the closest to q. p′ is in ∂D and we denote by
S′′ the connected component of S′ ∩M+(ε1) which contains p′. S′′ is not
in an equidistant surface to Σ0. We notice that since S′ is well oriented the
mean curvature vector at p′ points into D. Thus 〈 ~N, ~ξ〉 ≤ 0 at p′ which gives
〈 ~N, ~ξ〉 ≤ −c at p′. Since S′′ is connected, we get 〈 ~N, ~ξ〉 ≤ −c along S′′.

Let us construct on S′′ a non constant bounded superharmonic function
which does not reach its lower bound on the boundary. Let K be a real
constant and consider the function:

fK : R+ → R, x 7→ 1

K
(1− exp(−Kx))

We have f ′K(x) = exp(−Kx) ≥ 0 so fK is increasing and f ′′K(x)+Kf ′K(x) =
0.

Now, we use the computation (2) with f = fK . On S′′ we have |〈 ~N, ~ξ〉| <
−c, this means that cosϕ ≥ c in (2). But there exists A ≥ 0 such that
1− cosϕ ≤ A sin2 ϕ when cosϕ ≥ c. Then, from (2), we get:

∆S′′fK ◦ d ≤ f ′′K(d) sin2 ϕ+ f ′K(d)(2H0A sin2 ϕ− (κ1 cos
2 θ + κ2 sin

2 θ) sin2 ϕ)

≤
(
f ′′K(d) + f ′K(d)(2H0A− (κ1 cos

2 θ + κ2 cos
2 θ))

)
sin2 ϕ

Since M+(ε) is assumed to be regular there is a constant C such that
max(|κ1|, |κ2|) ≤ C. Then considering K = 2H0A+ C we get

∆S′′fK ◦ d ≤
(
f ′′K(d) + f ′K(d)(2H0A+ (C cos2 θ + C sin2 θ))

)
sin2 ϕ

≤
(
f ′′K(d) + f ′K(d)(2H0A+ C)

)
sin2 ϕ

≤ 0

fK ◦ d is then superharmonic on S′′, bounded since d is bounded and
fK ◦ d ≤ fK(ε1) = (fK ◦ d)|∂S′′ . If we prove that S′′ is parabolic at infinity
we could conclude that fK ◦ d is constant and S′′ ⊂ Σε1 ; this will give the
contradiction we look for and the first case of Theorem 7 will be proved.

First we deal with a special case: S′′ is embedded. This case is not nec-
essary for the general one but it explains some ideas. We have the following
claim

Claim 8. π is injective on S′′.

Proof. Let us assume that there is p0 and p1 in S′′ such that π(p0) = π(p1)
and d(p0) > d(p1). Let γ : [0, 1] → S′′ be a curve such that γ(0) = p0 and
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γ(1) = p1. We denote π ◦ γ by γ̃. γ̃ is a closed curve in Σ0, so we can
extend the definition of γ̃ by periodicity to R+. Since π : S′′ → Σ0 is a
local diffeomorphism, we can extend the definition of γ as a lift of γ̃ to [0, t0]
where γ(t0) ∈ ∂S′′ or to R+.

We have d(γ(0)) − d(γ(1)) > 0 then, for any t ∈ [0, t0 − 1], d(γ(t)) −
d(γ(t + 1)) > 0 since this quantity never vanishes. Since d(γ(t)) ≤ ε′,
we get d(γ(t)) < ε′ for any t ≥ 1. Hence γ(t) /∈ ∂S′′ for t ≥ 1 and γ is
then defined on R+. Thus γ(n) is a sequence of distinct points in S′′ with
π(γ(n)) = π(p0). This contradicts the fact that S′′ is properly embedded
and |〈 ~N, ~ξ〉| > c. The map π is then injective on S′′.

Since π : S′′ → Σ0 is an injective quasi-isometry and Σ0 is parabolic, S′′

is parabolic at infinity by Proposition 1; Theorem 7 would then be proved.
Let us now write the general case: S′′ is only immersed.
We recall that D0 is the connected component of M+(ε1) \ S′′ that con-

tains Σ0. The boundary ofD0 is composed by Σ0 and a set S0 made of points
in S′′ and Σε1 (see Figure 8). For any x in Σ0, we define v(x) = min{d(p), p ∈
π−1(x)∩ (S′′∪Σε1)}. It is clear that the graph of v, {(x, v(x)) ∈ Σ× [0, ε1]},
is included in S0. In fact we have equality because of the following claim.

Σε1

S ′′

S0

D0

Σ0

Figure 8:

Claim 9. The function v is continuous.

Proof. If v is not continuous there is a sequence of points (xn) converging
to x in Σ0 such that lim v(xn) = v0 6= v(x). Since S′′ ∪ Σε1 is closed,
(x, v0) ⊂ S′′ ∪ Σε1 thus v0 > v(x). (x, v(x)) is in S′′ ∪ Σε1 thus there is
a smooth function f defined in a neighborhood of x in Σ0 such that the
graph of f is included in S′′ ∪ Σε1 and f(x) = v(x) (we used the fact that
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|〈 ~N, ~ξ〉| > c along S′′). Then f < v0 near x and v(xn) ≤ f(xn) for n large.
We get a contradiction.

In fact near a point p ∈ S0, S′′ and Σε1 can be viewed as a finite union of
graphs above a small disk in Σ0 around π(p). Let us denote the associated
functions by fi, then v = mini fi (in view of Subsection 2.3, f0 = ε1 and
f1, · · · , fp have constant mean curvature graphs). The projection map π :
S0 → Σ0 is then a homeomorphism.

Let us denote by Oi the connected component of S0 minus the set of self-
intersection points in S′′ and the set S′′ ∩Σε1 (these are the points where v
is given by only one fj).

We denote Ωi = π(Oi) ⊂ Σ0. By the description made in Subsection 2.3,
the boundary of Oi can be decomposed as the union of part Γi,j and a set
of vanishing H1 measure. The set Γi,j is the part of ∂Ωi ∩ ∂Ωj where Ωi

“touches” Ωj. On Ωi, we consider the metric gi = π∗(ds
2
|Oi

), this metric is

well defined since π is smooth on S′′ and Σε1 . Moreover since π is quasi-
isometric along S′′ and Σε1 there is k > 0 such that 1

k2
dσ20 ≤ gi ≤ k2dσ20.

On Σ0 we consider the function u defined by u(p) = fK◦d(π−1
|S0

(p))−ε1 =
fK ◦ v − ε1. u is non-positive, smooth on each Ωi and ∆giu ≤ 0. In fact,
in view of its definition and the definition of S0, u can be interpreted as
the minimum of several superharmonic functions so, in some sense, u is a
superharmonic function. Let us explain how this idea can be used. The
following computations are inspired by [12] (see also [1, 3]).

Since (Σ0,dσ
2
0) is parabolic there exists a sequence of compactly sup-

ported smooth functions (ϕn)n such that 0 ≤ ϕn ≤ 1, (ϕ−1
n (1))n is a compact

exhaustion of Σ0 and

lim
n

∫

Σ0

‖∇0ϕn‖0dv0 = 0

The subscript 0 means that the computation are made with respect to the
metric dσ20 .

We use the subscript i when the computation are made with respect to
gi in Ωi. Let us define the following quantity :

In =
∑

i

∫

Ωi

divi(ϕ
2
nu∇iu)dvi

We notice that, since ϕn is compactly supported, In is well defined.
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In fact, because u∆iu ≥ 0, we have:

In =
∑

i

(∫

Ωi

2ϕnu〈∇iϕn,∇iu〉idvi +
∫

Ωi

ϕ2
n‖∇iu‖2i dvi +

∫

Ωi

ϕ2
nu∆iudvi

)

≥
∑

i

(∫

Ωi

2ϕnu〈∇iϕn,∇iu〉idvi +
∫

Ωi

ϕ2
n‖∇iu‖2i dvi

)

Because of Section 2, we also have :

In =
∑

i

∫

∂Ωi

ϕ2
nu〈∇iu, ~νi〉idH1

i

=
1

2

∑

(i,j)

(∫

Γi,j

ϕ2
nu〈∇iu, ~νi〉idH1

i +

∫

Γi,j

ϕ2
nu〈∇ju, ~νj〉jdH1

j

)

where ~νi is the outgoing normal from Ωi along Γi,j. We notice that the
results of Subsection 2.3 are applied for a Riemannian metric however this
Stokes formula can be easily deduced from the Euclidean one. Let Ci,j be
the part of ∂Oi ∩ ∂Oj such that π(Ci,j) = Γi,j. Let ~ni be the unit outgoing
normal from Oi in S

′′ or Σε1 . We then have:

∫

Γi,j

ϕ2
nu〈∇iu, ~νi〉idH1

i +

∫

Γi,j

ϕ2
nu〈∇ju, ~νj〉jdH1

j

=

∫

Ci,j

ϕ2
n(fK ◦ d− ε1)〈∇(fK ◦ d), ~ni〉dHds2

+

∫

Ci,j

ϕ2
n(fK ◦ d− ε1)〈∇(fK ◦ d), ~nj〉dHds2

=

∫

Ci,j

ϕ2
n(fK ◦ d− ε1)(f

′
K ◦ d)〈∇d, ~ni + ~nj〉dHds2

where ϕn is extended to M+(ε1) by ϕn(p) = ϕn(π(p)).
By construction, a point p ∈ S0 is such that d(p) ≤ d(q) for any q ∈

π−1(π(p)) ∩ (S′′ ∪ Σε1). And it implies that along Ci,j, 〈∇d, ~ni + ~nj〉 ≥ 0.
Hence since ϕ2

n(fK ◦d− ε1)(f ′K ◦d) ≤ 0, we obtain In ≤ 0. This proves that

∑

i

∫

Ωi

2ϕnu〈∇iϕn,∇iu〉idvi +
∫

Ωi

ϕ2
n‖∇iu‖2i dvi ≤ 0.
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Thus:

∑

i

∫

Ωi

ϕ2
n‖∇iu‖2i dvi ≤ −2

∑

i

∫

Ωi

ϕnu〈∇iϕn,∇iu〉idvi

≤ 2

(
∑

i

∫

Ωi

ϕ2
n‖∇iu‖2i dvi

) 1

2
(
∑

i

∫

Ωi

u2‖∇iϕn‖2i dvi
) 1

2

.

Thus ∑

i

∫

Ωi

ϕ2
n‖∇iu‖2i dvi ≤ 4

∑

i

∫

Ωi

u2‖∇iϕn‖2i dvi.

The function u is bounded and the metric gi and dσ20 are k-quasi-
isometric so there exists a constant C which does not depend on i and
n such that ∫

Ωi

u2‖∇iϕn‖2i dvi ≤ C

∫

Ωi

‖∇0ϕn‖20dv0.

Hence : ∑

i

∫

Ωi∩ϕ
−1
n (1)

‖∇iu‖2i dvi ≤ 4C

∫

Σ0

‖∇0ϕn‖20dv0.

Taking the limit n→ +∞ we obtain :

∑

i

∫

Ωi

‖∇iu‖2i dvi = 0.

This implies that u is constant so S0 ⊂ Σε1 , this gives the contradiction we
look for and Theorem 7 is proved.

6.2.2 S #M+(ε) and H0 ≥ 0

In the second case, the only difference is the construction of the superhar-
monic function. It is in fact simpler since we do not have to control 〈 ~N, ~ξ〉.
From (3), we have

∆S′′fK ◦ d ≤
(
f ′′K(d) + f ′K(d)(κ1 cos

2 θ + κ2 sin
2 θ)
)
sin2 ϕ

There is still a constant C such that max(|κ1|, |κ2|) ≤ C. Then considering
K = C we get

∆S′′fK ◦ d ≤
(
f ′′K(d) + f ′K(d)C

)
sin2 ϕ

≤ 0

fK ◦ d is then superharmonic and this gives also a contradiction.
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6.3 Hypotheses and stable surfaces

In this subsection, we want to make a remark about the hypothesis of The-
orem 7.

Let Σ0 be as in the theorem and assume that Σ0 has constant mean
curvature H0. Applying the Jacobi operator to the constant function 1, the
hypothesis about the mean curvature of the equidistant surfaces implies that
0 ≥ L(1) = −(2Ric(~n, ~n) + |A|2) along Σ0.

Now assume that Σ0 is stable, since Σ0 is parabolic there exists a se-
quence of compactly supported smooth functions (ϕk)k such that 0 ≤ ϕk ≤
1, (ϕ−1

k (1))k is a compact exhaustion of Σ0 and

lim
k

∫

Σ0

‖∇ϕk‖2 = 0

Then by stability we get:

0 ≥
∫

ϕ−1

k
(1)

−(2Ric(~n, ~n) + |A|2) ≥
∫

Σ0

−(2Ric(~n, ~n) + |A|2)ϕ2
k

≥
∫

Σ0

ϕkLϕk −
∫

Σ0

‖∇ϕk‖2

≥ −
∫

Σ0

‖∇ϕk‖2.

Taking the limit as k goes to +∞, we obtain 2Ric(~n, ~n)+ |A|2 = 0 along
Σ0. This implies that, at first order, the equidistant surfaces to Σ0 have
constant mean curvature H0.

Now if the equidistant surfaces have constant mean curvature H0, we
get 0 = L(1) and 2Ric(~n, ~n) + |A|2 = 0. Σ0 is then a stable cmc H0 surface.

If Σ0 is not stable, we see that there exists ε′ > 0 such that no Σt,
0 < t < ε′, has constant mean curvatureH0. Thus Theorem 7 says that there
is no constant mean curvature H0 surface in M±(ε

′) (with good orientation
in M+(ε

′)).

7 Halfspace theorems in certain ambient spaces

In this section, we prove a halfspace result when the ambient space is a Lie
group with a left invariant Riemannian metric. For a complete study of
3 dimensional metric Lie groups we refer to [15, 13].

Let G be a 3-dimensional connected Lie group and F be a normal prop-
erly embedded 2-dimensional Lie subgroup. We denote by g and f the asso-
ciated Lie algebras.
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Let ds2 be a left invariant metric on G. F is then a constant mean
curvature surface in G. Do we have a halfspace theorem with respect to
F? In fact for any g ∈ G, the coset gF is also a constant mean curvature
surface in G. Since the left multiplication by g is an isometry, the halfspace
problem is the same as the one for F .

Let X ∈ g be the left invariant unit vector field which is normal to F at
e. Let Y be a left invariant vector field, we have

〈∇XX,Y 〉 = −〈[X,Y ],X〉

Since F is normal, for any Y ∈ f, [X,Y ] ∈ f. Then X normal to f implies
that ∇XX = 0. Then t 7→ exp(tX) is the geodesic from e with speed X at
e.

The map F × R → G, (f, t) 7→ f exp(tX) is onto. Let t0 > 0 be the
infimum of {t > 0| exp(tX) ∈ F}. If t0 exists, F does not separate G and
the above map is bijective on F × [0, t0). If t0 = +∞, G is diffeomorphic to
F × R and F separates G.

We have the following halfspace result.

Proposition 10. Let G be a 3-dimensional connected Lie group with a left
invariant metric ds2. Let F be a normal properly embedded 2-dimensional
Lie subgroup of G which is parabolic for the left invariant metric. We denote
by H0 the mean curvature of F . Let S be a properly immersed constant mean
curvature H0 surface in G with no boundary.

• If F does not separate G and S is included in G \ F , S is a coset gF .

• If F separates G and S is included in the mean convex side of F , S is
a coset gF .

• If F separates G and S is included in the non mean convex side of F
and is well oriented with respect to F , S is a coset gF .

Let us just explain what is well oriented with respect to F . If G+ is the
non mean convex side of F and D is the connected component of G+ \ S
containing F , we ask that along S ∩ ∂D the mean curvature vector of S
points into D.

Proof. Let X ∈ g still denote the left invariant unit vector field which is
normal to F at e and points into the mean convex side. Let s 7→ g(s) =
exp(sX) be the geodesic curve from the unit element e ∈ G normal to
f = TeF . For any f ∈ F , s 7→ fg(s) is the geodesic curve from f ∈ F normal
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to TfF . So the equidistant to F at distance t is Fg(t). Since F is normal
Fg(t) = g(t)F , thus the equidistant to t has the same mean curvature as
F and the norm of its second fundamental form is constant. We denote
by Ft this equidistant. Depending on the case, G can be parametrized by
F × [0, t0) or F × R such that F × {s} is an equidistant surface to F . The
mean convex side is the part included in F × R+ (there is a change of sign
with respect to the preceding section). The projection map πs from Fs to
F0 is given by the right multiplication by g(s)−1.

Let s0 ∈ R be such that F × [0, s0]∩S is non empty. F × [0, s0] is then a
outside or inside regular s0-neighborhood that satisfies the hypothesis about
the mean curvature of the equidistant (F×[0, s0] is regular because the right
multiplication by g(s)−1 is quasi-isometric). Moreover, F is parabolic, so
Theorem 7 applies and S is an equidistant surface to F i.e. a coset gF .

Actually, when G is simply connected, the situation described in Propo-
sition 10 can be classified (see [15, 13]). Since F is normal, f is an ideal of
g. Besides, F being parabolic, f is then Abelian. This implies that G is
isomorphic as metric Lie group to R2 ⋊A R.

When A is in M2(R), R
2 ⋊A R is R2 × R with the Lie group structure:

(p, z) ∗ (p′, z′) = (p + ezAp′, z + z′)

and with the canonical left invariant metric making (∂x, ∂y, ∂z) an orthonor-
mal basis at the origin. Actually, trA can always be assumed non negative.
So we can assume that G = R2 ⋊A R and F is the R2 subgroup R2 ⋊A {0}.
The mean curvature of F is then trA/2 with respect to ∂z. We then have
the following consequence of Proposition 10.

Proposition 11. Let S be a properly immersed constant mean curvature
trA/2 surface in R2 ⋊A R with no boundary.

1. If S is included in the mean convex side of one {z = t}, S is equal to
one {z = t′}.

2. If S is included in the non mean convex side of one {z = t} and S is
well oriented with respect to it, S is equal to one {z = t′}.

When trA = 0, R2 ⋊A R is unimodular and F is minimal. We have four
possibilities for the Lie group structure

(a) A = 0 and G = R3, we recover the classical halfspace theorem for
minimal surfaces with respect to planes [11].
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(b) A =

(
0 1
0 0

)
and G = Nil3 with its classical left invariant metric. We

recover the halfspace theorem for ”vertical minimal planes” in Nil3 by
Daniel and Hauswirth [5].

(c) A =

(
1 0
0 −1

)
and G = Sol3. With its canonical left invariant metric,

we get the halfspace result of Daniel, Meeks and Rosenberg [6] with
respect to minimal planes. For other left invariant metrics we find new
results.

(d) A =

(
0 −1
1 0

)
and G = Ẽ(2). This gives new halfspace results.

When trA 6= 0, the group R2 ⋊A R is non unimodular. If A 6= λI2,
the group structure is classified by the value of the Milnor invariant D =
4detA/(trA)2.

(e) A = I2 and G = R2 ⋊I2 R = H3. We recover the halfspace theorem of
Rodriguez and Rosenberg [20] with respect to horospheres in H3.

(f) A =

(
1 1
0 1

)
. This gives a new halfspace result.

(g) A has Milnor invariant D < 1. G has the same group structure has

R2⋊AR with A =

(
1 0
0 b

)
with b ∈ R\{±1}. If b = 0, G = H2×R and

we recover the halfspace result of Hauswirth, Rosenberg and Spruck
[10] with respect to vertical horocylinders in H2 × R.

(h) A has Milnor invariant D > 1. This case carries also a new halfspace
theorem.

The above list gives all the simply connected metric Lie groups that
satisfies hypothesis of Proposition 10. S̃L2(R) is a unimodular Lie group
that does not appear in the above classification but a halfspace result can
be derived from this list.

In the case (g), let A be the matrix

(
1 0
c 0

)
and let us consider G =

R2⋊AR with its canonical left invariant metric. The Lie group structure is:

(x, y, z) ∗ (x′, y′, z′) = (x+ ezx′, y + y′ + b(ez − 1)x′, z + z′)
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and the left invariant metric can be written

ds2 = e−2zdx2 + (dy + c(1− e−z)dx)2 + dz2

Thus if we define X = x, Y = ez and Z = y + cx, the metric becomes

ds2 =
1

Y 2
(dX2 + dY 2) + (dZ − c

Y
dX)2

So G is isometric to the standard E(κ, τ) space with κ = −1 and τ = c/2.

In fact, this metric space is isometric to S̃L2(R) with a certain left invariant
metric.

In this case, Proposition 11 gives Proposition 12. In fact, the Abelian
subgroup R2⋊{0} is {Y = 1} and its cosets are the surfaces Σt = {Y = et}.
They have mean curvature 1/2. It is important to notice that {Y = 1} is

not a subgroup of S̃L2(R) but Proposition 12 is a halfspace result in S̃L2(R)
viewed as a metric space.

Proposition 12. Let S be a properly immersed constant mean curvature 1
2

surface in S̃L2(R) = E(−1, c/2) with no boundary.

1. If S is included in the mean convex side of one Σt, S is equal to one
Σt′.

2. If S is included in the non mean convex side of one Σt and S is well
oriented with respect to it, S is equal to one Σt′ .

In fact, the projection map (X,Y,Z) 7→ (X,Y ) is a Riemannian sub-

mersion from S̃L2(R) to H2. So the surfaces Σt that foliate S̃L2(R) are
called “vertical horocylinders” since they are the fiber over horocycles in
H2. Proposition 12 is then a halfspace result with respect to the vertical
horocylinders in S̃L2(R).

The author recently learns that this result is also proved by Carlos
Peñafiel in [19]

A The surfaces Cη,t

In Section 5, we consider the surface Cη,t ∈ R3 which is parametrized by :

Xη,t(u, v) =
(
(t− η

6
cos v) cos u, (t− η

6
cos v) sinu,

η

6
(1 + sin v)

)
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with (u, v) ∈ [0, 2π] × [−π/2, π/2]. This surface is drawn in Figure 9, it is
a part of a rotationnel torus in R3. A computation gives that the mean
curvature vector along Cη,t is

3(t− η
3 cos v)

η(t− η
6 cos v)

(cosu cos v, sin u cos v,− sin v) .

So when t ∈ [η/2, η], the mean curvature is always larger than 3/(2η).

Figure 9: The surface Cη,t
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