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The reachability problem for Vector Addition Systems (VASs) is a central problem of net theory. The general problem is known decidable by algorithms exclusively based on the classical Kosaraju-Lambert-Mayr-Sacerdote-Tenney decomposition (KLMTS decomposition). Recently from this decomposition, we deduced that a final configuration is not reachable from an initial one if and only if there exists a Presburger inductive invariant that contains the initial configuration but not the final one. Since we can decide if a Preburger formula denotes an inductive invariant, we deduce from this result that there exist checkable certificates of non-reachability in the Presburger arithmetic. In particular, there exists a simple algorithm for deciding the general VAS reachability problem based on two semi-algorithms. A first one that tries to prove the reachability by enumerating finite sequences of actions and a second one that tries to prove the non-reachability by enumerating Presburger formulas. In this paper we provide the first proof of the VAS reachability problem that is not based on the KLMST decomposition. The proof is based on the notion of production relations inspired from Hauschildt that directly provides the existence of Presburger inductive invariants.

Introduction

Vector Addition Systems (VASs) or equivalently Petri Nets are one of the most popular formal methods for the representation and the analysis of parallel processes [START_REF] Esparza | Decidability issues for petri netsa survey[END_REF]. The reachability problem is central since many computational problems (even outside the parallel processes) reduce to the reachability problem. Sacerdote and Tenney provided in [START_REF] Sacerdote | The decidability of the reachability problem for vector addition systems (preliminary version)[END_REF] a partial proof of decidability of this problem. The proof was completed in 1981 by Mayr [START_REF] Mayr | An algorithm for the general petri net reachability problem[END_REF] and simplified by Kosaraju [Kos82] from [START_REF] Sacerdote | The decidability of the reachability problem for vector addition systems (preliminary version)[END_REF][START_REF] Mayr | An algorithm for the general petri net reachability problem[END_REF]. Ten years later [START_REF] Luc | A structure to decide reachability in petri nets[END_REF], Lambert provided a more simplified version based on [START_REF] Kosaraju | Decidability of reachability in vector addition systems (preliminary version)[END_REF]. This last proof still remains difficult and the upperbound complexity of the corresponding algorithm is just known We denote by N, N>0, Z, Q, Q ≥0 , Q>0 the set of natural numbers, positive integers, integers, rational numbers, non negative rational numbers, and positive rational numbers. Vectors and sets of vectors are denoted in bold face. The ith component of a vector v ∈ Q d is denoted by v(i). We introduce ||v||∞ = max 1≤i≤d |v(i)| where |v(i)| is the absolute value of v(i). The total order ≤ over Q is extended component-wise into an order ≤ over the set of vectors Q d . The addition function + is also extended component-wise over Q d . Given two sets V1, V2 ⊆ Q d we denote by V1 + V2 the set {v1 + v2 | (v1, v2) ∈ V1 × V2}, and we denote by V1 -V2 the set {v1 -v2 | (v1, v2) ∈ V1 × V2}. In the same way given T ⊆ Q and V ⊆ Q d we let T V = {tv | (t, v) ∈ T × V}. We also denote by v1 + V2 and V1 + v2 the sets {v1} + V2 and V1 +{v2}, and we denote by tV and T v the sets {t}V and T {v}. In the sequel, an empty sum of sets included in Q d denotes the set reduced to the zero vector {0}.

A (binary) relation R over Q d is a subset R ⊆ Q d × Q d .
The composition of two relations R and S is the relation denoted by R • S and defined as usual by the following equality:

R • S = [ y∈Q d n (x, z) ∈ Q d × Q d | (x, y) ∈ R ∧ (y, z) ∈ S o
The reflexive and transitive closure of a relation R is denoted by R * . In this paper, notions introduced over the sets are transposed over the relations by identifying

Q d × Q d with Q 2d .
An order over a set S is said to be well if for every sequence (sn) n∈N of elements sn ∈ S we can extract a sub-sequence that is non-decreasing for , i.e. there exists a strictly increasing sequence (n k ) k∈N of natural numbers in (N, ≤) such that (sn k ) k∈N is non decreasing for . A minimal element of an ordered set (S, ) is an element s ∈ S such that for every t ∈ T the relation t s implies s = t. Given a set Y ⊆ S we denote by min (Y ) the set of minimal elements of the ordered set (Y, ). Let us recall that if (S, ) is well ordered then X = min (Y ) is finite and for every y ∈ Y there exists x ∈ X such that x y.

Let us consider an order over a set S. We introduce the component-wise extension of over the set of vectors S d defined by s t if s(i) t(i) for every i ∈ {1, . . . , d}.

Lemma 2.1 (Dickson's Lemma). The ordered set (S d , ) is well for every well ordered set (S, ).

Example 2.2. The set (N, ≤) is well ordered. Hence (N d , ≤) is also well ordered. The set (Z, ≤) is not well ordered.

Polytope Conic Sets

In this section we introduce the polytope conic sets and we provide a characterization of this class based on the vector spaces.

A conic set is a set C ⊆ Q d such that 0 ∈ C, C + C ⊆ C and such that Q ≥0 C ⊆ C.
A conic set C is said to be finitely generated if there exists a finite sequence c1, . . . , c k of vectors cj ∈ C such that

C = Q ≥0 c1 + • • • + Q ≥0 c k .
Definition 3.1. A conic set C is said to be polytope if it is definable in FO (Q, +, ≤, 0, 1).

Example 3.2. The conic set

C = {c ∈ Q 2 ≥0 | c(1) ≤ √ 2c
(2)} is not polytope.

Example 3.3. The conic set C = {(0, 0)} ∪ Q 2 >0 is polytope but it is not finitely generated.

A vector space is a set V ⊆ Q d such that 0 ∈ V, V + V ⊆ V and such that QV ⊆ V. Let X ⊆ Q d . The following set is a vector space called the vector space generated by X.

V = ( k X j=1 λjxj | k ∈ N and (λj, xj) ∈ Q × X )
Observe that this vector space is the minimal for the inclusion vector space that contains X. Note that the vector space V generated by a conic set C satisfies the equality V = C -C. Let us recall that every vector space V is generated by a finite set X with at most d vectors. The rank rank(V) of a vector space V is the minimal natural number r ∈ {0, . . . , d} such that there exists a finite set X with r vectors that generates V. Note that rank(V) ≤ rank(W) for every vector spaces

V ⊆ W. Moreover if V is strictly included in W then rank(V) < rank(W). The (topological) closure of a set X ⊆ Q d is the set X of vectors r ∈ Q d such that for every ∈ Q>0 there exists x ∈ X satisfying ||r -x||∞ < . A set X is said to be closed if X = X.
Note that X is closed and this set is the minimal for the inclusion closed set that contains X. Let us recall that a vector space V is closed and the closure of a conic set is a conic set. Since the classical topological interior of a conic set C is empty when the vector space generated by C is not equal to Q d (the conic set is degenerated), we introduce the notion of interior of C relatively to the vector space V = C -C. More precisely, a vector c ∈ C is said to be in the interior of C if there exists ∈ Q>0 such that c + v ∈ C for every v ∈ C -C satisfying ||v||∞ < . We denote by int(C) the set of interior vectors of C. Let us recall that int(C) is non empty for every conic set C, and C1 = C2 if and only if int(C1) = int(C2) for every conic sets C1, C2.

The following lemma characterizes the finitely generated cones. It proves that finitely generated conic sets are polytope. Lemma 3.4. Let V ⊆ Q d be a vector space. A conic set C ⊆ V is finitely generated if and only if there exists a sequence (hj) 1≤j≤k of vectors hj ∈ V\{0} such that:

C = k \ j=1 ( v ∈ V | d X i=1 hj(i)v(i) ≥ 0 )
Moreover in this case the following equality holds if and only if V is the vector space generated by C:

int(C) = k \ j=1 ( v ∈ V | d X i=1 hj(i)v(i) > 0 )
Proof. This is a classical result of duality [START_REF] Schrijver | Theory of Linear and Integer Programming[END_REF].

Theorem 3.5. A conic set C ⊆ Q d is polytope if and only if the conic set C ∩ V is finitely generated for every vector space V ⊆ Q d .
Proof. Let us first consider a polytope conic set C ⊆ Q d , let V be a vector space, and let us prove that X is finitely generated where X = C ∩ V. Since V is generated by a finite set, we deduce that V and in particular X are definable in FO (Q, +, ≤, 0, 1). Since this logic admits quantification elimination we deduce that there exists a quantifier free formula in this logic that denotes X. Hence there exists a finite sequence (Aj) 1≤j≤k of finite sets

Aj ⊆ Q d × {>, ≥} × Q such that X = S k j=1
Xj where:

Xj = \ (h,#,b)∈A j ( x ∈ Q d | d X i=1 h(i)x(i)#b )
We can assume without loss of generality that Xj is non empty. Let us introduce the following set Rj:

Rj = \ (h,#,b)∈A j ( x ∈ Q d | d X i=1 h(i)x(i) ≥ 0 )
Lemma 3.4 shows that Rj is finitely generated. In particular R = P k j=1 Rj is finitely generated. Thanks to Lemma 3.4, we deduce that R is closed. We are going to prove that X = R. Let us first consider x ∈ X. For every n ∈ N we have nx ∈ X since X is a conic set. Hence there exists j ∈ {1, . . . , k} such that nx ∈ Xj for an infinite number of n ∈ N. We deduce that x ∈ Rj. Thus X ⊆ R and we have proved that X ⊆ R by minimality of the closure of X. For the converse inclusion, let r ∈ R. There exists a sequence (rj) 1≤j≤k of vectors rj ∈ Rj such that r = P k j=1 rj. Since Xj is non empty, there exists xj ∈ Xj. As rj ∈ Rj we deduce that xj

+ Q ≥0 rj ⊆ Xj. Hence x + P k j=1 Q ≥0 rj ⊆ X where x = P k j=1 xj. In particular x + Q ≥0 r ⊆ X.
We deduce that for every ∈ Q>0 we have x + r ∈ X. Therefore r ∈ X. We have proved the other inclusion. Thus X = R is finitely generated.

Conversely, we prove by induction over r that the conic sets C ⊆ Q d such that rank(C -C) ≤ r and such that the conic set C ∩ V is finitely generated for every vector space V ⊆ Q d are polytope. The case r = 0 is immediate since in this case C = {0}. Let us assume the induction proved for an integer r ∈ N and let us consider a conic set C ⊆ Q d such that rank(C -C) ≤ r + 1 and such that the conic set C ∩ V is finitely generated for every vector space V ⊆ Q d . We introduce the vector space

W = C -C. Since C = C ∩ V with V = Q d ,
we deduce that C is finitely generated. Lemma 3.4 shows that there exists a finite sequence (hj) 1≤j≤k of vectors hj ∈ W\{0} such that the following equality holds:

C = k \ j=1 ( x ∈ W | d X i=1
hj(i)x(i) ≥ 0

)
Since int(C) = int(C) we get the following equality:

int(C) = k \ j=1 ( x ∈ W | d X i=1
hj(i)x(i) > 0

)

In particular int(C) is definable in FO (Q, +, ≤, 0, 1). As int(C) ⊆ C ⊆ C we deduce the following decomposition where Wj = {w ∈ W | P d i=1 hj(i)w(i) = 0}:

C = int(C) k [ j=1 (C ∩ Wj)
Observe that hj ∈ W\Wj and in particular Wj is strictly included in W. Thus rank(Wj) < rank(W) ≤ r + 1. Note that Cj = C ∩ Wj is a conic set such that rank(Cj -Cj) ≤ rank(Wj) ≤ r and such that Cj ∩ V is a finitely generated conic set for every vector space V. Thus by induction Cj is definable in FO (Q, +, ≤, 0, 1). We deduce that C is polytope. We have proved the induction.

Presburger Sets, Lambert Sets, And Petri Sets

In this section we introduce the Presburger sets, Lambert Sets, and Petri Sets.

A periodic set is a subset P ⊆ Z d such that 0 ∈ P and such that P + P ⊆ P. A periodic set P is said to be finitely generated if there exists a finite sequence p1, . . . , p k of vectors pj ∈ P such that

P = Np1 +• • •+Np k . A subset S ⊆ Z d is called a Presburger p(2) p(1) p(1) + 1 ≤ 2 p(2) p(2) ≤ p(1) Figure 1. A polytope periodic set.
set if it can be denoted by a formula in the Presburger arithmetic FO (Z, +, ≤, 0, 1). Let us recall [START_REF] Ginsburg | Semigroups, Presburger formulas and languages[END_REF] 

= {p ∈ N 2 | p(1) ≤ √ 2p(2)} is not polytope. Example 4.4. The periodic set P = {p ∈ N 2 | p(2) ≤ p(1) ≤ 2 p(2) -1} is represented in Figure 1. Observe that Q ≥0 P = {0} ∪ {c ∈ Q 2 >0 | p(2) ≤ p(1)
} is a polytope conic set. Thus P is a polytope periodic set.

The following lemma shows that the class of polytope periodic sets is stable by finite intersections.

Lemma 4.5. We have

(Q ≥0 P1) ∩ (Q ≥0 P2) = Q ≥0 (P1 ∩ P2) for every periodic sets P1, P2 ⊆ Z d . Proof. Observe that P1 ⊆ Q ≥0 P1 and P2 ⊆ Q ≥0 P2. Hence P1 ∩ P2 ⊆ C where C = (Q ≥0 P1) ∩ (Q ≥0 P2). As C is a conic set we deduce that Q ≥0 (P1∩P2) ⊆ C. For the converse inclusion. Let c ∈ C. Since c ∈ Q ≥0 P1, there exists λ1 ∈ Q ≥0 such that c ∈ λ1P1. Symmetrically there exists λ2 ∈ Q ≥0 such that c ∈ λ2P2. Let n1, n2 ∈ N>0 such that n1λ1 ∈ N and n2λ2 ∈ N.
Let n = n1n2 and observe that nc ∈ n2(n1λ1)P1 ⊆ P1 since P1 is a periodic set. Symmetrically nc ∈ P2. We have proved that nc ∈ P1 ∩ P2. Thus c ∈ Q ≥0 (P1 ∩ P2) and we get the other inclusion.

Lambert sets and Petri sets are central in this paper. 

= {(0, 0)} ∪ {(2 n , 1) | n ∈ N} ∪ ((1, 2) + N 2 ). Observe that Q ≥0 P is the polytope conic set {(0, 0)} ∪ Q 2 >0 .
We deduce that P is a Lambert set. Note that P is not a Petri set since

P ∩ (N × {1}) = {(2 n , 1) | n ∈ N} is not a Lambert set.
The class of Petri sets is between the class of Presburger sets and the class of Lambert sets. The previous Example 4.8 shows that the class of Petri sets is strictly included in the class of Lambert sets. The strict inclusion of the class of Presburger sets into the class of Petri sets will be a direct consequence of a stronger result proved in this paper. In fact the reachability relation of a Vector Addition System is proved to be a Petri relation and we know that in general such a relation is not Presburger.

Linearizations

The linearization of a periodic set P ⊆ Z d is the periodic set lin(P) defined by the following equality: lin(P) = (P -P) ∩ Q ≥0 P Lemma 5.1. The linearization of a polytope periodic set is finitely generated.

Proof. Let V be the vector space generated by P and let us introduce the conic set C = Q ≥0 P. Note that Q ≥0 P ⊆ V and since V is closed we get C ⊆ V. As Q ≥0 P is a polytope conic set we deduce that C is finitely generated. Hence there exists c1, . . . ,

c k ∈ C such that C = Q ≥0 c1 + • • • + Q ≥0 c k . As cj ∈ C ⊆ V = Q ≥0 P -Q ≥0 P,
by replacing cj by a vector in N>0cj we can assume that cj ∈ P -P for every j ∈ {1, . . . , k}.

We introduce the following set R:

R = ( r ∈ P -P | r = k X j=1 λjcj λj ∈ Q 0 ≤ λj < 1 )
We observe that every vector r ∈ R satisfies ||r||∞ ≤ s where s = P k j=1 ||cj||∞. Hence R ⊆ {-s, . . . , s} d and we deduce that R is finite.

Let L be the periodic set generated by the finite set R ∪ {c1, . . . , c k }. Since this finite set is included in lin(P) we deduce that L ⊆ lin(P). Let us prove the converse inclusion. Let x ∈ lin(P). Since x ∈ C, there exists a sequence (µj) 1≤j≤k of rational elements µj ∈ Q ≥0 such that x = P k j=1 µjcj. Let us introduce nj ∈ N such that λj = µj -nj satisfies 0 ≤ λj < 1. Let r = P k j=1 λjcj. As r = x -P k j=1 njcj we get r ∈ P -P. Thus r ∈ R. From x = r + P k j=1 njcj we get x ∈ L. We have proved that lin(P) = L is finitely generated.

We observe that if the intersection (b1 + P1) ∩ (b2 + P2) is empty where b1, b2 ∈ Z d and P1, P2 ⊆ Z d are two polytope periodic sets then the intersection (b1 + lin(P1)) ∩ (b2 + lin(P2)) may be non empty. In this section we show that a dimension is strictly decreasing.

Let us first introduce our definition of dimension. The dimension dim(X) of a non-empty set X ⊆ Z d is the minimal integer r ∈ {0, . . . , d} such that there exists k ∈ N>0, a sequence (bj) of vectors bj ∈ Z d , and a sequence (Vj) 1≤j≤k of vector spaces Vj ⊆ Q d such that rank(Vj) ≤ r and such that X ⊆ S k j=1 bj + Vj. The dimension of the empty set is defined by dim(∅) = -1.

In the reminder of this section we prove the following Theorem 5.2. All other results or definitions introduced in this section are not used in the sequel.

Theorem 5.2. Let b1, b2 ∈ Z d and let P1, P2 be two polytope periodic sets such that the intersection

(b1 + P1) ∩ (b2 + P2) is empty. The intersection X = (b1 + lin(P1)) ∩ (b2 + lin(P2)) satisfies: dim(X) < max{dim(b1 + P1), dim(b2 + P2)}
We first characterize the dimension of a periodic set.

Lemma 5.3. Let V be the vector space generated by a periodic set P. Then rank(V) = dim(P).

Proof. Let P be a periodic set and let us first prove by induction over k ∈ N>0 that P ⊆ S k j=1 Vj implies that there exists j ∈ {1, . . . , k} such that P ⊆ Vj for every sequence (Vj) 1≤j≤k of vector spaces Vj ⊆ Q d . The case k = 1 is immediate. Assume the property proved for an integer k ∈ N>0 and let us assume that P ⊆ S k+1 j=1 Vj. If P ⊆ V k+1 the property is proved. So we can assume that there exists p ∈ P\V k+1 . Let us prove that P ⊆ S k j=1 Vj. We consider x ∈ P. Observe that if x ∈ V k+1 then x ∈ S k j=1 Vj. So we can assume that x ∈ V k+1 . We observe that p + nx ∈ P for every n ∈ N since the set P is periodic. We deduce that there exists j ∈ {1, . . . , k + 1} such that p + nx ∈ Vj. Naturally this integer j depends on n. However, since {1, . . . , k + 1} is finite whereas N is infinite, there exists j ∈ {1, . . . , k + 1} and n < n in N such that p + nx and p + n x are both in Vj. As Vj is a vector space, we deduce that

n (p + nx) -n(p + n x) is in Vj. Hence p ∈ Vj. As p ∈ V k+1
we deduce that j = k + 1. As Vj is a vector space we deduce that (p + n x) -(p + nx) ∈ Vj. Hence x ∈ Vj. We have proved that x ∈ S k j=1 Vj. Thus P ⊆ S k j=1 Vj and by induction there exists j ∈ {1, . . . , k} such that P ⊆ Vj. We have proved the induction. Now, let us prove the lemma. We consider a periodic set P and we let V be the vector space generated by this set. Since P ⊆ V we deduce that dim(P) ≤ rank(V). For the converse inclusion, since P is non empty we deduce that P ⊆ S k j=1 bj +Vj where k ∈ N>0, bj ∈ Z d and Vj ⊆ Q d is a vector space such that rank(Vj) ≤ dim(P). Let us consider the set J = {j ∈ {1, . . . , k} | bj ∈ Vj} and let us prove that P ⊆ S j∈J Vj. Let p ∈ P and n ∈ N. Since np ∈ P there exists j ∈ {1, . . . , k} such that np ∈ bj + Vj. Hence there exists j ∈ {1, . . . , k} and n < n in N such that np and n p are both in bj + Vj. As Vj is a vector space we deduce that n p -np ∈ Vj. Thus p ∈ Vj. Moreover as bj ∈ np -Vj ⊆ Vj we deduce that j ∈ J. We have prove the inclusion P ⊆ S j∈J Vj. From the previous paragraph we deduce that there exists j ∈ J such that P ⊆ Vj. By minimality of the vector space generated by P we get V ⊆ Vj. Hence rank(V) ≤ rank(Vj). Since rank(Vj) ≤ dim(P) we have proved the inequality rank(V) ≤ dim(P).

Next we prove a separation property.

Lemma 5.4. Let C ≤ and C ≥ be two finitely generated conic sets that generates the same vector space V and such that the vector space generated by C ≤ ∩ C ≥ is strictly included in V. Then there exists a vector h ∈ V\{0} such that for every # ∈ {≤, ≥}, we have:

C # ⊆ ( v ∈ V | d X i=1 h(i)v(i)#0 )
Proof. Lemma 3.4 shows that there exists two finite sets H ≤ , H ≥ included in V\{0} such that:

C # = \ h∈H # ( v ∈ V | d X i=1 h(i)v(i) ≥ 0 ) int(C # ) = \ h∈H # ( v ∈ V | d X i=1 h(i)v(i) > 0 )
Assume by contradiction that the intersection int(C ≤ ) ∩ int(C ≥ ) is non empty and let c be a vector in this set. Observe that there exists ∈ Q>0 such that c + v ∈ C ≤ ∩ C ≥ for every v ∈ V such that ||v||∞ < . We deduce that the vector space generated by C ≤ ∩ C ≥ contains V and we get a contradiction.

We deduce that the following intersection is where

H = H ≤ ∪ H ≥ \ h∈H ( v ∈ V | d X i=1 h(i)v(i) > 0 )
The Farkas's lemma [START_REF] Schrijver | Theory of Linear and Integer Programming[END_REF] shows that there exists a nonzero function f :

H → Q ≥0 such that P h∈H f (h)h = 0. Let us introduce a = P h∈H ≥ f (h)h and b = P h∈H\H ≥ f (h)h.
Assume by contradiction that a = 0. Since a + b = 0 we deduce that b = 0. As f is not the zero function, there exists h ∈ H such that f (h) = 0. Note that either h ∈ H ≥ or h ∈ H\H ≥ . In the first case we deduce that int(C ≥ ) is empty and in the second case we deduce that int(C ≤ ) is empty. Since both cases are impossible we get a contradiction. Thus a = 0. For every c ∈ int(C ≥ ) we have

P d i=1 a(i)c(i) ≥ 0. Since the set {c ∈ Q d | P d i=1 a(i)c(i) ≥ 0} is closed we deduce that for every c ∈ int(C ≥ ) = C ≥ the same inequality holds. Now let us consider c ∈ int(C ≤ ). In this case P d i=1 b(i)c(i) ≥ 0. Since a + b = 0 we get P d i=1 a(i)c(i) ≤ 0.
We deduce that this inequality holds for every c ∈ C ≤ .

Remark 5.5. The previous Lemma 5.4 is wrong if we remove the finitely generated condition on the conic sets C ≤ and C ≥ . In fact let us consider the conic sets

C ≤ = {x ∈ Q 2 ≥0 | x(1) ≤ √ 2x(2)} and C ≥ = {x ∈ Q 2 ≥0 | x(2) ≥ √ 2x(2)}. Observe that C ≤ ∩ C ≥ = {0}.
Hence the vector space generated by the intersection is strictly included in Q 2 . However there does not exist a vector a ∈ Q 2 \{0} satisfying the separation property required by Lemma 5.4. This problem can be overcome by introducing the vector spaces of R d . We do not introduce this extension to simplify the presentation.

We can now provide a proof of Theorem 5.2. We consider two vectors b1, b2 ∈ Z d and two periodic sets P1, P2 ⊆ Z d such that (b1 + P1) ∩ (b2 + P2) = ∅. We introduce the intersection X = (b1 + lin(P1)) ∩ (b2 + lin(P2)). Observe that if X is empty the theorem is proved. So we can assume that there exists a vector b in this intersection. Let us denote by V1 and V2 the vector spaces generated by P1 and P2. Lemma 5.3 shows that rank(Vj) = dim(Pj) and from dim(bj + Pj) = dim(Pj) we deduce that dim(bj +Pj) = rank(Vj). As X is included in b+V where V = V1 ∩ V2, we deduce that if V is strictly included in Vj for one j ∈ {1, 2} then dim(X) ≤ rank(V) < rank(Vj) = dim(bj + Pj) and the theorem is proved. So we can assume that V1 = V2 = V. Let us consider the conic sets C1 = Q ≥0 P1 and C2 = Q ≥0 P2. Since P1 and P2 are polytope periodic sets, we deduce that C1 and C2 are finitely generated conic sets. Note that C1, C2 ⊆ V. We introduce the intersection C = C1 ∩ C2.

Assume by contradiction that the vector space generated by C is equal to V. Let us consider a vector c in the interior of C. The characterization given by Lemma 3.4 shows that in this case

int(C) = int(C1) ∩ int(C2). Since int(Cj) = int(Q ≥0 Pj) we deduce that c ∈ (Q ≥0 P1) ∩ (Q ≥0 P2). Lemma 4.5 shows that c ∈ Q ≥0 (P1 ∩ P2)
. By replacing c be a vector in N>0c we can assume that c ∈ P1 ∩ P2.

Let us prove that there exists k1 ∈ N such that b + k1c ∈ b1 + P1. From b ∈ b1 + lin(P1) we deduce that there exists p1, p 1 ∈ P1 such that b = b1 + p1 -p 1 . Since -p 1 is in the vector space generated by C and c is in the interior of C, there exists n1 ∈ N large enough such that n1c + (-p 1 ) ∈ C1. Hence there exists

n 1 ∈ N>0 such that n1n 1 c -n 1 p 1 ∈ P1. Thus n1n 1 c -p 1 ∈ (n 1 -1)p 1 + P1 ⊆ P1. Hence b + k1c ∈ b1 + P1 with k1 = n1n 1 .
Symmetrically we deduce that there exists k2 ∈ N such that b + k2c ∈ b2 + P2. We have proved that b + (k1 + k2)c ∈ (b1 + P1) ∩ (b2 + P2) and we get a contradiction since this intersection is supposed to be empty. We deduce that the vector space generated by C is strictly included in V. Lemma 5.4 shows that there exists a vector h ∈ V\{0} such that:

C1 ⊆ ( v ∈ V | d X i=1 h(i)v(i) ≥ 0 ) C2 ⊆ ( v ∈ V | d X i=1 h(i)v(i) ≤ 0 )
By replacing h by a vector in N>0h we can assume that h ∈ Z d . Now let us consider x ∈ X. Since x -b1 ∈ C1 we deduce that

P d i=1 h(i)(x(i) -b1(i)) ≥ 0 and since x -b2 ∈ C2 we deduce that P d i=1 h(i)(x(i) -b2(i)) ≤ 0. We introduce the integers z1 = P d i=1 h(i)b1(i) and z2 = P d i=1 h(i)b2(i).
We have proved that X can be decomposed into a finite union of slices X = S z 2 z=z 1 Xz where:

Xz = ( x ∈ X | d X i=1 h(i)x(i) = z )
Let us prove that dim(Xz) < rank(V). If Xz is empty the relation is immediate. If Xz is non empty let us consider x ∈ Xz and observe that Xz ⊆ x + W where:

W = ( v ∈ V | d X i=1 a(i)v(i) = 0 ) Note that h ∈ V\W.
We deduce that W is strictly included in V and in particular rank(W) < rank(V). Hence dim(Xz) < rank(V).

From X = S z 2 z=z 1 Xz and dim(Xz) < rank(V) for every z, we deduce that dim(X) < rank(V) and the theorem is proved.

Presburger Invariants

Given a relation R over Z d and two sets X, Y ⊆ Z d we introduce the forward image post R (X) and the backward image pre R (Y) defined by the following equalities:

( post R (X) = S x∈X {y ∈ Z d | (x, y) ∈ R} pre R (Y) = S y∈Y {x ∈ Z d | (x, y) ∈ R} We say that a set X ⊆ Z d is a forward invariant for R if post R (X) ⊆ X and we say that a set Y ⊆ Z d is a backward invariant for R if pre R (Y) ⊆ Y.
In the reminder of this section we prove the following Theorem 6.1. All other results or definitions introduced in this section are not used in the sequel. 

Q ≥0 Rj is polytope we deduce that Cj = {v ∈ Q d | ∃(u, v) ∈ Q ≥0 Rj} is polytope. Let us prove that Q ≥0 Pj = Cj.
By construction we have Pj ⊆ Cj. Since Cj is conic we deduce that Q ≥0 Pj ⊆ Cj. For the converse inclusion let v ∈ Cj. There exists u ∈ Q d such that (u, v) ∈ Q ≥0 Rj. Hence there exists λ ∈ Q ≥0 such that (u, v) ∈ λRj. Let us consider n ∈ N>0 such that nλj ∈ N and observe that (nu, nv) ∈ (nλ)Rj ⊆ Rj since Rj is periodic. Thus nv ∈ Pj and we have proved that v ∈ Q ≥0 Pj. Hence Q ≥0 Pj = Cj is a polytope conic set and we have proved that post R (X) ∩ S is a Lambert set for every

Presburger set S ⊆ Z d . Hence post R (X) is a Petri set. From pre R (Y) = post R -1 (Y) with R -1 = {(y, x) | (x, y) ∈ R} we deduce that pre R (Y) is a Petri set.
Now, let us prove Theorem 6.1. We consider a reflexive and transitive Petri relation R * . We introduce the notion of separators. A separator is a couple (X, Y) of Presburger sets such that the intersection R * ∩ (X × Y) is empty. Since R * is reflexive observe that X∩Y is empty. The Presburger set D = Z d \(X∪Y) is called the domain of (X, Y). Let us observe that a separator (X, Y) with an empty domain is a partition of Z d such that X is a Presburger forward invariant and Y is a Presburger backward invariant. In particular Theorem 6.1 is obtained thanks to the following Lemma 6.3 with an immediate induction. Lemma 6.3. Let (X0, Y0) be a separator with a non-empty domain D0. There exists a separator (X, Y) with a domain D such that X0 ⊆ X, Y0 ⊆ Y and dim(D) < dim(D0).

Proof. We first observe that a couple (X, Y) of Presburger sets is a separator if and only if post R * (X)

∩ pre R * (Y) = ∅ if and only if post R * (X) ∩ Y = ∅ if and only if pre R * (Y) ∩ X = ∅.
Since R * is a Petri relation we deduce that post R * (X0) is a Petri set. As D0 is a Presburger set, we deduce that post R * (X0) ∩ D0 is a Lambert set. Hence post R * (X0) ∩ D0 = S k j=1 bj + Pj where bj ∈ Z d and Pj ⊆ Z d is a polytope periodic set. We introduce the following Presburger set:

S = k [ j=1 bj + lin(Pj) Observe that post R * (X0) ∩ D0 ⊆ S. We deduce that the set Y = Y0 ∪ (D0\S) is such that post R * (X0) ∩ Y = ∅. Hence (X0, Y) is a separator. Symmetrically, since R * is a Petri relation we deduce that pre R * (Y) is a Petri set. As D0 is a Presburger set, we deduce that pre R * (Y) ∩ D0 is a Lambert set. Hence pre R * (Y) ∩ D0 = S n l=1 c l + Q l where c l ∈ Z d and Q l ⊆ Z d
is a polytope periodic set. We introduce the following Presburger set:

T = n [ l=1 c l + lin(Q l )
Observe that pre R * (Y) ∩ D0 ⊆ T. We deduce that the set

X = X0 ∪ (D0\T) is such that pre R * (Y) ∩ X = ∅. Hence (X, Y) is a separator.
Let us introduce the domain D of (X, Y). We have the following equality where Z j,l = (bj + lin(Pj)) ∩ (c l + lin(Q l )):

D = D0 ∩ ( [ 1≤j≤k 1≤l≤n Z j,l ) As (X, Y) is a separator we deduce that post R * (X)∩pre R * (Y) is empty. As bj + Pj ⊆ post R * (X0) ⊆ post R * (X) and c l + Q l ⊆ pre R * (Y)
we deduce that the intersection (bj + Pj) ∩ (c l + Q l ) is empty. Theorem 5.2 shows that dim(Z j,l ) < max{dim(bj + Pj), dim(c l + Q l )}. Since bj + Pj ⊆ D0 and c l + Q l ⊆ D0 we deduce that dim(bj + Pj) ≤ dim(D0) and dim(c l + Q l ) ≤ dim(D0). We have proved that dim(D) < dim(D0).

Vector Addition Systems

In this section we introduce the Vector Addition Systems, the production relations and a well order over the set of runs of Vector Addition Systems.

A Vector Addition System (VAS) is a finite subset A ⊆ Z d . A marking is a vector m ∈ N d . The semantics of vector addition systems is obtained by introducing for every word w = a1 . . . a k of vectors aj ∈ A the relation w -→ over the set of markings defined by x w -→ y if there exists a word ρ = m0 . . . m k of markings mj ∈ N d such that (x, y) = (m0, m k ) and mj = mj-1 + aj for every j ∈ {1, . . . , k}. The word ρ is unique and it is called the run from x to y labeled by w. The marking x is called the source of ρ and it is denoted by src(ρ), and the marking y is called the target of ρ and it is denoted by tgt(ρ). The set of runs is denoted by Ω. 

-→ρ= * -→m 0 • • • • • * -→m k
The following Lemma 7.1 shows that * -→ρ is periodic for every run ρ as a composition of periodic relations. Note that in Section 8 we prove that this periodic relation is polytope. 

* -→m 0 v1 • • • v k * -→m k v k+1
We introduce the vector aj = mjmj-1 for every ∈ {1, . . . , k}. Since mj-1 a j -→ mj we deduce that mj-1 + vj a j -→ mj + vj. Moreover, as vj * -→m j vj+1, there exists a word wj ∈ A * such that mj + vj w j --→ mj + vj+1. We deduce that the following relation holds:

m0 + v0 w 0 a 1 w 1 ...a k w k ----------→ m k + v k+1
Therefore (m0, m k ) + (v0, v k+1 ) is in the reachability relation.

We introduce the order over the set of runs defined by ρ ρ if the following inclusion holds:

(src(ρ ), tgt(ρ ))+ * -→ ρ ⊆ (src(ρ), tgt(ρ))+ * -→ρ
In the reminder of this section we prove the following theorem. All other results or definitions introduced in this section are not used in the sequel.

Theorem 7.3. The order is well.

The order is proved well thanks to the Higmann's Lemma. We first recall this lemma. Let us consider an order over a set S. We introduce the order * over the set of words over S defined by u * v where u = s1 . . . s k with sj ∈ S if there exists a sequence (tj) 1≤j≤k with tj ∈ S and sj tj and a sequence (wj) 0≤j≤k of words wj ∈ S * such that v = w0t1w1 . . . t k w k .

Lemma 7.4 (Higmann's Lemma). The ordered set (S * , * ) is well for every well ordered set (S, ).

We associate to every run ρ = m0 . . . m k the word α(ρ) = (a1, m1) . . . (a k , m k ) where aj = mjmj-1. Note that α(ρ) is a word over the alphabet S = A × N d . We introduce the order over this alphabet by (a, m) (a , m ) if a = a and m ≤ m . Since A is a finite set and ≤ is a well order over N d , we deduce that is a well order over S. From the Higmann's lemma, the order * is well over S * . We introduce the well order ¢ over the set of runs defined by ρ ¢ ρ if α(ρ) * α(ρ ), src(ρ) ≤ src(ρ ) and tgt(ρ) ≤ tgt(ρ ). The following lemma provides a useful characterization of this order. Lemma 7.5. Let ρ = m0 . . . m k be a run and let ρ be another run. We have ρ ¢ ρ if and only if there exists a sequence (vj) 0≤j≤k+1 of vectors in N d such that ρ = ρ 0 . . . ρ k where ρ j is a run from mj + vj to mj + vj+1.

Proof. We introduce the sequence (aj) 1≤j≤k defined by aj = mjmj-1.

Assume first that ρ ¢ ρ . Since α(ρ) * α(ρ ) we deduce that α(ρ ) = w0(a1, m 1 )w1 . . . (a k , m k )w k where wj ∈ S * and m j ≥ mj. We introduce the sequence (vj) 0≤j≤k+1 defined by v0 = src(ρ ) -src(ρ), v k+1 = tgt(ρ ) -tgt(ρ) and vj = m j -mj for every j ∈ {1, . . . , k}. Observe that vj ∈ N d for every j ∈ {0, . . . , k + 1}. We deduce that ρ can be decomposed into ρ = ρ 0 . . . ρ k where ρ j is the run from mj +vj to mj +vj+1 such that α(ρ j ) = wj.

Conversely let (vj) 0≤j≤k+1 be a sequence of vectors in N d such that ρ = ρ 0 . . . ρ k where ρ j is a run from mj + vj to mj + vj+1. We deduce that we have the following equality where m j = mj + vj and a j ∈ A:

α(ρ ) = α(ρ 0 )(a 1 , m 1 )α(ρ 1 ) . . . (a k , m k )α(ρ k )
Observe that a j = tgt(ρ j-1 ) -m j = (mj + vj) -(mj-1 + vj) and in particular a j = aj. We deduce that α(ρ) * α(ρ ).

Moreover, since src(ρ) ≤ src(ρ ) and tgt(ρ) ≤ tgt(ρ ) we deduce that ρ ¢ ρ .

Since ¢ is a well order, the following lemma shows that is a well order. We have proved Theorem 7.3. Lemma 7.6. ρ ¢ ρ implies ρ ρ .

Proof. Assume that ρ = m0 . . . m k . Lemma 7.5 shows that there exists a sequence (vj) 0≤j≤k+1 of vectors in N d such that ρ = ρ 0 . . . ρ k where ρ j is a run from mj + vj to mj + vj+1. Lemma 7.2 shows that (src(ρ j ), tgt(ρ

j ))+ * -→ ρ j ⊆ * -→. Hence (vj, vj+1)+ * -→ ρ j ⊆ * -→m j . We deduce that (v0, v k+1 )+ * -→ ρ ⊆ *
-→ρ by composition. Since (src(ρ ), tgt(ρ )) = (src(ρ), tgt(ρ)) + (v0, v k+1 ) we get ρ ρ from the previous inclusion.

Polytope Production Relations

In this section we prove that production relations are polytope (Theorem 8.1). All other results or definitions introduced in the section are not used in the sequel.

Theorem 8.1. Production relations are polytope.

The following lemma shows that polytope periodic relations are stable by composition. In particular it is sufficient to prove that production relations * -→m are polytope for every marking m ∈ N d in order to deduce that production relations * -→ρ are polytope for every run ρ. Lemma 8.2. We have

Q ≥0 (R1 • R2) = (Q ≥0 R1) • (Q ≥0 R2) for every periodic relations over Z d . Proof. We have R1 ⊆ Q ≥0 R1 and R2 ⊆ Q ≥0 R2. Thus R1 •R2 ⊆ C where C = (Q ≥0 R1) • (Q ≥0 R2). As C is a conic set we get Q ≥0 (R1 • R2) ⊆ C.
For the converse inclusion, let us consider (x, z) ∈ C. There exists y ∈ Q d such that (x, y) ∈ Q ≥0 R1 and (y, z) ∈ Q ≥0 R2. There exists λ1, λ2 ∈ Q ≥0 such that (x, y) ∈ λ1R1 and (y, z) ∈ λ2R2. We introduce n1, n2 ∈ N>0 such that n1λ1 ∈ N and n2λ2 ∈ N and we deduce that n(x, y) ∈ R1 and n(y, z) ∈ R2 with n = n1n2. Hence n(x, z) ∈ R1 • R2. We deduce that (x, z) ∈ Q ≥0 (R1 • R2).

Theorem 3.5 shows that the conic set Q ≥0 * -→m is polytope if and only if the following conic set is finitely generated for every vector space

V ⊆ Q d × Q d : (Q ≥0 * -→m) ∩ V We introduce the periodic relation * -→m,V defined as the inter- section * -→m ∩V . Let us observe that (Q ≥0 * -→m) ∩ V is equal to Q ≥0 *
-→m,V . So, we just have to prove that the conic set

Q ≥0 *
-→m,V is finitely generated for every m ∈ N d and for every vector space

V ⊆ Q d × Q d . We introduce the set Ωm,V of runs ρ such that (src(ρ), tgt(ρ))- (m, m) is in (N d × N d ) ∩ V . Note that a couple (r, s) ∈ N d × N d satisfies r *
-→m,V s if and only if there exists a run ρ ∈ Ωm,V such that src(ρ) = m + r and tgt(ρ) = m + s. We introduce the set Qm,V of markings q that occurs in at least one run ρ ∈ Ωm,V . In general the set Qm,V is infinite. We consider the set Im,V of i ∈ {1, . . . , d} such that {q(i) | q ∈ Qm,V } is infinite. We observe that if i ∈ Im,V there exists a sequence of markings in Qm,V such that the ith component is strictly increasing. We are going to prove that there exists a sequence of markings in Qm,V such that every component in Im,V is strictly increasing. This is proved by introducing the intraproductions. An intraproduction for (m, V ) is a triple (r, x, s) such that x ∈ N d , (r, s) ∈ (N d × N d ) ∩ V and such that:

r * -→m x * -→m s Since *
-→m is a periodic relation we deduce that the set of intraproductions is stable by addition. In particular m + nx occurs in at least one run of Ωm,V for every intraproduction (r, x, s) and for every n ∈ N. Hence, if x(i) > 0 then i ∈ Im,V . An intraproduction for (m, V ) is said to be total if x(i) > 0 for every i ∈ Im,V . Lemma 8.3. There exists a total intraproduction for (m, V ).

Proof. Since finite sums of intraproductions are intraproductions, it is sufficient to prove that for every i ∈ Im,V there exists an intraproduction (r, x, s) for (m, V ) such that x(i) > 0. We fix i ∈ I.

Let us first prove that there exists q ≤ q in Qm,V such that q(i) < q (i). Since i ∈ I there exists a sequence (qn) n∈N of markings qn ∈ Qm,V such that (qn(i)) n∈N is strictly increasing. Since (N d , ≤) is well ordered, we can extract for this sequence a subsequence that is non decreasing for ≤. We have proved that there exists q ≤ q in Qm,V such that q(i) < q (i).

As q ∈ Qm,V then q occurs in a run in Ωm,V . Hence there exists (r, s)

∈ (N d × N d ) ∩ V such that: m + r * -→ q * -→ m + s Symmetrically, as q ∈ Qm,V there exists (r , s ) ∈ (N d ×N d )∩V such that: m + r * -→ q * -→ m + s
Let us introduce v = qq. We deduce:

• (m + r ) + r * -→ q + r from m + r * -→ q . • q + (v + r) * -→ (m + s) + (v + r) from q * -→ m + s. • (m + r) + (v + s) * -→ q + (v + s) from m + r * -→ q. • q + s * -→ (m + s ) + s from q * -→ m + s .
Since q + r = q + v + r and q + v + s = q + s, we have proved the following relations where x = s + v + r: -→ y if there exists a word ρ = m0 . . . m k of extended markings relaxed over I such that (x, y) = (m0, m k ) and mj(i) = mj-1(i) + aj(i) for every j ∈ {1, . . . , k} and for every i ∈ {1, . . . , d}\I. The word ρ is unique and it is called the run from x to y labeled by w.

We introduce the finite graph Gm,V = (Q, A, E) where Q = {q I m,V | q ∈ Qm,V } and where E = {(p I m,V , a, q I m,V ) | p, q ∈ Qm,V ∧ q = p + a}. We introduce the periodic relation Rm,V of couples (r, s) ∈ (N d ×N d )∩V such that r(i) = s(i) = 0 for every i ∈ {1, . . . , d}\Im,V and such that there exists a cycle in Gm,V on the state m I m,V labeled by a word a1 . . . a k where aj ∈ A such that r + P k j=1 aj = s. Lemma 8.4. The periodic relation Rm,V is Presburger.

Proof. This is a classical result based on the fact that the Parikh image of a regular language is Presburger.

Lemma 8.5. The following equality holds:

Q ≥0 Rm,V = Q ≥0 * -→m,V
Proof. Let us first prove the inclusion ⊇. Let (r, s) such that r * -→m,V s. In this case there exists a word w ∈ A * such that m + r w -→ m + s. Observe that m + nr and m + ns are in Qm,V for every n ∈ N. Hence r(i) > 0 or s(i) > 0 implies i ∈ Im,V and we deduce that m I m,V w -→ m I m,V . Therefore w is the label of cycle in Gm,V on m I m,V . We have proved that (r, s) ∈ Rm,V . Now let us prove the inclusion ⊆. We consider (r, s) ∈ Rm,V . In this case (r, s) ∈ (N d × N d ) ∩ V satisfies r(i) = s(i) = 0 for every i ∈ Im,V and there exists a word w = a1 . . . a k of vectors aj ∈ A that labels a cycle in Gm,V on m I m,V and such that m + r + P k j=1 aj = m + s. Let us consider a total intraproduction (r , x, s ) for (m, V ). Given p ∈ N and j ∈ {0, . . . , k} we introduce the following vector mp,j:

mp,j = m + r + px + a1 + • • • + aj
Let us first prove that there exists p ∈ N such that mp,j(i) ∈ N for every i ∈ Im,V and j ∈ {0, . . . , k}. Let i ∈ Im,V and j ∈ {0, . . . , k}, since x(i) > 0, there exists pi,j ∈ N such that mp,j(i) ∈ N for every p ≥ pi,j. We deduce that there exists p ∈ N such that mp,j(i) ∈ N for every i ∈ Im,V and j ∈ {0, . . . , k}.

Now we prove that mp,j(i) ∈ N for every i ∈ {1, . . . , d}\Im,V and j ∈ {0, . . . , k}. Let j ∈ {0, . . . , k}. Since w is the label of a cycle on m I m,V , there exists an extended marking qj relaxed over Im,V such that the following relation holds:

m I m,V a 1 ...a j ----→ qj
We deduce that for every i ∈ {1, . . . , d}\Im,V we have m(i) + a1(i) + • • • + aj(i) = qj(i). Since r(i) = 0 and x(i) = 0 we get mp,j(i) ∈ N.

We have proved that mp,j ∈ N d for every j ∈ {0, . . . , k}. Since mp,jmp,j-1 = aj we deduce that ρp = mp,0 . . . m p,k is a run. Note that mp,0 = m + px + r and m p,k = m + px + r + P k j=1 aj = m + px + s. We have proved that the following relation holds: From the inclusion Rm,V ⊆ Q ≥0 * -→m,V we get the inclusion

m + px + r w -→ m + px + s
Q ≥0 Rm,V ⊆ Q ≥0 * -→m,V .
Lemma 8.6. The conic set Q ≥0 P if finitely for every Presburger periodic set P.

Proof. Let us consider a Presburger periodic set P. Since P is Presburger then P = S k j=1 bj + Pj where bj ∈ Z d and Pj ⊆ Z d is a finitely generated periodic set. We introduce the finitely generated conic set C = P k j=1 (Q ≥0 bj + Cj) where Cj is the finitely generated conic set Cj = Q ≥0 Pj. Since P ⊆ C and C is a conic set we deduce the inclusion Q ≥0 P ⊆ C. As C is finitely generated we deduce that C is closed. Hence Q ≥0 P ⊆ C. For the other inclusion let p ∈ Pj. For every n ∈ N we have bj + np ∈ P. Hence 1 n bj + p ∈ Q ≥0 P for every n ∈ N>0. We deduce that p ∈ Q ≥0 P. Therefore Pj ⊆ Q ≥0 P. We deduce that Cj ⊆ Q ≥0 P. As Q ≥0 bj ⊆ Q ≥0 P ⊆ Q ≥0 P we have proved the inclusion C ⊆ Q ≥0 P. Hence the previous inclusion is in fact an equality. Now, we can prove Theorem 8.1. Lemma 8.4 shows that Rm,V is a Presburger periodic relation. Lemma 8.6 proves that the conic set Q ≥0 Rm,V is finitely generated. Lemma 8.5 shows that Q ≥0 * -→m,V is finitely generated. Hence (Q ≥0 * -→m) ∩ V is a finitely generated conic set for every vector space V ⊆ Q d × Q d . Theorem 3.5 shows that the conic relation Q ≥0 * -→m is polytope. Hence * -→m is a polytope periodic relation.

Petri Reachability Relations

In this section we prove the following Theorem 9.1. All other results or definitions introduced in this section are not used in the sequel.

Theorem 9.1. The reachability relation of a Vector Addition System is a Petri relation.

We are interested in proving that * -→ is a Petri relation. This problem is equivalent to prove that * -→ ∩((m, n) + P ) is a Lambert relation for every (m, n) ∈ N d × N d and for every finitely generated periodic relation P ⊆ N d × N d . We introduce the order ≤P over P defined by p ≤P p if p ∈ p + P . Since P is finitely generated we deduce that ≤P is a well order over P (Dickson's Lemma). We introduce the set Ωm,P,n of runs ρ such that (src(ρ), tgt(ρ)) ∈ (m, n) + P . This set is well ordered by the relation P defined by ρ P ρ if ρ , (src(ρ), tgt(ρ)) -(m, n) ≤P (src(ρ ), tgt(ρ )) -(m, n). We deduce that min P (Ωm,P,n) is finite. Let us prove ⊆. Let (x , y ) in the intersection * -→ ∩((m, n) + P ). There exists a run ρ ∈ Ωm,P,n such that x = src(ρ ) and y = tgt(ρ ). Since P is a well order, there exists ρ ∈ min P (Ωm,P,n) such that ρ P ρ . We deduce that (x , y ) is in (src(ρ), tgt(ρ))+ * -→ρ. We get (x , y ) ∈ (src(ρ), tgt(ρ)) + ( * -→ρ ∩P ) and we have proved the inclusion ⊆. 

Conclusion

The reachability problem for Vector Additions Systems consists to decide for a triple (m, A, n) where m, n are two markings of a Vector Addition System A if there exists a word w ∈ A * such that m The correctness is immediate and the termination is guaranteed by the following Theorem 10.1.

Theorem 10.1. For every pair of markings (m, n) in the complement of the reachability relation of a Vector Addition System, there exists a partition of the set of markings into a Presburger forward invariant that contains m and a Presburger backward invariant that contains n.

Proof. Let us consider X = {m} and Y = {n} and let R * be the reachability relation of the Vector addition system. Theorem 9.1 shows that R * is a Petri relation. Since R * is reflexive and transitive and such that (X × Y) ∩ R * = ∅, Theorem 6.1 shows that there exists a partition of the set of markings into a Presburger forward invariant set that contains X and a Presburger backward invariant set that contains Y. This algorithm does not require the classical KLMST decomposition. Note however that the complexity of this algorithm is still open. In fact, the complexity depends on the minimal size of a word w ∈ A * such that m w -→ n if m * -→ n, and the minimal size of a Presburger formula ψ(x) denoting a forward invariant M such that m ∈ M and n ∈ M otherwise. We left as an open question the problem of computing lower and upper bounds for these sizes. Note that the VAS exhibiting a large (Ackermann size) but finite reachability set given in [START_REF] Mayr | The complexity of the finite containment problem for petri nets[END_REF] does not directly provide an Ackermann lower-bound for these sizes since Presburger forward invariants can over-approximate reachability sets.

As future work we are interested in providing complexity bounds on formulas in FO (Q, +, ≤, 0, 1) denoting the polytope conic sets Q ≥0

  Definition 4.6. A Lambert set L ⊆ Z d is a finite union of sets b + P where b ∈ Z d and P ⊆ Z d is a polytope periodic set. Definition 4.7. A Petri set is a subset X ⊆ Z d such that X ∩ S is a Lambert set for every Presburger set S ⊆ Z d . Example 4.8. Let us consider the periodic set P

Theorem 6. 1 .

 1 Let R * be a reflexive and transitive Petri relation over Z d and let X, Y ⊆ Z d be two Presburger sets such that R * ∩ (X × Y) is empty. There exists a partition of Z d into a Presburger forward invariant that contains X and a Presburger backward invariant that contains Y.We first prove the following lemma. Lemma 6.2. The sets post R (X) and pre R (Y) are Petri sets for every Petri relation R ⊆ Z d × Z d and for every Presburger sets X, Y ⊆ Z d Proof. Let us first prove that post R (X) is a Petri set. We consider a Presburger set S ⊆ Z d . Observe that X × S is a Presburger relation. Since R is a Petri relation we deduce that R ∩ (X × S) is a Lambert relation. Hence this set can be decomposed into a union S k j=1 (aj, bj) + Rj with k ∈ N, (aj, bj) ∈ Z d × Z d and Rj is a polytope periodic relation. We deduce that post R (X) ∩ S = S k j=1 bj + Pj where Pj = {v ∈ Z d | ∃(u, v) ∈ Rj}. Since Rj is a periodic relation we deduce that Pj is a periodic set. Moreover since

The

  reachability relation is the relation denoted by * -→ over the set of markings defined by x * -→ y if there exists a word w ∈ A * such that x w -→ y. In the sequel we often used the fact that x w -→ y implies x + v w -→ y + v for every v ∈ N d . The production relation of a marking m ∈ N d is the relation * -→m over N d defined by r * -→m s if m + r * -→ m + s. The production relation of a run ρ = m0 . . . m k is the relation * -→ρ defined by the following composition: *

Lemma 7. 1 .

 1 The relation * -→m is periodic. Proof. Let us assume that r1 * -→m s1 and r2 * -→m s2. Since r1 * -→m s1 we deduce that r1 + r2 * -→m s1 + r2. Moreover, since r2 * -→m s2 we deduce that r2 + s1 * -→m s2 + s1. Therefore r1 + r2 * -→m s1 + s2. We introduce a well order over the set of runs based on the following Lemma 7.2 Lemma 7.2. The following inclusion holds for every run ρ: (src(ρ), tgt(ρ))+ * -→ρ ⊆ * -→ Proof. Assume that ρ = m0 . . . m k with mj ∈ N d , and let (r, s) be a couple in the production relation * -→ρ. Since this relation is defined as a composition, there exists a sequence (vj) 0≤j≤k+1 of vectors vj ∈ N d satisfying the following relations with v0 = r and v k+1 = s: v0

r

  + r * -→m x * -→m s + s As (r+r , s+s ) ∈ (N d ×N d )∩V we deduce that (r+r , x, s+s ) is an intraproduction for (m, V ). Since x(i) > 0 we are done. Let us introduce an additional element ∞ ∈ N and let N∞ = N ∪ {∞}. A vector in N d ∞ is called an extended marking and the set I = {i ∈ {1, . . . , d} | m(i) = ∞} is called the set of relaxed components of an extended marking m. Given a finite set I ⊆ {1, . . . , d} and a marking m ∈ N d , we denote by m I the extended marking defined by m I (i) = ∞ if i ∈ I and m I (i) = m(i) if i ∈ I. Given a word w = a1 . . . a k of vectors aj ∈ A, we extend the relation w -→ over the set of extended markings relaxed over a set I by x w

  In particular (r, s) is in the production relation * -→ m where m = m + px. Since a production relation is periodic we get m + nr * -→ m + ns for every n ∈ N. As (pr , px, ps ) is an intraproduction for (m, V ) we get m + pr * -→ m * -→ m + ps . We deduce the relation (m + pr ) + nr * -→ m + nr from (m + pr ) * -→ m , and the relation m + ns * -→ (m + ps ) + ns from m * -→ (m + ps ). We deduce that the following relation holds for every n ∈ N: m + pr + nr * -→ m + ps + ns Hence p(r , s ) + N(r, s) ⊆ * -→m,V . Thus (r, s) ∈ Q ≥0 * -→m,V .

Lemma 9. 2 .

 2 The following equality holds:* -→ ∩((m, n)+P ) = [ ρ∈min P (Ω m,P,n ) (src(ρ), tgt(ρ))+( * -→ρ ∩P )Proof. Let us first prove ⊇. Let ρ ∈ Ωm,P,n. Lemma 7.2 shows that (src(ρ), tgt(ρ))+ * -→ρ⊆ * -→. Since (src(ρ), tgt(ρ)) ∈ (m, n) + P and P is periodic we deduce the inclusion ⊇.

  Theorem 8.1 shows * -→ρ is a polytope periodic relation. Since P is a finitely generated relation we deduce that P is a polytope periodic relation. Lemma 4.5 shows that the class of polytope periodic relations is stable by finite intersections. We deduce that * -→ρ ∩P is polytope periodic relation. Thanks to the previous lemma we deduce that * -→ ∩((m, n) + P ) is a Lambert relation for every (m, n) ∈ N d × N d and for every finitely generated periodic relation P ⊆ N d × N d . Therefore * -→ is a Petri relation and we have proved Theorem 9.1.

w-

  → n. The following algorithm decides this problem. 1 Reachability ( m , A , n ) formula ψ of length k 8 if ψ(m) and ¬ψ(n) are true and 9 ψ(x) ∧ y = x + a ∧ ¬ψ(y) unsat ∀a ∈ A 10 return ''unreachable '' 11 k ← k + 1

  that a subset S ⊆ Z d is Presburger if and only if it is a finite union of sets b + P where b ∈ Z d and P ⊆ Z d is a finitely generated periodic set. The class of Lambert sets is obtained by weakening the finiteness property of the periodic sets P.Definition 4.1. A periodic set P is said to be polytope if the conic set Q ≥0 P is polytope.

	Remark 4.2. Every finitely generated periodic set P is polytope
	since in this case Q ≥0 P is a finitely generated conic set and in
	particular a polytope conic set.
	Example 4.3. The periodic set P