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Abstract
The reachability problem for Vector Addition Systems (VASs) is a
central problem of net theory. The general problem is known de-
cidable by algorithms exclusively based on the classical Kosaraju-
Lambert-Mayr-Sacerdote-Tenney decomposition. Recently from
this decomposition, we deduced that a final configuration is not
reachable from an initial one if and only if there exists a Presburger
inductive invariant that contains the initial configuration but not
the final one. Since we can decide if a Preburger formula denotes
an inductive invariant, we deduce from this result that there exist
checkable certificates of non-reachability. In particular, there ex-
ists a simple algorithm for deciding the general VAS reachability
problem based on two semi-algorithms. A first one that tries to
prove the reachability by enumerating finite sequences of actions
and a second one that tries to prove the non-reachability by enu-
merating Presburger formulas. In this paper we provide the first
proof of the VAS reachability problem that is not based on the
classical Kosaraju-Lambert-Mayr-Sacerdote-Tenney decomposi-
tion. The new proof is based on the notion of productive sequences
inspired from Hauschildt that directly provides the existence of
Presburger inductive invariants.

1. Introduction
Vector Addition Systems (VASs) or equivalently Petri Nets are one
of the most popular formal methods for the representation and the
analysis of parallel processes [EN94]. The reachability problem is
central since many computational problems (even outside the par-
allel processes) reduce to the reachability problem. Sacerdote and
Tenney provided in [ST77] a partial proof of decidability of this
problem. The proof was completed in 1981 by Mayr [May81] and
simplified by Kosaraju [Kos82] from [ST77, May81]. Ten years
later [Lam92], Lambert provided a more simplified version based
on [Kos82]. This last proof still remains difficult and the upper-
bound complexity of the corresponding algorithm is just known
non-primitive recursive. Nowadays, the exact complexity of the
reachability problem for VASs is still an open-problem. Even an el-
ementary upper-bound complexity is open. In fact, the known gen-
eral reachability algorithms are exclusively based on the Kosaraju-
Lambert-Mayr-Sacerdote-Tenney (KLMST) decomposition.

[Copyright notice will appear here once ’preprint’ option is removed.]

Recently [Ler09] we proved thanks to the KLMST decomposi-
tion that Parikh images of languages accepted by VASs are semi-
pseudo-linear, a class that extends the Presburger sets. An applica-
tion of this result was provided; we proved that a final configura-
tion is not reachable from an initial one if and only if there exists
a forward inductive invariant definable in the Presburger arithmetic
that contains the initial configuration but not the final one. Since
we can decide if a Presburger formula denotes a forward induc-
tive invariant, we deduce that there exist checkable certificates of
non-reachability. In particular, there exists a simple algorithm for
deciding the general VAS reachability problem based on two semi-
algorithms. A first one that tries to prove the reachability by enu-
merating finite sequences of actions and a second one that tries to
prove the non-reachability by enumerating Presburger formulas.

In this paper we provide a new proof of the reachability prob-
lem that is not based on the KLMST decomposition. The proof is
based on the productive sequences inspired by Hauschildt [Hau90]
and it provides directly that reachability sets are Lambert sets, a
class of sets introduced in this paper that extend the class of Pres-
burger sets and contained in the class of semi-pseudo-linear sets. In
particular this paper provides a more precise characterization of the
reachability sets of VASs.

Outline of the paper: Section 3 introduces the class of Lambert
sets. Section 4 provides a sufficient condition on binary relations
over Nd such that there exist invariants definable in the Presburger
arithmetic proving the non-reachability. Section 5 introduces the
class of Vector Addition Systems (VASs). Section 6 provides the
definition of productive sequences. Finally, in Section 7 we prove
that reachability sets are Lambert sets. We conclude from this
result that the non-reachability problem for VAS can be solved with
Presburger inductive invariants.

2. Notations
In the sequel N,N>0,Z,Q,Q>0 denote the set of natural numbers,
positive integers, integers, rational numbers, and positive rational
numbers. The ith component of a vector s ∈ Xd is denoted
by s(i). The addition function + and the order ≤ are extended
component-wise over Qd, i.e s ≤ s′ if s(i) ≤ s′(i) for every
i ∈ {1, . . . , d}. Given a function f : S → S′ we denote by
f(X) = {f(x) | x ∈ X} for every subset X ⊆ S. In particular
the sum S1 +S2 is well defined for every S1, S2 ⊆ Qd. In the same
way given T ⊆ Q and S ⊆ Qd we let TS = {ts | (t, s) ∈ T×S}.
We also denote by s1 + S2 and S1 + s2 the sets {s1} + S2 and
S1 + {s2}, and we denote by tS and Ts the sets {t}S and T{s}.

Given a monoid (S, ◦) and an element s ∈ S, let s0 be the
neutral element and let sn be the element in S defined for every
n ∈ N by the induction sn+1 = sn ◦ s. A subset R ⊆ S is called
a submonoid of (S, ◦) if R contains the neutral element of (S, ◦)
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Figure 1. A simple monoid, a linearization P , and the interior of P

and if r1 ◦ r2 ∈ R for every r1, r2 ∈ R. Recall that for every
X ⊆ S there exists a unique submonoidR of (S, ◦) that is minimal
for the inclusion and such that X ⊆ R. This monoid is called the
submonoid of (S, ◦) generated byX . A monoid (S, ◦) is said to be
finitely generated if there exists a finite set X ⊆ S such that S is
the submonoid generated by X . A morphism from a monoid (S, ◦)
to a monoid (S′, ◦′) is a total function f : S → S′ such that the
neutral elements e, e′ of (S, ◦) and (S, ◦′) satisfy f(e) = e′ and
such that f(s1 ◦ s2) = f(s1) ◦′ f(s2) for every s1, s2 ∈ S.

Given an ordered set (S,v), an element s ∈ S is said to be
minimal forv if for every s′ ∈ S such that s′ v s we have s = s′.
We denote by minv(S) the set of minimal elements in S. An order
v over a set S is said to be well if for every sequence (sn)n∈N
of elements sn ∈ S we can extract a sub-sequence that is non-
decreasing forv. Note that if (S,v) is well-ordered then minv(S)
is finite and for every s′ ∈ S there exists a minimal element s ∈ S
such that s v s′.

3. Lambert Sets
A subset M ⊆ Nd is called a Presburger set if it can be denoted
by a formula in the Presburger arithmetic FO (N,+,≤). Let us
recall [GS66] that a subset M ⊆ Nd is Presburger if and only if
it is a finite union of linear sets, i.e. sets of the form b + P where
b ∈ Nd and P is a finitely generated submonoid of (Nd,+). In this
section we introduce the class of simple submonoids of (Nd,+) that
extends the finitely generated submonoids, and the class of Lambert
sets defined as the finite unions of sets b + S where b ∈ Nd and S
is a simple submonoid of (Nd,+).

Let P be a finitely generated submonoid of (Nd,+). A vector
v ∈ P is said to be in the interior of P if for any p ∈ P
there exists n ∈ N>0 such that nv ∈ p + P . The set of interior
vectors of (P,+) is denoted by int(P ). Let S be a submonoid
of (Nd,+). A direction of S is a vector v ∈ Nd such that there
exists s ∈ S satisfying s + Nv ⊆ S. The set of directions of S

forms a submonoid of (Nd,+) denoted by dir(S). A submonoid S
of (Nd,+) is said to be simple if there exists a finitely generated
submonoid P of (Nd,+) such that S ⊆ P and int(P ) ⊆ dir(S).
In this case P is called a linearization of S. A Lambert set is a finite
union of sets of the form b + S where b ∈ Nd and S is a simple
submonoid of (Nd,+).

Example 3.1. The set S = {m ∈ N2 | m(2) ≤ m(1) ≤ 2m(2) −
1}, the finitely generated submonoid P = {m ∈ N2 | m(2) ≤
m(1)} and the interior int(P ) = {m ∈ N2 | 0 < m(2) < m(1)}
are represented in Figure 1. Since S ⊆ P and int(P ) ⊆ dir(S)
we deduce that S is a simple submonoid and P is a linearization.

The following lemma provides a characterization of int(P ).

Lemma 3.2. Let P = Np1+· · ·+Npt with t ∈ N>0 and pj ∈ Nd.
We have int(P ) = P ∩ (Q>0p1 + · · ·+ Q>0pt).

Proof. Let v ∈ P . Observe that if v is in the interior of P , as
p =

Pt
j=1 pj is in P , there exists n ∈ N>0 such that nv ∈ p+P .

Thus, there exists a sequence (nj)1≤j≤t with nj ∈ N such that
nv = p +

Pt
j=1 njpj . We deduce that v =

Pt
j=1 λjpj with

λj =
nj+1

n
. Conversely, let us assume that v =

Pt
j=1 λjpj with

λj ∈ Q>0. Let p ∈ P . There exists a sequence (nj)1≤j≤t with
nj ∈ N such that p =

Pt
j=1 njpj . As λj > 0, there exists an

integer n ∈ N>0 such that nλj is an integer satisfying nλj ≥ nj
for every j ∈ {1, . . . , t}. We deduce that nv ∈ p+P . Thus v is in
the interior of P .

In the sequel, we used the following lemma.

Lemma 3.3. Let P be a linearization of a simple submonoid S of
(Nd,+) and let f be a morphism from (P,+) to (Nd

′
,+). Then

S′ = f(S) is a simple submonoid of (Nd
′
,+) and P ′ = f(P ) is a

linearization of S′.

Proof. Since P is finitely generated, there exists a finite se-
quence (pi)1≤i≤t of vectors pi ∈ P such that P is generated
by {p1, . . . , pt}. As P ′ is generated by {f(p1), . . . , f(pt)} we de-
duce that P ′ is finitely generated. Observe that S′ ⊆ P ′. In order
to prove that S′ is a simple submonoid and P ′ is a linearization
of S′, it is sufficient to prove that int(P ′) ⊆ dir(S′). So, let us
consider an interior vector v′ ∈ int(P ′).

We first prove that there exists an interior vector v of (P,+)
and an integer h ∈ N>0 such that f(v) = hv′. Lemma 3.2 shows
that there exists a sequence (λj)1≤j≤t with λj ∈ Q>0 such that
v′ = λ1f(p1) + · · ·+λtf(pt). Let us consider h ∈ N>0 such that
hj = hλj is in N>0 for every j. Observe that hv′ = f(v) with
v = h1p1 + · · ·+ htpt. Lemma 3.2 shows that v is in the interior
of (P,+).

As v′ ∈ P ′ and P ′ = f(P ) there exists p ∈ P such that
v′ = f(p). As v is in the interior of P and p ∈ P we deduce
that vn = v + np is in the interior of P for every n ∈ N. As P
is a linearization of S, there exists sn ∈ S such that sn + N(v +
np) ⊆ S. Hence s′n + N(h + n)v′ ⊆ S′ with s′n = f(sn). We
deduce that s′ +

Ph−1
n=0 N(h + n)v′ ⊆ S′ with s′ =

Ph−1
n=0 s

′
n.

As
Ph−1
n=0 N(h + n) = {0} ∪ (h + N) we have proved that

s′ + hv′ + Nv′ ⊆ S′. Therefore v′ ∈ dir(S′) and we have proved
that int(P ′) ⊆ dir(S′). We deduce that S′ is simple and P ′ is a
linearization of S′.

4. Presburger Invariants
Let → be a binary relation over Nd denoted by a Presburger for-
mula and let ∗−→ be its reflexive and transitive closure. The reach-
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ability problem consists to decide if a pair (m,m′) of vectors in
Nd satisfies m ∗−→ m′. In general this problem is undecidable since
the semantics of every Minsky machine can be denoted by a Pres-
burger binary relation→. We introduce in this section a sufficient
condition on→ such that if m′ is not reachable from m, there ex-
ists a Presburger inductive invariant that contains m but not m′. In
particular the reachability problem for this class is decidable.

Let X ⊆ Nd. We introduce the forward/backward one-step
reachability sets post(X) and pre(X), and the forward/backward
reachability sets post∗(X) and pre∗(X) as follows:8>>><>>>:

post(X) = {m′ ∈ Nd | ∃x ∈ X x→ m′}
post∗(X) = {m′ ∈ Nd | ∃x ∈ X x

∗−→ m′}
pre(X) = {m ∈ Nd | ∃x ∈ X m→ x}
pre∗(X) = {m ∈ Nd | ∃x ∈ X m

∗−→ x}

The set X is said to be a forward invariant if post(X) ⊆ X and it
is said to be a backward invariant if pre(X) ⊆ X .

In [Ler09], the reachability problem for VAS was proved by
introducing the class of semi-pseudo-linear sets. Many geometrical
results were proved in this paper that are independent of the reacha-
bility problem. Since every Lambert set is semi-pseudo-linear, from
[Ler09], we deduce the following theorem.

Theorem 4.1. Assume that for every Presburger set X ⊆ Nd the
following sets are Lambert sets:

post∗(X)\X pre∗(X)\X
For every pair (M,M ′) of Presburger sets such that post∗(M) ∩
pre∗(M ′) = ∅, there exists a partition of Nd into a Presburger
forward invariant I ⊇ M and a Presburger backward invariant
I ′ ⊇M ′.

Now let us consider a pair (m,m′) of vectors m,m′ ∈ Nd and
observe that if (m,m′) is not in ∗−→ then post∗(M)∩pre∗(M ′) =
∅ with M = {m} and M ′ = {m′}. Since M,M ′ are Presburger
sets, from the previous theorem we deduce that there exists a
Presburger forward invariant I such that m ∈ I and m′ 6∈ I .

5. Vector Addition Systems
A vector addition system is a couple V = (A, d, δ) where A is a
non-empty finite set, d ∈ N>0 is the dimension, δ : A → Zd is
a total function called the displacement function. A vector in Nd
is called a marking. The displacement function δ is extended over
words in A∗ by δ(σ) =

Pk
j=1 δ(aj) for every word σ = a1 . . . ak

with aj ∈ A and k ∈ N. A word σ is said to be fireable from a
marking m if for every prefix w of σ the vector m + δ(w) is non-
negative. In this case we write m σ−→ m′ where m′ = m + δ(σ).
The one-step reachability binary relation→ over Nd is defined by
m→ m′ if there exists a ∈ A such that m a−→ m′.

The following proposition shows that Theorem 4.1 can be ap-
plied if we prove that post∗({m0})∩ (m+R) is a Lambert set for
every m0,m ∈ Nd and for every finitely generated submonoids R
(see Figure 2).

Proposition 5.1. Assume that for every VAS V , for every markings
m0,m, and for every finitely generated submonoidR the following
set is a Lambert set:

post∗({m0}) ∩ (m+R)

Then for every VAS V and for every Presburger sets X,Y the
following sets are Lambert sets:

post∗(X) ∩ Y pre∗(X) ∩ Y

m0

m

σ

Figure 2. A word σ fireable from m0 that reaches a marking in
m+R.

Proof. In order to clarify the notations, let us denote by post∗V(X)
and pre∗V(X) the sets post∗(X) and pre∗(X) associated to the
one-step binary relation of a VAS V . Since pre∗V(X) is equal
to post∗−V(X) where −V = (A, d,−δ), we just have to prove
that post∗V(X) ∩ Y is a Lambert set for every Presburger sets
X,Y ⊆ Nd and for every VAS V . As a Presburger set is a finite
union of linear sets, it is sufficient to prove that post∗V(m0 +
R0) ∩ (m + R) is a Lambert set for every m0,m ∈ Nd and
for every finitely generated submonoids R0, R of (Nd,+). Since
R0 is finitely generated, there exists a finite sequence r1, . . . , rk
of vectors rj ∈ Nd such that R0 is the submonoid generated by
{r1, . . . , rk}. Let us consider a sequence (b1, . . . , bk) of distinct
elements disjoint ofA and letA′ = A∪{b1, . . . , bk}. We introduce
the extension δ′ of δ over A′ defined by δ′(bj) = rj . Now just
observe that post∗V(m0 + R0) = post∗V′({m0}) where V ′ =
(A′, d, δ′).

6. Finite Decomposition
Let us consider two markingsm0,m ∈ Nd and a finitely generated
submonoid R (see Figure 2). We introduce the set Σm0,m,R of
words σ ∈ A∗ fireable fromm0 and such thatm0+δ(σ) ∈ m+R.

Definition 6.1 (Inspired by Hauschildt [Hau90]). Let σ = a1 . . . ak
be a word in Σm0,m,R with aj ∈ A for every j. A sequence
π = (wj)0≤j≤k of words wj ∈ A∗ is said to be productive for
(m0, σ, R) if the following conditions hold:

• The word denoted by σπ = w0a1w1 . . . akwk is fireable from
m0, and

• The partial sums δ(w0) + · · · + δ(wj) are non-negative for
every j ∈ {0, . . . , k}, and

• The total sum denoted by δ(π) =
Pk
j=0 δ(wj) is in R.

We denote by Πm0,σ,R the set of productive sequences.

Example 6.2. Let π = (wj)0≤j≤k be a productive sequence for
(m0, σ, R). We introduce the partial sums rj = δ(w0) + · · · +
δ(wj) for each j. Figure 3 describes a part of the execution of σπ

from m0.

In this section we prove that δ(Πm0,σ,R) = {δ(π) | π ∈
Πm0,σ,R} is a submonoid of (R,+) and there exists a finite set
Σ ⊆ Σm0,m,R such that the following finite decomposition holds:

post∗({m0}) ∩ (m+R) =
[
σ∈Σ

m0 + δ(σ) + δ(Πm0,σ,R)

In particular we reduce the problem of proving that post∗({m0})∩
(m + R) is a Lambert set to prove that δ(Πm0,σ,R) is a simple
submonoid.
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Figure 3. The effect of a productive sequence.

We consider the total function ◦ defined over Πm0,σ,R ×
Πm0,σ,R by π ◦ π′ = (wjw

′
j)0≤j≤k where π = (wj)0≤j≤k and

π′ = (w′j)0≤j≤k. The following lemma shows that (Πm0,σ,R, ◦)
is a monoid with the neutral element (ε)0≤j≤k. Since δ(π ◦ π′) =
δ(π)+δ(π′) we deduce that δ(Πm0,σ,R) is a submonoid of (R,+).

Lemma 6.3. The sequence π ◦ π′ is in Πm0,σ,R for every π, π′ ∈
Πm0,σ,R.

Proof. Let us consider π = (wj)0≤j≤k and π′ = (w′j)0≤j≤k in
Πm0,σ,R and let π′′ = (w′′j )0≤j≤k with w′′j = wjw

′
j for every

j. We introduce the partial sums rj = δ(w0) + · · · + δ(wj),
r′j = δ(w′0) + · · · + δ(w′j), and r′′j = δ(w′′0 ) + · · · + δ(w′′j ).
Observe that r′′j = rj + r′j which is a non-negative vector and
r′′k = rk+r′k which is a vector inR since rk, r′k ∈ R. Let us prove
that σπ

′′
is fireable from m0. A prefix u of this word has the form

w0w
′
0a1 . . . wj−1w

′
j−1ajw wherew is either a prefix ofwj orw is

a word of the formw = wjw
′ wherew′ is a prefix ofw′j . In the first

casem0 +δ(u) = r′j−1 +m0 +δ(v) with v = w0a1 . . . wj−1ajw.
Since v is a prefix of σπ that is fireable from m0 we deduce
that m0 + δ(v) is non-negative. Therefore m0 + δ(u) is non-
negative. In the second case m0 + δ(u) = rj + m0 + δ(v′) with
v′ = w′0a1 . . . w

′
j−1ajw

′. Since v′ is a prefix of σπ
′

that is fireable
from m0 we deduce that m0 + δ(v′) is non-negative. Therefore
m0 + δ(u) is non-negative. We have proved that σπ

′′
is fireable

from m0. Thus π′′ ∈ Πm0,σ,R.

We introduce the order ≤R over R defined by r ≤R r′ if
r′ ∈ r +R.

Lemma 6.4. (R,≤R) is a well-ordered set.

Proof. Since R is finitely generated, there exists a finite sequence
(rj)1≤j≤t of vectors rj ∈ R such that R = Nr1 + · · · + Nrt.
In particular there exists a total function f : R → Nt that maps
every vector r ∈ R onto a sequence f(r) = (nj)1≤j≤t such that
r =

Pt
j=1 njrj . From Dickson’s Lemma, (Nt,≤) is well-ordered.

We deduce that (R,≤R) is well-ordered since for every r, r′ ∈ R
if f(r) ≤ f(r′) then r ≤R r′.

We introduce a well-order vm0,m,R over Σm0,m,R as follows.
We first consider the infinite set H = A×Nd ordered by (a, x) �
(a′, x′) if and only if a = a′ and x ≤ x′. From Dickson’s Lemma,
the order ≤ over Nd is well. As A is finite, we deduce that (H,�)
is a well-ordered set. We introduce the order �∗ over the words

in H∗ defined by u �∗ u′ where u = h1 . . . hk with hj ∈ H if
there exists a sequence (h′j)1≤j≤k with hj � h′j and a sequence
(uj)0≤j≤k of words uj ∈ H∗ such that u′ = u0h

′
1u1 . . . h

′
kuk.

From Higman’s Lemma, the order �∗ is a well-order over H∗.
Next, we associate to every couple (m0, σ) where m0 ∈ Nd and
σ ∈ A∗ is a word fireable from m0, the word um0,σ ∈ H∗ defined
by the following equality where mj = m0 + δ(a1 . . . aj):

um0,σ = (a1,m1) . . . (ak,mk)

The set Σm0,m,R is equipped with the order vm0,m,R defined by
σ vm0,m,R σ

′ if and only if um0,σ �∗ um0,σ′ and (m0 + δ(σ)−
m) ≤R (m0 + δ(σ′) − m). Since (H∗,�∗) and (R,≤R) are
well-ordered sets, we deduce that (Σm0,m,R,vm0,m,R) is also a
well-ordered set.

Lemma 6.5. For every σ, σ′ ∈ Σm0,m,R we have σ vm0,m,R σ′

if and only if there exists π ∈ Πm0,σ,R such that σ′ = σπ .

Proof. We associate to every word u = (a1,m1) . . . (ak,mk) with
(aj ,mj) ∈ H the word w = a1 . . . ak called the label of u. Let
σ, σ′ ∈ Σm0,m,R. We introduce the sequence (aj)1≤j≤k such that
σ = a1 . . . ak and the marking mj = m0 + δ(a1 . . . aj).

Let us first assume that there exists π = (wj)0≤j≤k in Πm0,σ,R

such that σ′ = σπ and let us prove that σ vm0,m,R σ′. We
introduce the partial sum rj = δ(w0) + · · · + δ(wj) where
j ∈ {−1, . . . , k}. We also introduce the vector m′j = mj + rj−1

for every j ∈ {0, . . . , k}. Since σπ is fireable from m0, we have:

m′0
w0a1−−−→ m′1 · · ·m′k−1

wk−1ak−−−−−→ m′k
wk−−→ (mk + δ(π))

We deduce that um0,σ′ = h0(a1,m
′
1)h1 . . . (ak,m

′
k)hk where hj

is obtained from the intermediate markings in m′j
wj−−→ (m′j +

δ(wj). As m′j ≥ mj we deduce that um0,σ �∗ um0,σ′ . Moreover,
as δ(π) ∈ R we have proved that m0 + δ(σ′) ∈ m0 + δ(σ) + R.
Therefore σ vm0,m,R σ

′.

Conversely, let us assume that σ vm0,m,R σ′ and let us prove
that there exists π ∈ Πm0,σ,R such that σ′ = σπ . Observe that
um0,σ = (a1,m1) . . . (ak,mk). Since um0,σ � um0,σ′ , there
exists a sequence (m′j)1≤j≤k of standard markings m′j ≥ mj and
a sequence (hj)0≤j≤k of words in H∗ such that:

um0,σ′ = h0(a1,m
′
1)h1 . . . (ak,mk)hk

Let us consider the sequence π = (wj)0≤j≤k where wj is the
label of hj . By definition of um0,σ′ , we have the following relations
where δ(π) =

Pk
j=0 δ(wj):

m′0
w0a1−−−→ m′1 · · ·m′k−1

wk−1ak−−−−−→ m′k
wk−−→ (mk + δ(π))

Asm′j ≥ mj we deduce that δ(w0)+· · ·+δ(wj−1) is non-negative
for every j ∈ {1, . . . k}. Moreover asm0+δ(σ′) ∈ m0+δ(σ)+R,
we get δ(π) ∈ R. We have proved that π ∈ Πm0,σ,R and σ′ = σπ .

Now, we can prove the main theorem of this section.

Theorem 6.6. The set Σ = minvm0,m,R(Σm0,m,R) is finite and
it satisfies:

post∗({m0}) ∩ (m+R) =
[
σ∈Σ

m0 + δ(σ) + δ(Πm0,σ,R)

Proof. As (Σm0,m,R,vm0,m,R) is a well-ordered set, we deduce
that Σ is finite and we have the following equality:

Σm0,m,R =
[
σ∈Σ

{σ′ ∈ Σm0,m,R | σ vm0,m,R σ
′}
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From Lemma 6.5 we get the following equality:

Σm0,m,R =
[
σ∈Σ

{σπ | π ∈ Πm0,σ,R}

In particular by applying δ, since m0 + δ(Σm0,m,R) is equal to
post∗({m0}) ∩ (m + R) and δ(σπ) = δ(σ) + δ(π), we get the
theorem.

7. Simple Monoids
In this section we prove that the monoid (δ(Πm0,σ,R),+) is sim-
ple.

The set Z is extended with an additional element ∞ 6∈ Z and
we denote by Z∞ and N∞, respectively, the sets Z ∪ {∞} and
N∞ = N ∪ {∞}. The total-order ≤ over Z is extended over Z∞
by z ≤ ∞ for every z ∈ Z∞. The total-order ≤ is extended
into an order ≤ over Zd∞ defined component-wise by v ≤ v′ if
v(i) ≤ v′(i) for every i ∈ {1, . . . , d}. The addition function is
extended into a total function + : Z∞ × Z∞ → Z∞ defined by
z +∞ = ∞ = ∞ + z for every z ∈ Z∞. This function is also
extended component-wise. The multiplication is extended over N∞
by∞n =∞ = n∞ if n 6= 0 and∞0 = 0 = 0∞.

A vector in Nd∞ is called an extended marking. A word σ is said
to be fireable from an extended marking m if for every prefix w
of σ the vector m + δ(w) is non-negative. In this case we write
m

σ−→ m′ where m′ = m+ δ(σ).

A graph (labelled by A) is a couple G = (Q,E) where Q is
a non-empty set of states and E ⊆ Q × A × Q is a set of edges.
The graph G is said to be finite if Q and E are both finite. A path
in G is a word p = e1 . . . ek of k ∈ N edges ej ∈ E such that
there exists a sequence (qj)0≤j≤k of states qj ∈ Q and a sequence
(aj)1≤j≤k of element aj ∈ A such that ej = (qj−1, aj , qj) for
every j ∈ {1, . . . , k}. In this case the word σ = a1 . . . ak is
unique and it is called the label of p. The path p is also denoted
by q0

σ−→G qk and it is called a path from q0 to qk labelled by
σ. We denote by ||p|| : E 7→ N the Parikh image of p defined
for every e ∈ E by ||p||(e) is the number of occurences of e in
p.When q0 = qk, the path is called a cycle. The graph G is said to
be strongly connected if for every pair (q, q′) ∈ Q×Q there exists
a path from q to q′.

Let G = (Q,E) be a graph and let f : E → N be a total
function. We introduce the graph Gf = (Qf , Ef ) defined by the
set of edges Ef = {e ∈ E | f(e) > 0} and the Qf such
that Qf is the minimal for the inclusion subset of Q such that
Ef ⊆ Qf×A×Qf . The graphGf is said to be induced by (G, f).
We say that a total function f : E → N satisfies the Kirchhoff laws
of G if for every q ∈ Q the following equality holds:X

e∈E∩({q}×A×Q)

f(e) =
X

e∈E∩(Q×A×{q})

f(e)

Let us recall that a total function f : E → N is the Parikh image of
a cycle if and only if f satisfies the Kirchhoff laws and the graph
Gf is finite and strongly connected.

The tuple (m0, σ, R) is fixed in this section and the set Πm0,σ,R

is simply denoted by Π. We introduce the sequence (aj)1≤j≤k
of elements aj ∈ A such that σ = a1 . . . ak, and the sequence
(mj)0≤j≤k of markings mj = m0 + δ(a1 . . . aj).

Let us consider a productive sequence π = (wj)0≤j≤k and let
us introduce the partial sums rj = δ(w0)+ · · ·+δ(wj) for every j.
Based on Figures 4 and 5, we introduce the jth intermediate mark-
ings of π and its jth intermediate edges. A vector qj ∈ Nd is said to

mj−1

mj

mj+1

aj

aj+1

aj

aj+1

rj−1

rj−1 rj

rj−1

wj,in

wj,out

qj

Figure 4. A jth intermediate marking qj .

mj−1

mj

mj+1

aj

aj+1

aj

aj+1

rj−1

rj−1 rj

rj−1

wj,in a

wj,out

qj
q′j

Figure 5. A jth intermediate edge (qj , a, q
′
j).

be a jth intermediate marking of π if there exist wj,in, wj,out ∈ A∗
such that wj = wj,inwj,out and such that the following relation
holds:

(mj + rj−1)
wj,in−−−→ qj

wj,out−−−→ (mj + rj)

A couple (qj , a, q
′
j) where qj , q′j ∈ Nd and a ∈ A is said to be

a jth intermediate edge of π if there exist wj,in, wj,out ∈ A∗ such
that wj = wj,inawj,out and such that the following relation holds:

(mj + rj−1)
wj,in−−−→ qj

a−→ q′j
wj,out−−−→ (mj + rj)

We consider the set Qj of jth intermediate marking and the set
Ej of jth intermediate edges for at least one productive sequence
π ∈ Π. We introduce the (infinite) graph Gj = (Qj , Ej).

We are interested in foldingGj into a finite graph. We introduce
for each j ∈ {0, . . . , k} the set Ij of integers i ∈ {1, . . . , d}
such that {qj(i) | qj ∈ Qj} is infinite. We introduce the vector
vj ∈ {0,∞}d such that vj(i) = ∞ if and only if i ∈ Ij . By
construction, the set Q̃j = Qj + vj is a finite set of extended
markings. In the sequel we denote by q̃j the extended marking
qj + vj . We also introduce the set Ẽj = {(q̃j , a, q̃′j) | (qj , a, q′j) ∈
Ej}. We introduce the finite graph G̃j = (Q̃j , Ẽj).

Lemma 7.1. The graph G̃j is strongly connected and for every
productive sequence π = (wj)0≤j≤k in Π and for every j ∈
{0, . . . , k}, we have:

m̃j

wj−−→G̃j
m̃j
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Proof. Let us consider a productive sequence π = (wj)0≤j≤k in
Π. We introduce the partial sum rj = δ(w0)+· · ·+δ(wj). Let n ∈
N. Since (Π, ◦) is a monoid, the productive sequence πn is well
defined. We deduce that σπ

n

is fireable fromm0. Hence the vectors
m0 + δ(wn0 a1 . . . w

n
j−1aj) and m0 + δ(wn0 a1 . . . w

n
j−1ajw

n
j ) are

both non negative. Since these vectors are respectively equal to
mj + nrj−1 and mj + nrj we deduce that rj−1(i) > 0 or
rj(i) > 0 implies i ∈ Ij . Therefore mj + rj−1 + vj = m̃j

and mj + rj + vj = m̃j . Since (mj + rj−1)
wj−−→Gj (mj + rj)

and immediate induction provides m̃j

wj−−→G̃j
m̃j . We also deduce

that for every q̃j ∈ Q̃j there exists a path in G̃j from m̃j to q̃j and
a path from q̃j to m̃j . Thus G̃j is strongly connected,

We consider the set Π̄ of sequences π̄ = (w̄j)0≤j≤k of words

w̄j ∈ A∗ such that m̄j

w̄j−−→Ḡj
m̄j , the partial sums δ(w̄0) +

· · · + δ(w̄j) are non-negative for every j ∈ {0, . . . , k}, and the
total sum denoted by δ(π̄) =

Pk
j=0 δ(w̄j) is in R. A sequence

π̄ ∈ Π̄ is called a weak-productive sequence. The previous lemma
shows that Π is the set of weak-productive sequences π̄ ∈ Π̄
such that σπ̄ is fireable from m0. In order to transform a weak-
productive sequence into a productive sequence, we introduce the
mixed-productive sequences.

We consider the set Θ of sequences θ = (wj↑, wj↓)0≤j≤k
where wj↑, wj↓ ∈ A∗ × A∗ are such that π = (wj)0≤j≤k, with
wj = wj↑wj↓, is in Π and such that partial sums xj = δ(w0) +
· · ·+δ(wj−1)+δ(wj↑) are non-negative for every j ∈ {0, . . . , k}.
A sequence θ ∈ Θ is called a mixed-productive sequence and
the vector xj is called the jth increase of θ (See Figure 6). We
introduce the total function ◦ defined over Θ × Θ by θ ◦ θ′ =
(wj↑w

′
j↑, w

′
j↓wj↓)0≤j≤k where θ = (wj↑, wj↓)0≤j≤k and θ′ =

(w′j↑, w
′
j↓)0≤j≤k. The following lemma shows that (Θ, ◦) is a

monoid. In particular the mixed-productive sequence θn is well
defined for every n ∈ N.

Lemma 7.2. We have θ ◦ θ′ ∈ Θ for every θ, θ′ ∈ Θ.

Proof. Let θ = (wj↑, wj↓)0≤j≤k and θ′ = (w′j↑, w
′
j↓)0≤j≤k.

We introduce w′′j↑ = wj↑w
′
j↑ and w′′j↓ = w′j↓wj↓. We have

θ ◦ θ′ = θ′′ with θ′′ = (w′′j↑, w
′′
j↓)0≤j≤k. We introduce the words

wj = wj↑wj↓, w′j = w′j↑w
′
j↓, and w′′j = w′′j↑w

′′
j↓, the sequences

π = (wj)0≤j≤k, π′ = (w′j)0≤j≤k, and π′′ = (w′′j )0≤j≤k, the
partial sums rj = δ(w0)+ · · ·+δ(wj), r′j = δ(w′0)+ · · ·+δ(w′j),
and r′′j = δ(w′′0 )+· · ·+δ(w′′j ), and the jth increases xj = δ(w0)+
· · ·+ δ(wj−1) + δ(wj↑), x′j = δ(w′0) + · · ·+ δ(w′j−1) + δ(w′j↑),
and x′′j = δ(w′′0 ) + · · · + δ(w′′j−1) + δ(w′′j↑). We observe that
r′′j = rj + r′j and x′′j = xj + x′j are non-negative for every
j ∈ {0, . . . , k}, and r′′k = rk + r′k ∈ R. Thus, in order to prove
that θ is in Θ, it just remains to prove that σπ

′′
is fireable from m0.

A prefix u of this word has the form u = w′′0a1w
′′
1 . . . w

′′
j−1ajw

where w is either a prefix of wj↑, or a word of the form wj↑w
′

where w′ is a prefix of w′j , or a word of the form wj↑w
′
jw where

w is a prefix of wj↓. We divide the proof in these three cases.
If w is a prefix of wj↑ then m0 + δ(u) = r′j−1 + m0 + δ(v)
with v = w0a1 . . . wj−1ajw. Since v is a prefix of σπ that is
fireable from m0 we deduce that m0 + δ(v) is non negative. Thus
m0 + δ(u) is non-negative. If w is a word of the form wj↑w

′

where w′ is a prefix of w′j then m0 + δ(u) = xj + m0 + δ(v′)

with v′ = w′0a1 . . . w
′
j−1ajw

′. Since v′ is a prefix of σπ
′

that is
fireable from m0 we deduce that m0 + δ(v′) is non-negative. Thus
m0 + δ(u) is non-negative. If w is a word of the form wj↑w

′
jw

where w is a prefix of wj↓ then m0 + δ(u) = r′j + m0 + δ(v)

mj−1

mj

mj+1

aj

aj+1

aj

aj+1

rj−1

rj−1 rj

rj−1

xj

wj↑

wj↓

Figure 6. The effect of a mixed-productive sequence.

with v = w0a1 . . . wj−1ajwj↑w. Since v is a prefix of σπ that
is fireable from m0 we deduce that m0 + δ(v) is non-negative.
Therefore m0 + δ(u) is non-negative. We have proved that σπ

′′
is

fireable from m0. Therefore θ′′ ∈ Θ.

Let xj be the jth increase of a mixed-productive sequence θ ∈
Θ. The mixed-productive sequence θn shows that mj +nxj ∈ Qj
for every n ∈ N. We deduce that xj(i) > 0 implies i ∈ Ij .
A mixed-productive sequence θ is said to be strong if for every
j ∈ {0, . . . , k}, its jth increase xj satisfies xj(i) > 0 if and only
if i ∈ Ij .

Proposition 7.3. There exists a strong mixed-productive sequence.

Proof. Since the mixed-productive sequences are composable by ◦
and the jth increase of θ ◦ θ′ is equal to xj + x′j where xj , x′j are
the jth increases of θ, θ′, it is sufficient to prove that for every j ∈
{0, . . . , k} and for every i ∈ Ij , there exists a mixed-productive
sequence θ such that the jth increase xj satisfies xj(i) > 0. So, let
us fix j ∈ {0, . . . , k} and i ∈ Ij .

Since the set {qj(i) | qj ∈ Qj} is infinite, there exists an
infinite sequence in Qj such that the ith component is strictly
increasing. As ≤ is a well order over Nd, we can extract from
this sequence a subsequence that is non-decreasing for ≤. We
have proved that there exist qj , q′j ∈ Qj such that qj ≤ q′j
and qj(i) < q′j(i). By definition of Qj , there exists a productive
sequence π = (wj)0≤j≤k in Π and a decomposition of wj into
wj = wj,inwj,out such that the following relation holds where
rj−1 and rj are the partial sums δ(w0) + · · · + δ(wj−1) and
δ(w0) + · · ·+ δ(wj):

(mj + rj−1)
wj,in−−−→ qj

wj,out−−−→ (mj + rj)

Symmetrically there exists a productive sequence π′ = (w′j)0≤j≤k
in Π and a decomposition of w′j into w′j = w′j,inw

′
j,out such that

the following relation holds where r′j−1 and r′j are the partial sums
δ(w′0) + · · ·+ δ(w′j−1) and δ(w′0) + · · ·+ δ(w′j):

(mj + r′j−1)
w′j,in−−−→ q′j

w′j,out−−−→ (mj + r′j)
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Since rj , r′j , rj−1, r
′
j−1 are non negative and q′j ≥ qj , we

observe that the following relations hold:

(mj + rj−1 + r′j−1)
w′j,in−−−→ (q′j + rj−1) = (qj + rj−1 + q′j − qj)
wj,out−−−→ (mj + rj + rj−1 + q′j − qj)
wj,in−−−→ (q′j + rj)

w′j,out−−−→ (mj + rj + r′j)

Let us consider the sequence θ = (wt↑, wt↓)0≤t≤k defined by:

wt↑ =

(
wt,inwt,out if t 6= j

w′j,inwj,out if t = j

wt↓ =

(
w′t,inw

′
t,out if t 6= j

wj,inw
′
j,out if t = j

Observe that the vector xt = δ(w0) + · · ·+ δ(wt−1) + δ(wt↑) is
equal to rt+r′t−1 if t 6= j and it is equal to rj+rj−1 +(q′j−qj) if
t = j. In particular xt is non-negative for every t ∈ {0, . . . , k} and
xj(i) > 0. We have proved that θ is a mixed-productive sequence
with a jth increase xj such that xj(i) > 0.

Lemma 7.4. For every weak-productive sequence π̄ = (w̄j)0≤j≤k
in Π̄, there exists a mixed-productive sequence θ = (wj↑, wj↓)0≤j≤k
such that for every n ∈ N the following sequence πn is in Π:

πn = (wj↑w̄
n
j wj↓)0≤j≤k

Proof. Let us consider a strong mixed-productive sequence θ =
(wj↑, wj↓)0≤j≤k and let xj be the jth increase of θ. Since θ
is strong we deduce that ∞xj = vj and in particular m̃j =

mj +∞xj . As m̃j

w̄j−−→G̃j
m̃j we deduce that w̄j is fireable from

m̃j . Hence, there exists an integer hj ∈ N such that w̄j is fireable
frommj +hjxj . Let us consider h ∈ N such that hj ≤ h for every
j ∈ {0, . . . , k}. By replacing θ by θh, we can assume without
loss of generality that h = 1 and in particular w̄j is fireable from
mj + xj for every j ∈ {0, . . . , k}.

We introduce the productive sequence π = (wj)0≤j≤k where
wj = wj↑wj↓ for every j ∈ {0, . . . , k} and the sequence πn =
(wj↑w̄

n
j wj↓)0≤j≤k where n ∈ N. We are interested in proving

that πn ∈ Π. The case n = 0 is immediate since π0 = π. So
we can assume that n ≥ 1. We consider the partial sums pj =
δ(w̄0) + · · ·+ δ(w̄j) and rj = δ(w0) + · · ·+ δ(wj) associated to
the sequences π̄ and π. Note that the partial sums of πn are equal to
rj +npj which is non-negative. Moreover δ(πn) = δ(π) +nδ(π̄)
which is in R since (R,+) is a monoid and δ(π), δ(π̄) ∈ R. In
order to prove that πn ∈ Π it is sufficient to prove that σπn is
fireable from m0. A prefix u of this word is a word of the form
u = w0↑w̄

n
0w0↓a1 . . . wj−1↑w̄

n
j−1wj−1↓ajv where v is either a

prefix of wj↑, or v is a word of the form v = wj↑w̄
t
jw̄ where

t ∈ {0, . . . , n−1} and w̄ is a prefix of w̄j , or v is a word of the form
v = wj↑w̄

n
j w wherew is a prefix ofwj↓. We prove thatm0 +δ(u)

is non-negative by dividing the proof in three cases. In the first case,
if v is a prefix of wj↑ then m0 + δ(u) = npj−1 + m0 + δ(u′)
with u′ = w0a1w1 . . . ajv. Since u′ is a prefix of σπ that is
fireable from m0, we deduce that m0 + δ(u′) is non-negative.
Thus m0 + δ(u) is non-negative. In the second case, we have
v = wj↑w̄

t
jw̄ where t ∈ {0, . . . , n − 1} and w̄ is a prefix of

w̄j . We have m+ δ(u) = tpj + (n− t)pj−1 +mj + xj + δ(w̄).
As w̄j is fireable frommj +xj , we deduce thatmj +xj + δ(w̄) is
non-negative. Therefore m+ δ(u) is non-negative. In the last case,
we have v = wj↑w̄

n
j w where w is a prefix of wj↓. In this case

m0 +δ(u) = npj+m0 +δ(u′) with u′ = w0a1 . . . wj−1ajwj↑w.
As u′ is a prefix of σπ that is fireable from m0, we deduce that
m0 + δ(u′) is non-negative. Therefore m0 + δ(u) is non-negative.
We have proved that σπn is fireable from m0. Therefore πn ∈ Π.

By Fj we denote the set of total functions fj : Ẽj → N
that satisfy the Kirchhoff laws of G̃j . We extend δ over Fj by the
following equality:

δ(fj) =
X

ẽ=(q̃,a,q̃′)∈Ẽj

fj(ẽ)δ(a)

We introduce the set F of sequences f = (fj)0≤j≤k of elements
fj ∈ Fj such that the partial sums δ(f0) + · · · + δ(fj) are
non-negative for every j ∈ {0, . . . , k} and such that the total
sum denoted by δ(f) =

Pk
j=0 δ(fj) satisfies δ(f) ∈ R. Let us

consider the order v over F defined by f v f ′ if fj ≤ f ′j for
every j and δ(f) ≤R δ(f ′). Since (Fj ,≤) and (R,≤R) are well
ordered sets, we deduce that (F,v) is well ordered. In particular
minv(F\{0}) is finite. The following lemma shows that (F,+) is
finitely generated.

Lemma 7.5. The monoid (F,+) is generated by minv(F\{0}).

Proof. Let us denote by F ′ the submonoid of (F,+) generated by
minv(F\{0}) and assume by contradiction that F is not included
in F ′. Since (F,v) is a well ordered set and F\F ′ is non empty,
there exists a sequence f ∈ min(F\F ′). Since 0 ∈ F ′ we
deduce that f 6= 0. As (F,v) is a well ordered set, there exists
f ′ ∈ minv(F\{0}) such that f ′ v f . In particular f ′ ∈ F ′. Let
us introduce the sequence f ′′ = f − f ′. Since f v f ′ we deduce
that f ′′ ∈ F . Observe that if f ′′ = 0 then f = f ′ and we get the
contradiction f ∈ F ′. If f ′ 6= 0, from f ′′ v f and f ′′ 6= f we
deduce by minimality of f that f ′′ ∈ F ′. From f = f ′ + f ′′ we
get the contradiction f ∈ F ′. Thus F ⊆ F ′. Since F ′ ⊆ F we
have proved the equality F = F ′.

Since F is generated by this set, we deduce that (F,+) is a
finitely generated monoid. We associate to every weak-productive
sequence π̄ = (w̄j)0≤j≤k the sequence f = (fj)0≤j≤k where

fj is the Parikh image of the cycle m̃j

w̄j−−→G̃j
m̃j . Observe that

f ∈ F since δ(fj) = δ(w̄j). In the sequel, the sequence f is
denoted by ||π̄|| and the total function fj by ||π̄||j .
Lemma 7.6. For every f interior to (F,+), there exists a weak-
productive sequence π̄ ∈ Π̄ such that f = ||π̄||.

Proof. Let us consider f = (fj)0≤j≤k a function interior to
(F,+). Let us first prove that fj(ẽ) > 0 for every ẽ ∈ Ẽj .
Let ẽ ∈ Ẽj . By definition of Ẽj , there exists π ∈ Π such that
||π||j(ẽ) > 0. Since f is in the interior of F and ||π|| ∈ F , there
exists an integer n ∈ N>0 such that nf ∈ ||π|| + F . In particu-
lar nfj(ẽ) ≥ ||π||j(ẽ). We have proved that fj(ẽ) > 0 for every
ẽ ∈ Ẽj . In particular the graph induced by (G̃j , fj) is the finite
strongly connected graph G̃j . Therefore fj is the Parikh image of

a cycle m̃j

w̄j−−→G̃j
m̃j . Let π̄ = (w̄j)0≤j≤k. From δ(w̄j) = δ(fj)

we deduce that π̄ ∈ Π̄.

Proposition 7.7. The monoid (||Π||,+) is simple and F is a
linearization.

Proof. Observe that ||Π|| ⊆ F . Next, let us consider an in-
terior function f ∈ F . Lemma 7.6 proves that there exists a
weak-productive sequence π̄ = (w̄j)0≤j≤k such that f = ||π̄||.

7 2010/8/3



From Lemma 7.4, there exists a mixed-productive sequence θ =
(wj↑, wj↓)0≤j≤k such that for every n ∈ N the following sequence
πn is in Π:

πn = (wj↑w̄
n
j wj↓)0≤j≤k

Observe that ||πn|| = ||π||+ nf where π = (wj↑wj↓)0≤j≤k. We
are done.

From Lemma 3.3, since δ is a morphism from (F,+) to (R,+),
we deduce that δ(||Π||) is simple and δ(F ) is a linearization. As
δ(||Π||) = δ(Π), we get the following theorem:

Theorem 7.8. The monoid (δ(Πm0,σ,R),+) is simple.

From Theorem 7.8, Theorem 6.6 and Proposition 5.1 we deduce
the following main theorem of this paper.

Theorem 7.9. For every Presburger setsX,Y ⊆ Nd the following
sets are Lambert sets:

post∗(X) ∩ Y pre∗(X) ∩ Y

8. Conclusion
We deduce that the following algorithm decides the reachability
problem.

1 Reachability ( m , V , m′ )
2 k ← 0
3 repeat forever
4 for each word σ ∈ Ak

5 if m σ−→ m′

6 return ‘‘ reachable ’’
7 for each Presburger formula ψ(x) of length k
8 if ψ(m) and ¬ψ(m′) are true and
9 ψ(x) ∧ y = x+ δ(a) ∧ ¬ψ(y) unsat ∀a ∈ Σ

10 return ‘‘unreachable ’’
11 k ← k + 1

The correctness is immediate and the termination is guaranteed
by Theorem 7.9 and Theorem 4.1. This algorithm is the very first
one that does not require the classical KLMST decomposition.
Even though the termination proof is not based on the KLMST
decomposition, the complexity of the algorithm is still open. In fact,
the complexity depends on the minimal size of a word σ ∈ Σ∗ such
that m σ−→ m′ if m ∗−→ m′, and the minimal size of a Presburger
formula ψ(x) denoting a forward invariant I such that m ∈ I and
m′ ∈ I otherwise. We left as an open question the problem of
computing lower and upper bounds for these sizes. Note that the
VAS exhibiting a large (Ackermann size) but finite reachability
set given in [MM81] does not directly provide an Ackermann
lower-bound for these sizes since inductive separators can over-
approximate reachability sets.

We also left as an open question the problem of adapting the
Counter Example Guided Abstract Refinement approach [CGJ+00]
to obtain an algorithm for the VAS reachability problem with ter-
mination guarantee. In practice, such an algorithm should be more
efficient than the previously given enumeration-based algorithm.
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