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Abstract
The reachability problem for Vector Addition Systems (VASs) is a
central problem of net theory. The general problem is known de-
cidable by algorithms exclusively based on the classical Kosaraju-
Lambert-Mayr-Sacerdote-Tenney decomposition (KLMTS decom-
position). Recently from this decomposition, we deduced that a fi-
nal configuration is not reachable from an initial one if and only if
there exists a Presburger inductive invariant that contains the ini-
tial configuration but not the final one. Since we can decide if a
Preburger formula denotes an inductive invariant, we deduce from
this result that there exist checkable certificates of non-reachability
in the Presburger arithmetic. In particular, there exists a simple al-
gorithm for deciding the general VAS reachability problem based
on two semi-algorithms. A first one that tries to prove the reacha-
bility by enumerating finite sequences of actions and a second one
that tries to prove the non-reachability by enumerating Presburger
formulas. In this paper we provide the first proof of the VAS reach-
ability problem that is not based on the KLMST decomposition.
The proof is based on the notion of production relations inspired
from Hauschildt that directly provides the existence of Presburger
inductive invariants.

Categories and Subject Descriptors D [2]: 2

General Terms Theory, Verification

Keywords VAS, Petri, Presburger, Reachability

1. Introduction
Vector Addition Systems (VASs) or equivalently Petri Nets are one
of the most popular formal methods for the representation and the
analysis of parallel processes [EN94]. The reachability problem is
central since many computational problems (even outside the par-
allel processes) reduce to the reachability problem. Sacerdote and
Tenney provided in [ST77] a partial proof of decidability of this
problem. The proof was completed in 1981 by Mayr [May81] and
simplified by Kosaraju [Kos82] from [ST77, May81]. Ten years
later [Lam92], Lambert provided a more simplified version based
on [Kos82]. This last proof still remains difficult and the upper-
bound complexity of the corresponding algorithm is just known
non-primitive recursive. Nowadays, the exact complexity of the
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reachability problem for VASs is still an open-problem. Even an el-
ementary upper-bound complexity is open. In fact, the known gen-
eral reachability algorithms are exclusively based on the Kosaraju-
Lambert-Mayr-Sacerdote-Tenney (KLMST) decomposition.

Recently [Ler09] we proved thanks to the KLMST decomposi-
tion that Parikh images of languages accepted by VASs are semi-
pseudo-linear, a class that extends the Presburger sets. An applica-
tion of this result was provided; we proved that a final configura-
tion is not reachable from an initial one if and only if there exists
a forward inductive invariant definable in the Presburger arithmetic
that contains the initial configuration but not the final one. Since
we can decide if a Presburger formula denotes a forward inductive
invariant, we deduce that there exist checkable certificates of non-
reachability in the Presburger arithmetic. In particular, there exists
a simple algorithm for deciding the general VAS reachability prob-
lem based on two semi-algorithms. A first one that tries to prove
the reachability by enumerating finite sequences of actions and a
second one that tries to prove the non-reachability by enumerating
Presburger formulas.

In this paper we provide a new proof of the reachability prob-
lem that is not based on the KLMST decomposition. The proof is
based on the production relations inspired by Hauschildt [Hau90]
and it provides directly that reachability sets are Lambert sets, a
class of sets introduced in this paper that extend the class of Pres-
burger sets and contained in the class of semi-pseudo-linear sets. In
particular this paper provides a more precise characterization of the
reachability sets of VASs.

Outline of the paper: Section 2 provides notations and classical
definitions. Section 3 and Section 4 introduces classes of sets used
in the sequel : polytope conic sets and vector spaces in the first
one and polytope periodic sets, Presburger sets, Lambert sets, and
Petri sets in the second one. Section 5 and Section 6 show that it
sufficient to prove that the reachability relation of a Vector Addition
system is a Petri relation in order to deduce the existence of forward
inductive invariants definable in the Presburger arithmetic proving
the non-reachability. In Section 7 we introduce the class of Vector
Addition Systems and the central notion of production relations.
We show in the next Section 8 that these relations are polytope
periodic. In Section 9 we prove that the reachability relation of a
Vector Addition System is a Petri relation. Finally in Section 10 we
combine all the previous results to deduce the decidability of the
Vector Addition System reachability problem based on Presburger
inductive invariants.

2. Notations
We introduce in this section notations and classical definitions used
in this paper.



We denote by N,N>0,Z,Q,Q≥0,Q>0 the set of natural num-
bers, positive integers, integers, rational numbers, non negative ra-
tional numbers, and positive rational numbers. Vectors and sets of
vectors are denoted in bold face. The ith component of a vector v ∈
Qd is denoted by v(i). We introduce ||v||∞ = max1≤i≤d |v(i)|
where |v(i)| is the absolute value of v(i). The total order≤ over Q
is extended component-wise into an order≤ over the set of vectors
Qd. The addition function + is also extended component-wise over
Qd. Given two sets V1,V2 ⊆ Qd we denote by V1 + V2 the set
{v1 + v2 | (v1,v2) ∈ V1 × V2}, and we denote by V1 − V2

the set {v1 − v2 | (v1,v2) ∈ V1 ×V2}. In the same way given
T ⊆ Q and V ⊆ Qd we let TV = {tv | (t,v) ∈ T × V}.
We also denote by v1 + V2 and V1 + v2 the sets {v1}+ V2 and
V1+{v2}, and we denote by tV and Tv the sets {t}V and T{v}.
In the sequel, an empty sum of sets included in Qd denotes the set
reduced to the zero vector {0}.

A (binary) relation R over Qd is a subset R ⊆ Qd × Qd. The
composition of two relations R and S is the relation denoted by
R ◦ S and defined as usual by the following equality:

R ◦ S =
[

y∈Qd

n
(x, z) ∈ Qd ×Qd | (x,y) ∈ R ∧ (y, z) ∈ S

o
The reflexive and transitive closure of a relation R is denoted by
R∗. In this paper, notions introduced over the sets are transposed
over the relations by identifying Qd ×Qd with Q2d.

An order v over a set S is said to be well if for every sequence
(sn)n∈N of elements sn ∈ S we can extract a sub-sequence that is
non-decreasing forv, i.e. there exists a strictly increasing sequence
(nk)k∈N of natural numbers in (N,≤) such that (snk )k∈N is non
decreasing for v. A minimal element of an ordered set (S,v) is
an element s ∈ S such that for every t ∈ T the relation t v s
implies s = t. Given a set Y ⊆ S we denote by minv(Y ) the set
of minimal elements of the ordered set (Y,v). Let us recall that if
(S,v) is well ordered then X = minv(Y ) is finite and for every
y ∈ Y there exists x ∈ X such that x v y.

Let us consider an order v over a set S. We introduce the
component-wise extension of v over the set of vectors Sd defined
by s v t if s(i) v t(i) for every i ∈ {1, . . . , d}.

Lemma 2.1 (Dickson’s Lemma). The ordered set (Sd,v) is well
for every well ordered set (S,v).

Example 2.2. The set (N,≤) is well ordered. Hence (Nd,≤) is
also well ordered. The set (Z,≤) is not well ordered.

3. Polytope Conic Sets
In this section we introduce the polytope conic sets and we provide
a characterization of this class based on the vector spaces.

A conic set is a set C ⊆ Qd such that 0 ∈ C, C + C ⊆ C and
such that Q≥0C ⊆ C. A conic set C is said to be finitely generated
if there exists a finite sequence c1, . . . , ck of vectors cj ∈ C such
that C = Q≥0c1 + · · ·+ Q≥0ck.

Definition 3.1. A conic set C is said to be polytope if it is definable
in FO (Q,+,≤, 0, 1).

Example 3.2. The conic set C = {c ∈ Q2
≥0 | c(1) ≤

√
2c(2)} is

not polytope.

A vector space is a set V ⊆ Qd such that 0 ∈ V, V + V ⊆ V
and such that QV ⊆ V. Let X ⊆ Qd. The following set is a vector

space called the vector space generated by X.

V =

(
kX
j=1

λjxj | k ∈ N and (λj ,xj) ∈ Q×X

)
Observe that this vector space is the minimal for the inclusion vec-
tor space that contains X. Note that the vector space V generated
by a conic set C satisfies the equality V = C − C. Let us recall
that every vector space V is generated by a finite set X with at most
d vectors. The rank rank(V) of a vector space V is the minimal
natural number r ∈ {0, . . . , d} such that there exists a finite set X
with r vectors that generates V. Note that rank(V) ≤ rank(W)
for every vector spaces V ⊆W. Moreover if V is strictly included
in W then rank(V) < rank(W).

The (topological) closure of a set X ⊆ Qd is the set X of
vectors r ∈ Qd such that for every ε ∈ Q>0 there exists x ∈ X
satisfying ||r− x||∞ < ε. A set X is said to be closed if X = X.
Note that X is closed and this set is the minimal for the inclusion
closed set that contains X. Let us recall that a vector space V
is closed and the closure of a conic set is a conic set. Since the
classical topological interior of a conic set C is empty when the
vector space generated by C is not equal to Qd (the conic set is
degenerated), we introduce the notion of interior of C relatively to
the vector space V = C − C. More precisely, a vector c ∈ C is
said to be in the interior of C if there exists ε ∈ Q>0 such that
c+v ∈ C for every v ∈ C−C satisfying ||v||∞ < ε. We denote
by int(C) the set of interior vectors of C. Let us recall that int(C)
is non empty for every conic set C, and C1 = C2 if and only if
int(C1) = int(C2) for every conic sets C1,C2.

The following lemma characterizes the finitely generated cones.
This lemma also proves that finitely generated conic sets are poly-
tope.

Lemma 3.3. Let V ⊆ Qd be a vector space. A conic set C ⊆ V is
finitely generated if and only if there exists a sequence (hj)1≤j≤k
of vectors hj ∈ V\{0} such that:

C =

k\
j=1

(
v ∈ V |

dX
i=1

hj(i)v(i) ≥ 0

)
Moreover in this case the following equality holds if and only if V
is the vector space generated by C:

int(C) =

k\
j=1

(
v ∈ V |

dX
i=1

hj(i)v(i) > 0

)

Proof. This is a classical result of duality. See [Sch87] for more
details.

Theorem 3.4. A conic set C ⊆ Qd is polytope if and only if
the conic set C ∩V is finitely generated for every vector space
V ⊆ Qd.

Proof. Let us first consider a polytope conic set C ⊆ Qd, let V be
a vector space, and let us prove that X is finitely generated where
X = C ∩ V. Since V is generated by a finite set, we deduce
that V and in particular X are definable in FO (Q,+,≤, 0, 1).
Since this logic admits quantification elimination we deduce that
there exists a quantifier free formula in this logic that denotes
X. Hence there exists a finite sequence (Aj)1≤j≤k of finite sets
Aj ⊆ Qd × {>,≥} ×Q such that X =

Sk
j=1 Xj where:

Xj =
\

(h,#,b)∈Aj

(
x ∈ Qd |

dX
i=1

h(i)x(i)#b

)



We can assume without loss of generality that Xj is non empty. Let
us introduce the following set Rj :

Rj =
\

(h,#,b)∈Aj

(
x ∈ Qd |

dX
i=1

h(i)x(i) ≥ 0

)
Lemma 3.3 shows that Rj is finitely generated. In particular R =Pk
j=1 Rj is finitely generated. Thanks to Lemma 3.3, we deduce

that R is closed. We are going to prove that X = R. Let us first
consider x ∈ X. For every n ∈ N we have nx ∈ X since X is a
conic set. Hence there exists j ∈ {1, . . . , k} such that nx ∈ Xj

for an infinite number of n ∈ N. We deduce that x ∈ Rj . Thus
X ⊆ R and we have proved that X ⊆ R by minimality of the
closure of X. For the converse inclusion, let r ∈ R. There exists a
sequence (rj)1≤j≤k of vectors rj ∈ Rj such that r =

Pk
j=1 rj .

Since Xj is non empty, there exists xj ∈ Xj . As rj ∈ Rj we
deduce that xj + Q≥0rj ⊆ Xj . Hence x +

Pk
j=1 Q≥0rj ⊆ X

where x =
Pk
j=1 xj . In particular x + Q≥0r ⊆ X. We deduce

that for every ε ∈ Q>0 we have εx+ r ∈ X. Therefore r ∈ X. We
have proved the other inclusion. Thus X = R is finitely generated.

Conversely, we prove by induction over k that the conic sets
C ⊆ Qd such that rank(C −C) ≤ k and such that the conic set
C ∩V is finitely generated for every vector space V ⊆ Qd are
polytope. The case k = 0 is immediate since in this case C = {0}.
Let us assume the induction proved for an integer k ∈ N and let us
consider a conic set C ⊆ Qd such that rank(C−C) ≤ k+ 1 and
such that the conic set C ∩V is finitely generated for every vector
space V ⊆ Qd. We introduce the vector space W = C−C. Since
C = C ∩V with V = Qd, we deduce that C is finitely generated.
Lemma 3.3 shows that there exists a finite sequence (hj)1≤j≤k of
vectors hj ∈W\{0} such that the following equality holds:

C =

k\
j=1

(
x ∈W |

dX
i=1

hj(i)x(i) ≥ 0

)
Since int(C) = int(C) we get the following equality:

int(C) =

k\
j=1

(
x ∈W |

dX
i=1

hj(i)x(i) > 0

)
In particular int(C) is definable in FO (Q,+,≤, 0, 1). As int(C) ⊆
C ⊆ C we deduce the following decomposition where Wj =
{w ∈W |

Pd
i=1 hj(i)w(i) = 0}:

C = int(C)

k[
j=1

(C ∩Wj)

Observe that hj ∈ W\Wj and in particular Wj is strictly in-
cluded in W. Thus rank(Wj) < rank(W) ≤ k + 1. Note
that Cj = C ∩Wj is a conic set such that rank(Cj − Cj) ≤
rank(Wk) ≤ k and such that Cj ∩V is a finitely generated conic
set for every vector space V. Thus by induction Cj is definable in
FO (Q,+,≤, 0, 1). We deduce that C is polytope. We have proved
the induction.

4. Presburger Sets, Lambert Sets, And Petri Sets
A periodic set is a subset P ⊆ Zd such that 0 ∈ P and such that
P + P ⊆ P. A periodic set P is said to be finitely generated if
there exists a finite sequence p1, . . . ,pk of vectors pj ∈ P such
that P = Np1+· · ·+Npk. A subset S ⊆ Zd is called a Presburger
set if it can be denoted by a formula in the Presburger arithmetic
FO (Z,+,≤, 0, 1). Let us recall [GS66] that a subset S ⊆ Zd is

p(2)

p(1)

p(1) + 1 ≤ 2p(2)

p(1) ≥ p(2)

Figure 1. A polytope periodic set.

Presburger if and only if it is a finite union of sets b + P where
b ∈ Zd and P ⊆ Zd is a finitely generated periodic set. The class
of Lambert sets is obtained by weakening the finiteness property of
the periodic sets P.

Definition 4.1. A periodic set P is said to be polytope if the conic
set Q≥0P is polytope.

Remark 4.2. Every finitely generated periodic set P is polytope
since in this case Q≥0P is a finitely generated conic set and in
particular a polytope conic set.

Example 4.3. The periodic set P = {p ∈ N2 | p(1) ≤
√

2p(2)}
is not polytope.

Example 4.4. The periodic set P = {p ∈ N2 | p(2) ≤
p(1) ≤ 2p(2) − 1} is represented in Figure 1. Observe that
Q≥0P = {0} ∪ {c ∈ Q2

>0 | p(2) ≤ p(1)} is a polytope conic
set. Thus P is a polytope periodic set.

The following lemma shows that the class of polytope periodic
sets is stable by finite intersections.

Lemma 4.5. We have (Q≥0P1) ∩ (Q≥0P2) = Q≥0(P1 ∩ P2)
for every periodic sets P1,P2 ⊆ Zd.

Proof. Observe that P1 ⊆ Q≥0P1 and P2 ⊆ Q≥0P2. Hence
P1 ∩P2 ⊆ C where C = (Q≥0P1)∩ (Q≥0P2). As C is a conic
set we deduce that Q≥0(P1∩P2) ⊆ C. For the converse inclusion.
Let c ∈ C. Since c ∈ Q≥0P1, there exists λ1 ∈ Q≥0 such
that c ∈ λ1P1. Symmetrically there exists λ2 ∈ Q≥0 such that
c ∈ λ2P2. Let n1, n2 ∈ N>0 such that n1λ1 ∈ N and n2λ2 ∈ N.
Let n = n1n2 and observe that nc ∈ n2(n1λ1)P1 ⊆ P1 since
P1 is a periodic set. Symmetrically nc ∈ P2. We have proved that
nc ∈ P1 ∩ P2. Thus c ∈ Q≥0(P1 ∩ P2) and we get the other
inclusion.

Lambert sets and Petri sets are central in this paper.

Definition 4.6. A Lambert set L ⊆ Zd is a finite union of sets
b + P where b ∈ Zd and P ⊆ Zd is a polytope periodic set.

Definition 4.7. A Petri set is a subset X ⊆ Zd such that X ∩ S is
a Lambert set for every Presburger set S ⊆ Zd.

Example 4.8. Let us consider the periodic set P = {(0, 0)} ∪
{(2n, 1) | n ∈ N} ∪ ((1, 2) + N2). Observe that Q≥0P is the
polytope conic set {(0, 0)} ∪Q2

>0. We deduce that P is a Lambert
set. Note that P is not a Petri set since P∩ (N×{1}) = {(2n, 1) |
n ∈ N} is not a Lambert set.

The class of Petri sets is between the class of Presburger sets and
the class of Lambert sets. The previous Example 4.8 shows that the
class of Petri sets is strictly included in the class of Lambert sets.
The strict inclusion of the class of Presburger sets into the class of
Petri sets will be a direct consequence of a stronger result proved
in this paper. In fact the reachability relation of a Vector Addition



System is proved to be a Petri relation and we know that in general
such a relation is not Presburger.

5. Linearizations
A lattice is a subset G ⊆ Zd such that 0 ∈ G, G + G ⊆ G
and −G ⊆ G. Let us recall that for every lattice G there exists
a finite sequence g1, . . . ,gk of vectors gj ∈ G such that G =
Zg1 + · · · + Zgk. We observe that G = P − P is a lattice for
every periodic set P. In particular P − P is a Presburger set. The
linearization lin(P) of a polytope periodic set P ⊆ Zd is the
following Presburger set:

lin(P) = (P−P) ∩Q≥0P

We observe that if the intersection (b1 + P1) ∩ (b2 + P2)
is empty where b1,b2 ∈ Zd and P1,P2 ⊆ Zd are two polytope
periodic sets then the intersection (b1 +lin(P1))∩(b2 +lin(P2))
may be non empty. In this section we show that a dimension is
strictly decreasing.

Let us first introduce our definition of dimension. The dimen-
sion dim(X) of a non-empty set X ⊆ Zd is the minimal inte-
ger r ∈ {0, . . . , d} such that there exists k ∈ N>0, a sequence
(bj)1≤j≤k of vectors bj ∈ Zd, and a sequence (Vj)1≤j≤k of
vector spaces Vj ⊆ Qd such that rank(Vj) ≤ r and such that
X ⊆

Sk
j=1 bj +Vj . The dimension of the empty set is defined by

dim(∅) = −1.

In the reminder of this section we prove the following Theo-
rem 5.1. All other results or definitions introduced in this section
are not used in the sequel.

Theorem 5.1. Let b1,b2 ∈ Zd and let P1,P2 be two polytope
periodic sets such that the intersection (b1 + P1) ∩ (b2 + P2) is
empty. The intersection X = (b1 + lin(P1)) ∩ (b2 + lin(P2))
satisfies:

dim(X) < max{dim(b1 + P1), dim(b2 + P2)}
We first characterize the dimension of a periodic set.

Lemma 5.2. Let V be the vector space generated by a periodic set
P. Then rank(V) = dim(P).

Proof. Let P be a periodic set and let us first prove by induction
over k ∈ N>0 that P ⊆

Sk
j=1 Vj implies that there exists

j ∈ {1, . . . , k} such that P ⊆ Vj for every sequence (Vj)1≤j≤k
of vector spaces Vj ⊆ Qd. The case k = 1 is immediate. Assume
the property proved for an integer k ∈ N>0 and let us assume
that P ⊆

Sk+1
j=1 Vj . If P ⊆ Vk+1 the property is proved. So

we can assume that there exists p ∈ P\Vk+1. Let us prove that
P ⊆

Sk
j=1 Vj . We consider x ∈ P. Observe that if x 6∈ Vk+1

then x ∈
Sk
j=1 Vj . So we can assume that x ∈ Vk+1. We

observe that p + nx ∈ P for every n ∈ N since the set P is
periodic. We deduce that there exists j ∈ {1, . . . , k + 1} such that
p + nx ∈ Vj . Naturally this integer j depends on n. However,
since {1, . . . , k + 1} is finite whereas N is infinite, there exists
j ∈ {1, . . . , k + 1} and n < n′ in N such that p + nx and
p + n′x are both in Vj . As Vj is a vector space, we deduce that
n′(p+nx)−n(p+n′x) is in Vj . Hence p ∈ Vj . As p 6∈ Vk+1

we deduce that j 6= k + 1. As Vj is a vector space we deduce that
(p+n′x)− (p+nx) ∈ Vj . Hence x ∈ Vj . We have proved that
x ∈

Sk
j=1 Vj . Thus P ⊆

Sk
j=1 Vj and by induction there exists

j ∈ {1, . . . , k} such that P ⊆ Vj . We have proved the induction.

Now, let us prove the lemma. We consider a periodic set P
and we let V be the vector space generated by this set. Since

P ⊆ V we deduce that dim(P) ≤ rank(V). For the converse
inclusion, since P is non empty we deduce that P ⊆

Sk
j=1 bj+Vj

where k ∈ N>0, bj ∈ Zd and Vj ⊆ Qd is a vector space such
that rank(Vj) ≤ dim(P). Let us consider the set J = {j ∈
{1, . . . , k} | bj ∈ Vj} and let us prove that P ⊆

S
j∈J Vj . Let

p ∈ P and n ∈ N. Since np ∈ P there exists j ∈ {1, . . . , k}
such that np ∈ bj + Vj . Hence there exists j ∈ {1, . . . , k}
and n < n′ in N such that np and n′p are both in bj + Vj .
As Vj is a vector space we deduce that n′p − np ∈ Vj . Thus
p ∈ Vj . Moreover as bj ∈ np−Vj ⊆ Vj we deduce that j ∈ J .
We have prove the inclusion P ⊆

S
j∈J Vj . From the previous

paragraph we deduce that there exists j ∈ J such that P ⊆ Vj . By
minimality of the vector space generated by P we get V ⊆ Vj .
Hence rank(V) ≤ rank(Vj). Since rank(Vj) ≤ dim(P) we
have proved the inequality rank(V) ≤ dim(P).

Next we prove a separation property.

Lemma 5.3. Let C≤ and C≥ be two polytope conic sets that
generates the same vector space V and such that the vector space
generated by C≤ ∩C≥ is strictly included in V. Then there exists
a vector h ∈ V\{0} such that for every # ∈ {≤,≥}, we have:

C# ⊆

(
v ∈ V |

dX
i=1

h(i)v(i)#0

)

Proof. Theorem 3.4 shows that C≤ and C≥ are finitely generated.
Hence there exists two finite sets H≤,H≥ included in V\{0} such
that:

C# =
\

h∈H#

(
v ∈ V |

dX
i=1

h(i)v(i) ≥ 0

)
As int(C#) = int(C#) we deduce the following equality:

int(C#) =
\

h∈H#

(
v ∈ V |

dX
i=1

h(i)v(i) > 0

)
Assume by contradiction that the intersection int(C≤) ∩ int(C≥)
is non empty and let c be a vector in this set. Observe that there
exists ε ∈ Q>0 such that c + v ∈ C≤ ∩ C≥ for every v ∈ V
such that ||v||∞ < ε. We deduce that the vector space generated
by C≤ ∩C≥ contains V and we get a contradiction.

We deduce that the following intersection is empty where H =
H≤ ∪H≥ \

h∈H

(
v ∈ V |

dX
i=1

h(i)v(i) > 0

)
The Farkas’s lemma [Sch87] shows that there exists a non-

zero function f : H → Q≥0 such that
P

h∈H f(h)h = 0. Let
us introduce a =

P
h∈H≥

f(h)h and b =
P

h∈H\H≥
f(h)h.

Assume by contradiction that a = 0. Since a + b = 0 we
deduce that b = 0. As f is not the zero function, there exists
h ∈ H such that f(h) 6= 0. Note that either h ∈ H≥ or
h ∈ H\H≥. In the first case we deduce that int(C≥) is empty
and in the second case we deduce that int(C≤) is empty. Since
both cases are impossible we get a contradiction. Thus a 66= 0.
For every c ∈ int(C≥) we have

Pd
i=1 a(i)c(i) ≥ 0. Since the

set {c ∈ Qd |
Pd
i=1 a(i)c(i) ≥ 0} is closed we deduce that

for every c ∈ C≥ the same inequality holds. As C≥ ⊆ C≥ we
get

Pd
i=1 a(i)c(i) ≥ 0 for every c ∈ C≥. Now let us consider

c ∈ int(C≤). In this case
Pd
i=1 b(i)c(i) ≥ 0. Since a + b = 0

we get
Pd
i=1 a(i)c(i) ≤ 0. We deduce that this inequality holds

for every c ∈ C≤.



Remark 5.4. The previous Lemma 5.3 is wrong if we remove the
polytope condition. In fact let us consider the conic sets C≤ =
{x ∈ Q2

≥0 | x(1) ≤
√

2x(2)} and C≥ = {x ∈ Q2
≥0 | x(2) ≥√

2x(2)}. Observe that C≤ ∩C≥ = {0}. Hence the vector space
generated by the intersection is strictly included in Q2. However
there does not exist a vector a ∈ Q2\{0} satisfying the separation
property required by Lemma 5.3. This problem can be overcome
by introducing the vector spaces of Rd. We do not introduce this
extension to simplify the presentation.

We can now provide a proof of Theorem 5.1. We consider two
vectors b1,b2 ∈ Zd and two periodic sets P1,P2 ⊆ Zd such
that (b1 + P1) ∩ (b2 + P2) = ∅. We introduce the intersection
X = (b1 + lin(P1)) ∩ (b2 + lin(P2)). Observe that if X is
empty the theorem is proved. So we can assume that there exists
a vector b in this intersection. Let us denote by V1 and V2 the
vector spaces generated by P1 and P2. Lemma 5.2 shows that
rank(Vj) = dim(Pj) and from dim(bj + Pj) = dim(Pj) we
deduce that dim(bj+Pj) = rank(Vj). As X is included in b+V
where V = V1 ∩V2, we deduce that if V is strictly included in
Vj for one j ∈ {1, 2} then dim(X) ≤ rank(V) < rank(Vj) =
dim(bj + Pj) and the theorem is proved. So we can assume that
V1 = V2 = V. Let us consider the conic sets C1 = Q≥0P1

and C2 = Q≥0P2. Note that C1,C2 ⊆ V. We introduce the
intersection C = C1 ∩C2.

Assume by contradiction that the vector space generated by C
is equal to V. Let us consider a vector c in the interior of C.
Lemma 4.5 shows that C = Q≥0(P1 ∩ P2). By replacing c be
a vector in N>0c we can assume that c ∈ P1 ∩P2.

Let us prove that there exists k1 ∈ N such that b + k1c ∈
b1 + P1. From b ∈ b1 + lin(P1) we deduce that there exists
p1,p

′
1 ∈ P1 such that b = b1 + p1 − p′1. Since −p′1 is in the

vector space generated by C and c is in the interior of C, there
exists n1 ∈ N large enough such that n1c + (−p′1) ∈ C1. Hence
there exists n′1 ∈ N>0 such that n1n

′
1c − n′1p

′
1 ∈ P1. Thus

n1n
′
1c−p′1 ∈ (n′1−1)p′1 +P1 ⊆ P1. Hence b+k1c ∈ b1 +P1

with k1 = n1n
′
1.

Symmetrically we deduce that there exists k2 ∈ N such that
b + k2c ∈ b2 + P2. We have proved that b + (k1 + k2)c ∈
(b1 + P1) ∩ (b2 + P2) and we get a contradiction since this
intersection is supposed to be empty.

We deduce that the vector space generated by C is strictly
included in V. Lemma 5.3 shows that there exists a vector h ∈
V\{0} such that:

C1 ⊆

(
v ∈ V |

dX
i=1

h(i)v(i) ≥ 0

)

C2 ⊆

(
v ∈ V |

dX
i=1

h(i)v(i) ≤ 0

)
By replacing h by a vector in N>0h we can assume that h ∈ Zd.
Now let us consider x ∈ X. Since x − b1 ∈ C1 we deduce
that

Pd
i=1 h(i)(x(i) − b1(i)) ≥ 0 and since x − b2 ∈ C2

we deduce that
Pd
i=1 h(i)(x(i) − b2(i)) ≤ 0. We introduce the

integers z1 =
Pd
i=1 h(i)b1(i) and z2 =

Pd
i=1 h(i)b2(i). We

have proved that X can be decomposed into a finite union of slices
X =

Sz2
z=z1

Xz where:

Xz =

(
x ∈ X |

dX
i=1

h(i)x(i) = z

)
Let us prove that dim(Xz) < rank(V). If Xz is empty the

relation is immediate. If Xz is non empty let us consider x ∈ Xz

and observe that Xz ⊆ x + W where:

W =

(
v ∈ V |

dX
i=1

a(i)v(i) = 0

)
Note that h ∈ V\W. We deduce that W is strictly included in
V and in particular rank(W) < rank(V). Hence dim(Xz) <
rank(V).

From X =
Sz2
z=z1

Xz and dim(Xz) < rank(V) for every z,
we deduce that dim(X) < rank(V) and the theorem is proved.

6. Presburger Invariants
Given a relation R over Zd and two sets X,Y ⊆ Zd we introduce
the forward image postR(X) and the backward image preR(Y)
defined by the following equalities:(

postR(X) =
S

x∈X{y ∈ Zd | (x,y) ∈ R}
preR(Y) =

S
y∈Y{x ∈ Zd | (x,y) ∈ R}

We say that a set X ⊆ Zd is a forward invariant for R if
postR(X) ⊆ X and we say that a set Y ⊆ Zd is a backward
invariant for R if preR(Y) ⊆ Y. In the reminder of this section
we prove the following Theorem 6.1. All other results or definitions
introduced in this section are not used in the sequel.

Theorem 6.1. Let R∗ be a reflexive and transitive Petri relation
over Zd and let X,Y ⊆ Zd be two Presburger sets such that
R∗ ∩ (X × Y) is empty. There exists a partition of Zd into a
Presburger forward invariant that contains X and a Presburger
backward invariant that contains Y.

We first prove the following lemma.

Lemma 6.2. The sets postR(X) and preR(Y) are Petri sets for
every Petri relation R ⊆ Zd × Zd and for every Presburger sets
X,Y ⊆ Zd

Proof. Let us first prove that postR(X) is a Petri set. We consider
a Presburger set S ⊆ Zd. Observe that X × S is a Presburger
relation. Since R is a Petri relation we deduce that R ∩ (X× S) is
a Lambert relation. Hence this set can be decomposed into a finite
union

Sk
j=1(aj ,bj)+Rj with k ∈ N, (aj ,bj) ∈ Zd×Zd andRj

is a polytope periodic relation. We deduce that postR(X) ∩ S =Sk
j=1 bj + Pj where Pj = {v ∈ Zd | ∃(u,v) ∈ Rj}. Since Rj

is a periodic relation we deduce that Pj is a periodic set. Moreover
since Q≥0Rj is polytope we deduce that Cj = {v ∈ Qd |
∃(u,v) ∈ Q≥0Rj} is polytope. Let us prove that Q≥0Pj = Cj .
By construction we have Pj ⊆ Cj . Since Cj is conic we deduce
that Q≥0Pj ⊆ Cj . For the converse inclusion let v ∈ Cj . There
exists u ∈ Qd such that (u,v) ∈ Q≥0Rj . Hence there exists
λ ∈ Q≥0 such that (u,v) ∈ λRj . Let us consider n ∈ N>0 such
that nλj ∈ N and observe that (nu, nv) ∈ (nλ)Rj ⊆ Rj sinceRj
is periodic. Thus nv ∈ Pj and we have proved that v ∈ Q≥0Pj .
Thus Q≥0Pj = Cj is a polytope conic set and we have proved that
postR(X) ∩ S is a Lambert set for every Presburger set S ⊆ Zd.
Hence postR(X) is a Petri set. Symmetrically we deduce that
preR(Y) is a Petri set.

Now, let us prove Theorem 6.1. We consider a reflexive and
transitive Petri relation R∗. We introduce the notion of separators.
A separator is a couple (X,Y) of Presburger sets such that the in-
tersection R∗ ∩ (X ×Y) is empty. Since R∗ is reflexive observe
that X∩Y is empty. The Presburger set D = Zd\(X∪Y) is called
the domain of (X,Y). Let us observe that a separator (X,Y) with
an empty domain is a partition of Zd such that X is a Presburger



forward invariant and Y is a Presburger backward invariant. In par-
ticular Theorem 6.1 is obtained thanks to the following Lemma 6.3
with an immediate induction.

Lemma 6.3. Let (X0,Y0) be a separator with a non-empty do-
main D0. There exists a separator (X,Y) with a domain D such
that X0 ⊆ X, Y0 ⊆ Y and dim(D) < dim(D0).

Proof. We first observe that a couple (X,Y) of Presburger sets is
a separator if and only if postR∗(X) ∩ preR∗(Y) = ∅ if and only
if postR∗(X) ∩Y = ∅ if and only if preR∗(Y) ∩X = ∅.

Since R∗ is a Petri relation we deduce that postR∗(X0) is a
Petri set. As D0 is a Presburger set, we deduce that postR∗(X0)∩
D0 is a Lambert set. Hence postR∗(X0) ∩D0 =

Sk
j=1 bj + Pj

where bj ∈ Zd and Pj ⊆ Zd is a polytope periodic set. We
introduce the following Presburger set:

S =

k[
j=1

bj + lin(Pj)

Observe that postR∗(X0) ∩ D0 ⊆ S. We deduce that the set
Y = Y0 ∪ (D0\S) is such that postR∗(X0) ∩ Y = ∅. Hence
(X0,Y) is a separator.

Symmetrically, since R∗ is a Petri relation we deduce that
preR∗(Y) is a Petri set. As D0 is a Presburger set, we deduce
that preR∗(Y) ∩D0 is a Lambert set. Hence preR∗(Y) ∩D0 =Sn
l=1 cl + Ql where cl ∈ Zd and Ql ⊆ Zd is a polytope periodic

set. We introduce the following Presburger set:

T =

n[
l=1

cl + lin(Ql)

Observe that preR∗(Y) ∩ D0 ⊆ T. We deduce that the set
X = X0 ∪ (D0\T) is such that preR∗(Y) ∩ X = ∅. Hence
(X,Y) is a separator.

Let us introduce the domain D of (X,Y). We have the follow-
ing equality where Zj,l = (bj + lin(Pj)) ∩ (cl + lin(Ql)):

D = D0 ∩ (
[

1≤j≤k
1≤l≤n

Zj,l)

As (X,Y) is a separator we deduce that postR∗(X)∩preR∗(Y) is
empty. As bj + Pj ⊆ postR∗(X0) ⊆ postR∗(X) and cl + Ql ⊆
preR∗(Y) we deduce that the intersection (bj + Pj) ∩ (cl + Ql)
is empty. Theorem 5.1 shows that dim(Zj,l) < max{dim(bj +
Pj),dim(cl + Ql)}. Since bj + Pj ⊆ D0 and cl + Ql ⊆ D0

we deduce that dim(bj + Pj) ≤ dim(D0) and dim(cl + Ql) ≤
dim(D0). We have proved that dim(D) < dim(D0).

7. Vector Addition Systems
In this section we introduce the Vector Addition Systems, the pro-
duction relations and a well order over the set of runs of a Vector
Addition System.

A Vector Addition System (VAS) is a finite subset A ⊆ Zd. A
marking is a vector m ∈ Nd. The semantics of a vector addition
system is obtained by introducing for every word w = a1 . . .ak of
vectors aj ∈ A the relation w−→ over the set of markings defined
by x

w−→ y if there exists a word ρ = m0 . . .mk of markings
mj ∈ Nd such that (x,y) = (m0,mk) and mj = mj−1 + aj
for every j ∈ {1, . . . , k}. Observe that ρ is unique. This word ρ is
called the run from x to y labeled by w. The marking x is called
the source of ρ and it is denoted by src(ρ), and the marking y is

called the target of ρ and it is denoted by tgt(ρ). The set of runs is
denoted by Ω.

The reachability relation is the relation denoted by ∗−→ over the
set of markings defined by x

∗−→ y if there exists a word w ∈ A∗

such that x w−→ y. In the sequel we often used the fact that x w−→ y
implies x + v

w−→ y + v for every v ∈ Nd.

The production relation of a marking m ∈ Nd is the relation
∗−→m over Nd defined by r

∗−→m s if m + r
∗−→ m + s. The

production relation of a run ρ = m0 . . .mk is the relation ∗−→ρ

defined by the following composition:
∗−→ρ=

∗−→m0 ◦ · · · ◦
∗−→mk

The following Lemma 7.1 shows that ∗−→ρ is periodic for every
run ρ as a composition of periodic relations. Note that in Section 3
we prove that this periodic relation is polytope.

Lemma 7.1. The relation ∗−→m is periodic.

Proof. Let us assume that r1
∗−→m s1 and r2

∗−→m s2. Since
r1

∗−→m s1 we deduce that r1 + r2
∗−→m s1 + r2. Moreover,

since r2
∗−→m s2 we deduce that r2 + s1

∗−→m s2 + s1. Therefore
r1 + r2

∗−→m s1 + s2.

We introduce a well order over the set of runs based on the
following Lemma 7.2

Lemma 7.2. The following inclusion holds for every run ρ:

(src(ρ), tgt(ρ))+
∗−→ρ ⊆

∗−→

Proof. Assume that ρ = m0 . . .mk with mj ∈ Nd, and let (r, s)

be a couple in the production relation ∗−→ρ. Since this relation is
defined as a composition, there exists a sequence (vj)0≤j≤k of
vectors vj ∈ Nd satisfying the following relations with v0 = r
and vk+1 = s:

v0
∗−→m0 v1 · · ·vk

∗−→mk vk+1

We introduce the vector aj = mj − mj−1 for every j ∈
{1, . . . , k}. Since mj−1

aj−→ mj we deduce that mj−1 + vj
aj−→

mj + vj . Moreover, as vj
∗−→mj vj+1, there exists a word

wj ∈ A∗ such that mj + vj
wj−−→mj + vj+1. We deduce that the

following relation holds:

m0 + v0
w0a1w1...akwk−−−−−−−−−−→mk + vk+1

Therefore (m0,mk) + (v0,vk+1) is in the reachability relation
and we have proved the lemma.

We introduce the order� over the set of runs defined by ρ � ρ′
if the following inclusion holds:

(src(ρ′), tgt(ρ′))+
∗−→ρ′ ⊆ (src(ρ), tgt(ρ))+

∗−→ρ

In the reminder of this section we prove the following theorem. All
other results or definition introduced in the section are not used in
the sequel.

Theorem 7.3. The order � is well.

The order � is proved well thanks to the Higmann’s Lemma.
We first recall this lemma. Let us consider an order v over a set S.
We introduce the order v∗ over the set of words over S defined by
u v∗ v where u = s1 . . . sk with sj ∈ S if there exists a sequence
(tj)1≤j≤k with tj ∈ S and sj v tj and a sequence (wj)0≤j≤k of
words wj ∈ S∗ such that v = w0t1w1 . . . tkwk.



Lemma 7.4 (Higmann’s Lemma). The ordered set (S∗,v∗) is well
for every well ordered set (S,v).

We associate to every run ρ = m0 . . .mk the word α(ρ) =
(a1,m1) . . . (ak,mk) where aj = mj −mj−1. Note that α(ρ)
is a word over the alphabet S = A × Nd. Given a word w =
(a1,m1) . . . (ak,mk) in S∗, the word a1 . . .ak is called the label
of w. We introduce the order v over this alphabet by (a,m) v
(a′,m′) if a = a′ and m ≤ m′. Since A is a finite set and ≤
is a well order over Nd, we deduce that v is a well order over
S. From the Higmann’s lemma, the order v∗ is a well order over
S∗. We introduce the well order � over the set of runs defined by
ρ � ρ′ if α(ρ) v∗ α(ρ′), src(ρ) ≤ src(ρ′) and tgt(ρ) ≤ tgt(ρ′).
The following lemma provides a useful characterization of this well
order.

Lemma 7.5. Let ρ = m0 . . .mk be a run and let ρ′ be an-
other run. We have ρ � ρ′ if and only if there exists a sequence
(vj)0≤j≤k+1 of vectors in Nd such that ρ′ = ρ′0ρ

′
1 . . . ρ

′
k where ρ′j

is a run from mj + vj to mj + vj+1.

Proof. We introduce the sequence (aj)1≤j≤k defined by aj =
mj −mj−1.

Assume first that ρ � ρ′. Since α(ρ) v∗ α(ρ′) we deduce
that α(ρ′) = w0(a1,m

′
1)w1 . . . (ak,m

′
k)wk where wj ∈ S∗ and

m′j ≥ mj . We introduce the sequence (vj)0≤j≤k+1 defined by
v0 = src(ρ′) − src(ρ), vk+1 = tgt(ρ′) − tgt(ρ) and vj =
m′j − mj for every j ∈ {1, . . . , k}. Observe that vj ∈ Nd for
every j ∈ {0, . . . , k + 1}. Let us introduce the label uj of wj .
By definition of α(ρ′) we deduce that ρ′ can be decomposed into
ρ′ = ρ′0 . . . ρ

′
k where ρ′0 is the run from m0 + v0 to m0 + v1

labeled by u0 and where ρ′j is the run from mj +vj to mj +vj+1

labeled by ajuj if j ≥ 1.

Conversely let (vj)0≤j≤k+1 be a sequence of vectors in Nd
such that ρ′ = ρ′0 . . . ρ

′
k where ρ′j is a run from mj + vj to

mj + vj+1. We deduce that we have the following equality where
m′j = mj + vj and a′j ∈ A:

α(ρ′) = α(ρ′0)(a′1,m
′
1)α(ρ′1) . . . (a′k,m

′
k)α(ρ′k)

Observe that a′j = tgt(ρ′j−1)−m′j = (mj +vj)− (mj−1 +vj)
and in particular a′j = aj . We deduce that α(ρ) v∗ α(ρ′).
Moreover, since src(ρ) ≤ src(ρ′) and tgt(ρ) ≤ tgt(ρ′) we deduce
that ρ� ρ′.

Since � is a well order, the following lemma shows that � is a
well order. We have proved Theorem 7.3.

Lemma 7.6. ρ� ρ′ implies ρ � ρ′.

Proof. Assume that ρ = m0 . . .mk. Lemma 7.5 shows that
there exists a sequence (vj)0≤j≤k+1 of vectors in Nd such that
ρ′ = ρ′0ρ

′
1 . . . ρ

′
k where ρ′j is a run from mj + vj to mj + vj+1.

Lemma 7.2 shows that (src(ρ′j), tgt(ρ′j))+
∗−→ρ′j
⊆ ∗−→. Hence

(vj ,vj+1)+
∗−→ρ′j
⊆ ∗−→mj . We deduce that (v0,vk+1)+

∗−→ρ′⊆
∗−→ρ

by composition. Since (src(ρ′), tgt(ρ′)) = (src(ρ), tgt(ρ)) +
(v0,vk+1) we get ρ � ρ′ from the previous inclusion.

8. Polytope Production Relations
In this section we prove that production relations are polytope
(Theorem 8.1). All other results or definitions introduced in the
section are not used in the sequel.

Theorem 8.1. Production relations are polytope.

The following lemma shows that polytope periodic relations are
stable by composition. In particular it is sufficient to prove that
production relations ∗−→m are polytope for every marking m ∈ Nd

in order to deduce that production relations ∗−→ρ are polytope for
every run ρ.

Lemma 8.2. We have Q≥0(R1 ◦R2) = (Q≥0R1) ◦ (Q≥0R2) for
every periodic relations over Zd.

Proof. We haveR1 ⊆ Q≥0R1 andR2 ⊆ Q≥0R2. ThusR1◦R2 ⊆
C where C = (Q≥0R1) ◦ (Q≥0R2). As C is a conic set we get
Q≥0(R1 ◦ R2) ⊆ C. For the converse inclusion, let us consider
(x, z) ∈ C. There exists y ∈ Qd such that (x,y) ∈ Q≥0R1 and
(y, z) ∈ Q≥0R2. There exists λ1, λ2 ∈ Q≥0 such that (x,y) ∈
λ1R1 and (y, z) ∈ λ2R2. We introduce n1, n2 ∈ N>0 such that
n1λ1 ∈ N and n2λ2 ∈ N and we deduce that n(x,y) ∈ R1

and n(y, z) ∈ R2 with n = n1n2. Hence n(x, z) ∈ R1 ◦ R2.
We deduce that (x, z) ∈ Q≥0(R1 ◦ R2) and we have prove the
converse inclusion.

Theorem 3.4 shows that the conic set Q≥0
∗−→m is polytope if

and only if the following conic set is finitely generated for every
vector space V ⊆ Qd ×Qd:

(Q≥0
∗−→m) ∩ V

We introduce the periodic relation ∗−→m,V defined as the inter-
section ∗−→m ∩V. Let us observe that (Q≥0

∗−→m) ∩ V is equal
to Q≥0

∗−→m,V . So, we just have to prove that the conic set

Q≥0
∗−→m,V is finitely generated for every m ∈ Nd and for ev-

ery vector space V ⊆ Qd ×Qd.

We introduce the set Ωm,V of runs ρ such that (src(ρ), tgt(ρ))−
(m,m) is in (Nd×Nd)∩V. Note that a couple (r, s) ∈ Nd×Nd

satisfies r
∗−→m,V s if and only if there exists a run ρ ∈ Ωm,V such

that src(ρ) = m + r and tgt(ρ) = m + s. We introduce the set
Qm,V of markings q that occurs in at least one run ρ ∈ Ωm,V .
In general the set Qm,V is infinite. We consider the set Im,V of
i ∈ {1, . . . , d} such that {q(i) | q ∈ Qm,V } is infinite. We
observe that if i ∈ Im,V there exists a sequence of markings
in Qm,V such that the ith component is strictly increasing. We
are going to prove that there exists a sequence of markings in
Qm,V such that every component in Im,V is strictly increasing.
This property is proved by introducing the intraproductions. An
intraproduction for (m, V ) is a triple (r,x, s) such that x ∈ Nd,
(r, s) ∈ (Nd × Nd) ∩V and such that:

r
∗−→m x

∗−→m s

Since ∗−→m is a periodic relation we deduce that the set of intrapro-
ductions is stable by addition. In particular the marking m+nx oc-
curs in at least one run of Ωm,V for every intraproduction (r,x, s)
and for every n ∈ N. Hence, if x(i) > 0 then i ∈ Im,V . An in-
traproduction for (m, V ) is said to be total if x(i) > 0 for every
i ∈ Im,V .

Lemma 8.3. There exists a total intraproduction for (m, V ).

Proof. Since finite sums of intraproductions are intraproductions,
it is sufficient to prove that for every i ∈ Im,V there exists an
intraproduction (r,x, s) for (m, V ) such that x(i) > 0. We fix
i ∈ I .

Let us first prove that there exists q ≤ q′ in Qm,V such that
q(i) < q′(i). Since i ∈ I there exists a sequence (qn)n∈N of
markings qn ∈ Qm,V such that (qn(i))n∈N is strictly increasing.
Since (Nd,≤) is well ordered, we can extract for this sequence



a subsequence that is non decreasing for ≤. We have proved that
there exists a non-decreasing sequence (qn)n∈N of markings qn ∈
Qm,V such that (qn(i))n∈N is strictly increasing. In particular
q = q0 and q′ = q1 satisfy q ≤ q′ and q(i) < q′(i).

As q ∈ Qm,V then q occurs in a run in Ωm,V . Hence there
exists (r, s) ∈ (Nd × Nd) ∩V such that:

m + r
∗−→ q

∗−→m + s

Symmetrically, as q′ ∈ Qm,V there exists (r′, s′) ∈ (Nd×Nd)∩V
such that:

m + r′
∗−→ q′

∗−→m + s′

Let us introduce v = q′ − q. We deduce:

• (m + r′) + r
∗−→ q′ + r from m + r′

∗−→ q′.
• q + (v + r)

∗−→ (m + s) + (v + r) from q
∗−→m + s.

• (m + r) + (v + s)
∗−→ q + (v + s) from m + r

∗−→ q.
• q′ + s

∗−→ (m + s′) + s from q′
∗−→m + s′.

Since q′+ r = q+v+ r and q+v+ s = q′+ s, we have proved
the following relations where x = s + v + r:

r + r′
∗−→m x

∗−→m s + s′

As (r+r′, s+s′) ∈ (Nd×Nd)∩V we deduce that (r+r′,x, s+s′)
is an intraproduction for (m, V ). Since x(i) > 0 we are done.

Let us introduce an additional element∞ 6∈ N and let N∞ =
N ∪ {∞}. A vector in Nd∞ is called an extended marking. Given a
finite set I ⊆ {1, . . . , d} and a marking m ∈ Nd, we denote by
mI the extended marking defined by mI(i) = ∞ if i ∈ I and
mI(i) = m(i) if i 6∈ I . Given a word w ∈ A∗, we extend the
binary relation over the set of extended markings by x

w−→ y if
there exist markings m,n ∈ Nd and a set I ⊆ {1, . . . , d} such
that m

w−→ n, x = mI and y = nI . We observe that u−→ ◦ v−→ is
equal to uv−→.

We introduce the finite graph Gm,V = (Q,A, E) where Q =
{qIm,V | q ∈ Qm,V } and where E = {(pIm,V ,a,qIm,V ) |
p,q ∈ Qm,V ∧ q = p + a}. We introduce the periodic relation
Rm,V of couples (r, s) ∈ (Nd × Nd) ∩ V such that there exists
a cycle in Gm,V on the state mIm,V labeled by a word a1 . . .ak
where aj ∈ A such that r +

Pk
j=1 aj = s.

Lemma 8.4. The periodic relation Rm,V is Presburger.

Proof. This is a classical result based on the fact that the Parikh
image of a regular language is Presburger.

Lemma 8.5. The following equality holds:

Q≥0Rm,V = Q≥0
∗−→m,V

Proof. Let us first prove the inclusion ⊇. Let (r, s) such that
r
∗−→m,V s. In this case there exists a word w ∈ A∗ such that

m + r
w−→m + s. Observe that m + nr and m +ns are in Qm,V

for every n ∈ N. Hence r(i) > 0 or s(i) > 0 implies i ∈ Im,V

and we deduce that mIm,V
w−→ mIm,V . Therefore w is the label

of cycle in Gm,V on mIm,V . Thus (r, s) ∈ Rm,V .

Now let us prove the inclusion ⊆. Let us consider (r, s) ∈
Rm,V . In this case (r, s) ∈ (Nd × Nd) ∩ V and there exists a
word w = a1 . . .ak of vectors aj ∈ A that labels a cycle inGm,V

on mIm,V and such that m + r +
Pk
j=1 aj = m + s. Since w is

the label of a cycle on mIm,V we deduce that we have:

(m + r)Im,V w−→ (m + s)Im,V

Let us consider a total intraproduction (r′,x, s′) for (m, V ).
By replacing this intraproduction by another intraproduction in
N>0(r′,x, s′) we can assume that we have:

m + r + x
w−→m + s + x

An immediate induction shows that for every n ∈ N we have:

m + nr + x
wn

−−→m + ns + x

Let us consider u, v ∈ A∗ such that m+ r′
u−→m+x

v−→m+ s′.
We have proved that for every n ∈ N we have:

m + nr + r′
uwnv−−−−→m + ns + s′

Therefore nr + r′
∗−→m ns + s′. We deduce that (r′, s′) +

N(r, s) ⊆ ∗−→m,V . Thus (r, s) ∈ Q≥0
∗−→m,V . From the inclu-

sion Rm,V ⊆ Q≥0
∗−→m,V we deduce the inclusion Q≥0Rm,V ⊆

Q≥0
∗−→m,V .

Lemma 8.6. Presburger periodic sets are polytope.

Proof. Let us consider a Presburger periodic set P. Since P is
Presburger then P =

Sk
j=1 bj +Pj where bj ∈ Zd and Pj ⊆ Zd

is a finitely generated periodic set. Let us prove that Q≥0P =Sk
j=1(Q≥0bj)∪(Q>0bj+Cj) where Cj is the finitely generated

conic set Cj = Q≥0Pj . The inclusion ⊆ is immediate. For the
other inclusion observe that Q≥0bj ⊆ Q≥0P so it is sufficient to
prove that Q>0bj + Cj ⊆ Q≥0P. Let λ ∈ Q>0 and c ∈ Cj .
We have λbj + c = λ(bj + 1

λ
c). Since 1

λ
c ∈ Q≥0Pj there

exists n ∈ N>0 such that p = n
λ
c is in P. We deduce that

λbj + c = λ
n

(nbj + p). Since bj ∈ P and bj + p ∈ P and
P is a periodic set, we deduce that (n − 1)bj + (bj + p) ∈ P.
Thus λbj + c ∈ Q≥0P. We have proved the other inclusion. We
deduce that Q≥0P is definable in FO (Q,+,≤, 0, 1). Thus P is
polytope.

Now, we can prove Theorem 8.1. Lemma 8.4 shows that
Rm,V is a Presburger periodic relation. Lemma 8.6 shows that
the conic set Q≥0Rm,V is polytope. Theorem 3.4 shows that
the conic set Q≥0Rm,V is finitely generated. Lemma 8.5 shows

that Q≥0
∗−→m,V is finitely generated. Hence (Q≥0

∗−→m) ∩ V is a
finitely generated conic set for every vector space V ⊆ Qd × Qd.
Theorem 3.4 shows that the conic relation Q≥0

∗−→m is polytope.
Hence ∗−→m is a polytope periodic relation.

9. Petri Reachability relations
In this section we prove the following Theorem 9.1. All other
results or definitions introduced in this section are not used in the
sequel.

Theorem 9.1. The reachability relation of a Vector Addition Sys-
tem is a Petri relation.

We are interested in proving that ∗−→ is a Petri relation. This
problem is equivalent to prove that ∗−→ ∩((m,n)+P ) is a Lambert
relation for every (m,n) ∈ Nd × Nd and for every finitely gener-
ated periodic relation P ⊆ Nd × Nd. We introduce the order ≤P
over P defined by p ≤P p′ if p′ ∈ p+P . Since P is finitely gener-
ated we deduce that≤P is a well order over P (Dickson’s Lemma).
We introduce the set Ωm,P,n of runs ρ such that (src(ρ), tgt(ρ)) ∈



(m,n) + P . This set is well ordered by the relation �P de-
fined by ρ �P ρ′ if ρ � ρ′, (src(ρ), tgt(ρ)) − (m,n) ≤P
(src(ρ′), tgt(ρ′)) − (m,n). We deduce that min�P (Ωm,P,n) is
finite.

Lemma 9.2. The following equality holds:
∗−→ ∩((m,n)+P ) =

[
ρ∈min�P

(Ωm,P,n)

(src(ρ), tgt(ρ))+(
∗−→ρ ∩P )

Proof. Let us first prove⊇. Let ρ ∈ Ωm,P,n. Lemma 7.2 shows that
(src(ρ), tgt(ρ))+

∗−→ρ⊆
∗−→. Since (src(ρ), tgt(ρ)) ∈ (m,n) + P

and P is periodic we deduce the inclusion ⊇.

Let us prove ⊆. Let (x′,y′) in the intersection ∗−→ ∩((m,n) +
P ). There exists a run ρ′ ∈ Ωm,P,n such that x′ = src(ρ′)
and y′ = tgt(ρ′). Since �P is a well order, there exists ρ ∈
min�P (Ωm,P,n) such that ρ �P ρ′. We deduce that (x′,y′) is in
(src(ρ), tgt(ρ))+

∗−→ρ. We get (x′,y′) ∈ (src(ρ), tgt(ρ)) + (
∗−→ρ

∩P ) and we have proved the inclusion ⊆.

Theorem 8.1 shows ∗−→ρ is a polytope periodic relation. Since
P is a finitely generated relation we deduce that P is a polytope
periodic relation. Lemma 4.5 shows that the class of polytope
periodic relations is stable by finite intersections. We deduce that
∗−→ρ ∩P is polytope periodic relation. Thanks to the previous

lemma we deduce that ∗−→ ∩((m,n) +P ) is a Lambert relation for
every (m,n) ∈ Nd × Nd and for every finitely generated periodic
relation P ⊆ Nd×Nd. Therefore ∗−→ is a Petri relation and we have
proved Theorem 9.1.

10. Conclusion
We deduce the following theorem.

Theorem 10.1. For every pair of markings (m,n) in the comple-
ment of the reachability relation of a Vector Addition System, there
exists a partition of the set of markings into a Presburger forward
invariant that contains m and a Presburger backward invariant
that contains n.

Proof. Let us consider X = {m} and Y = {n} and let R∗ be
the reachability relation of the Vector addition system. Theorem 9.1
shows thatR∗ is a Petri relation. SinceR∗ is reflexive and transitive
and such that (X ×Y) ∩ R∗ = ∅, Theorem 6.1 shows that there
exists a partition of the set of markings into a Presburger forward
invariant set that contains X and a Presburger backward invariant
set that contains Y.

The reachability problem for Vector Additions Systems consists
to decide for a triple (m,A,n) where m,n are two markings of a
Vector Addition System A if there exists a word w ∈ A∗ such that
m

w−→ n. The following algorithm decides this problem.

1 Reachability ( m , A , n )
2 k ← 0
3 repeat forever
4 for each word w ∈ A∗ of length k
5 if m

w−→ n
6 return ‘‘ reachable ’’
7 for each Presburger formula ψ of length k
8 if ψ(m) and ¬ψ(n) are true and
9 ψ(x) ∧ y = x + a ∧ ¬ψ(y) unsat ∀a ∈ A

10 return ‘‘unreachable ’’
11 k ← k + 1

The correctness is immediate and the termination is guaranteed
by Theorem 10.1. This algorithm does not require the classical
KLMST decomposition. Note however that the complexity of this
algorithm is still open. In fact, the complexity depends on the min-
imal size of a word w ∈ A∗ such that m

w−→ n if m
∗−→ n, and

the minimal size of a Presburger formula ψ(x) denoting a forward
invariant M such that m ∈ M and n 6∈ M otherwise. We left
as an open question the problem of computing lower and upper
bounds for these sizes. Note that the VAS exhibiting a large (Ack-
ermann size) but finite reachability set given in [MM81] does not
directly provide an Ackermann lower-bound for these sizes since
Presburger forward invariants can over-approximate reachability
sets.

We also left as an open question the problem of adapting the
Counter Example Guided Abstract Refinement approach [CGJ+00]
to obtain an algorithm for the VAS reachability problem with ter-
mination guarantee. In practice, such an algorithm should be more
efficient than the previously given enumeration-based algorithm.

As future work we are interested in providing complexity
bounds on formulas in FO (Q,+,≤, 0, 1) denoting the polytope
conic sets Q≥0

∗−→m.
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