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Abstract. This paper describes a new approach to analyze hand gestures, based
on an experimental approximation of the shape and kinematics of compressed
arm trajectories. The motivation of such a model is on the one hand the reduc-
tion of the gesture data, and on the other hand the possibility to segment ges-
tures into meaningful units, yielding to an analysis tool for gesture coding and
synthesis. We show that the measures of the inverse of the distance between
adaptive samples and velocity estimated at these points are respectively corre-
lated to the instantaneous curvature and tangential velocity directly computed
on motion capture data. Based on these correlation results, we propose a new-
way to automatically segment hand gestures. We show also that this approach
can be applied to a global analysis / synthesis framework, useful for automatic
animation of virtual characters performing sign langue gestures.

1 Introduction

Numerous approaches have been developed for the representation of human gesture.
These studies sensibly differ, whether the emphasis is placed on the search of struc-
tural features used for example for gesture transcription or coding, or signal-based
features used for example to represent the movement kinematics.

The first class of studies relies most of the time on a thorough knowledge of ges-
tures, leading to a semantic, or a symbolic description using different types of codes.
For example, the Laban notation was defined for describing dance or martial art ges-
tures 1]. In the same way, HamNoSys notation was defined to represent sign lan-
guages gestures [2]. Other studies propose a segmentation of human gestures into a
sequence of discrete phases or motion units of different types, based for example on
velocity or acceleration profiles [3, 4, 5].

The second class of studies is related to the analysis of human motion, which has
become feasible with the recent development of new technologies for motion capture.
The analysis is supported by signal processing or statistical techniques, and has
yielded to data-based methods for gesture recognition, motion retrieval, or computer
animation. The representation and understanding of motion followed two distinct
approaches: the first one can be characterized by the identification of regularities in
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motion, expressed in terms of analytical motion laws [6], and the second one is dedi-
cated to the characterization of the variability in motion, due for instance to variations
in styles [7]. Among the motion laws, we retain two specific ones which can be used
for trajectory segmentation. In particular, the two-third power law, expressing a
power relation between velocity and curvature [8] was proposed for segmenting three
dimensional unconstrained drawing movements, on the basis of abrupt changes of the
velocity gain factor. Another segmentation hypothesis was based on the observation
that endpoint trajectories of human arm movements tend to be piecewise planar [9].
These segmentation hypotheses are largely discussed in the neuroscience community.

One major problem in representing gesture from recorded data is that these data are
multidimensional. Motion capture data generally consist indeed of sampled trajecto-
ries for each degree-of-freedom characterizing the position and orientation of the
different joints of the human skeleton. Consequently, direct access and use of motion
data is rather time consuming. Moreover, motion data are produced by systems which
are redundant, which means that there is an excess of degrees of freedom in the mo-
tion representation. In order to efficiently represent gesture, it is therefore useful to
compress the original information. Different categories of techniques are classically
used for the dimensionality reduction. One category consists in projecting motion into
other bases, using for example the Principal Component Analysis [10]. This method
extracts the main axes which maximize the variance of the motion. Another category
of methods proposes a compression of trajectories by curves and surfaces approxima-
tions. Few works concern motion trajectories. Polygonal approximation provides
characteristics points to represent the geometry of the trajectory. These points, which
correspond to local curvature extrema, can be connected by line segments. This
method has been used by [11] for non-uniform sub-sampling of motion time-series.
Another method proposes curve approximation using active contours [12]. These
methods are developed for dance gesture recognition.

Independently of the data reduction method, we propose in this paper to characterize
gesture trajectories expressed in a reduced space by approximated measures of curva-
ture and velocity. Curvature mainly represents the geometry of the trajectories, and
velocity represents the kinematics. The data reduction method is presented in [13].

We are mainly interested by structured gestures conveying meaningful informa-
tion, such as French sign language gestures. These gestures generally use the visuo-
gesture channel. In other words, they use the 3D space to sketch specific patterns
expressed by Cartesian trajectories. We assume that hand gestures are well character-
ized by their shape (change of curvature), as well as by their kinematics (change of
velocity). In sign language, the signer can indeed draw the shape of the symbol as an
icon representing some feature of the object or the activity to be symbolized (Fig. 1).
Expressive gestures may also implicitly contain some velocity or acceleration pro-
files. In particular variations in velocity are responsible for the aggregation of samples
in some areas of the trajectories.

We propose here to study both these spatial and kinematics characteristics in the
reduced representation space. In order to illustrate the method, we implement it on
arm end-point trajectories. Nevertheless, the method can be extended to multidimen-
sional motion trajectories the dimension of which is higher than three. Basing our
work on a compressed representation of trajectories [13], we define approximations of
adaptive velocity and curvature. We show that these approximations can be strongly
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Fig. 1. Three first pictures: sign language gestures using the visuo-gesture channel; right: corre-
sponding 3D end-point trajectory of the right arm with the target location

related to curvature and tangential velocity, not only in 3D space, but in any multidi-
mensional space. These measures provide new tools to automatically analyse ges-
tures, and can be applied to noisy data. An interpretation is given for the segmentation
of sign language gestures and its possible use for gesture synthesis.

The paper is mainly composed of four sections. Section 2 gives an overview of the
analysis method. Section 3 presents an evaluation of the method applied on 3D arm
end-point trajectories, in terms of correlation and compression rate. After illustrating
some results about the segmentation of sign language trajectories, section 4 presents
some results concerning a global analysis / synthesis framework. The paper concludes
and gives some perspectives in section 5.

2 Analysis of Arm Movements

The gestures consist of raw data composed of 3D Cartesian trajectories, each trajec-
tory representing the evolution with time of one coordinate x, y, or z expressing the
position of a specific joint. For our study, we consider X(¢) as constituted of time-
series in 3.p dimensions, represented by spatial vectors X(t) =[x;(t), yi(t), z;(t) xx(t),
Va(t), 2o(t)... Xp(1), Yp(t), Z,(t)]. In practice, we deal with the sampled trajectory at a
constant frequency of 120 Hz: X(n) where n is the time-stamp index.

In this analysis method, we rely on the method DPPLA algorithm, an implementa-
tion of a reduced search dynamic programming approach described in [15], which
provides a linear piecewise curve approximation, based on an optimization process.
This algorithm finds samples in the time series X(), not regularly located in time.

The method DPPLA consists in seeking an approximation X ; of X(n), €being the

set of discrete time location {n;} of the segment endpoints. The selection of the opti-
mal set of parameters §={,} is performed using a recursive dynamic programming

algorithm. The result of this method is the optimal identification of discrete Xy ; key-
points — we call them spatial targets — delimitating the segments, for a given compres-
sion rate p.

The time complexity of the optimal dynamic programming algorithm is O(k.n’)
[14] where 7 is the number of samples, and k the number of segments. DPPLA, rely-
ing on the reduced search dynamic programming algorithm, has a O(n’/k) time com-
plexity. Note that recently a multi-resolution algorithm based on DPPLA in O(n) time
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Fig. 2. An approximation of the end-point trajectory using the non uniform sampling algorithm

complexity has been proposed relaxing a bit more the optimality [16, 17]. For detailed
description of the method, see [13].

The general approach is illustrated in figure 2. We propose to extract an estimation of
the curvature and the velocity from the non uniform samples obtained thanks to the
DPPILA algorithm. This estimation is evaluated through a correlation measure between
the estimated measures and the analytical calculus of both the curvature and the velocity.

In this paper our work is based on 3D end point trajectories X(#) =[x(t), y(t), z(t)],
the coordinates being calculated in the shoulder frame. For any smooth trajectory
parameterized with z, we express the instantaneous velocity v(¢) and the absolute value
of the instantaneous curvature x(7):

v(t)zHX(t)H =i+ 92+ 2 1)

O

o @)
g

where R is the radius of curvature. The curvature measures how fast a curve is chang-
ing direction at a given point.

These variables have been extensively studied for a variety of goal-directed experi-
mental tasks. In particular, a number of regularities have been empirically observed for
end-point trajectories of the human upper-limb, during 2D drawing movements.

However, for 3D movements with great spatial and temporal variations, it can be dif-
ficult to directly extract significant features from these signals. Moreover, computing
the radius of curvature raises a problem, when the velocity is too high, or when there are

and R(t)=
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inflexion points in the trajectories. In particular for noisy data the radius of curvature
may be difficult to compute. Finally, for higher dimensions, the curvature is not defined,
prohibiting its use in the angular space in particular.

We propose to approximate these velocity and curvature by empirical measures
calculated from the adaptive samples identified through the DPPLA algorithm.

We define the target-based velocity by the expression:

‘X(nm ) - X(ni—l )H

Vq,, (n)= ‘ 3)

My =Ny

i

where n;,; and n;.; are temporal indices of the associated targets Tg;,; and Tg;.;.

As the targets are not regularly located, the addition effect of this measure, homo-
geneous to a velocity, is to filter the raw data. The filtering depends on the compres-
sion rate.

We define as well the inverse distance between adjacent targets as:

o (1) = o 4

T T X () = X ()| “

With this formulation, we assume that this last quantity might be linked to a meas-

ure of aggregation points on the trajectory: when the movement velocity decreases,

the distance between original samples decreases and the curvature appears to be im-

portant. Therefore, x7(n;) expresses a spatial quantity which might be correlated to

curvature at time-index n;.

In the next section, we will study the correlation between the target-based ap-

proximations and the instantaneous values. We will also study the influence of the
compression parameter k of the compression algorithm.

3 Analysis of 3D Endpoint Arm Data

One deaf signer performed the gestures. He signed sequences of French sign language
gestures representing several versions of bulletin weather performed with different
styles, relative to the subject’s dynamics and emotional state. The sequences were
composed of 12 phrases; the whole duration was about 30 s. The subject was asked to
perform the gestures with variations of the geometry (large vs. small amplitude),
kinematics (high vs. low speed) and dynamics (smooth vs. jerky).

Raw data are first filtered by a low pass Butterworth filter with a cutoff frequency
of 10.0 Hz. We consider sequences of about 10000 frames.

The analysis of correlation is achieved, on the one hand between the log of target-
based velocity and the log of its instantaneous value, and on the other hand between
the inverse of the distance between targets and the instantaneous curvature. The re-
sults concerning the velocity are shown in figure 3 (a).

They illustrate an excellent correlation between the two variables, thus allowing us to
use target-based velocity as a good approximation of instantaneous velocity. We may
also compute the acceleration of arm end-point trajectories on the basis of this target-
based velocity. The correlation between the log of the inverse target distances and the
log of its instantaneous curvature is also very good, as illustrated in figure 3 (b). The
points with abrupt changes are located at the same place, but the target-based signal
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Fig. 3. Correlation for 3D end-point trajectories of arm movements; a) Correlation between
instantaneous tangential velocity (solid line) and target-based velocity (dotted line); b) Correla-
tion between instantaneous curvature (solid line) and inverse target density (dotted line); for
each signal x, we computed: (log(x) — mean(log(x)))/std(log(x)).

seems less noisy than the original one. This makes possible to approximate curvature as
the inverse of target density.

The influence of the compression factor characterizing the adaptive sampling algo-
rithm is analyzed at the light of the correlation coefficient. The results can be seen in
figure 4. It shows that for the target-based velocity, the correlation coefficient remains
very close to 1, independently of the compression rate (from 50% to 95%). For the
target-based acceleration, the correlation coefficient is very good (0.9), for a compres-
sion rate varying until 70%. Beyond this limit, the correlation coefficient abruptly
falls. The correlation coefficient is lower for the inverse distance, but still high (.85),
even for a high compression rate (until 80%). These results support the assumption
that target-based variables can be used without a significant loss of data for the analy-
sis of 3D end-point trajectories.

4 Gesture Segmentation and Data-Driven Synthesis

Studies on gesture [3,4] showed that human gestures can be segmented into distinct
phases. Some researches assumed that objective measures can be used to segment
hand movement. In particular, Kita et al. showed that abrupt changes of direction,
accompanied by a velocity discontinuity indicate phase boundaries in hand trajecto-
ries. These observations have been exploited by [5], who proposed a new distance
metric to detect phase boundaries, based on the sign of the first and second derivatives
of endpoint trajectories. The analysis method described above can be used for auto-
matically segmenting 3D arm motion. Moreover, it can be used for a compact gesture
representation and for data-driven synthesis.

4.1 Segmentation

Our segmentation is based on the observation that phase boundaries may appear when
the radius of curvature becomes very small, and the velocity decreases at the same
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time, indicating a change of direction. Our segmentation algorithm is based on the
product variable v(¢). (), and on its approximation, based on the approximated target-
based variables : v(n;). K.(n;).

A color-coding method allows to quantify the variations of the variable, according to
an equally distribution of its values. The meaning of this coding is presented in table 1.

Table 1. Coding values for the color coding

coding Variable values Interpretation
black - lowest values
blue -- very low values
cyan - low values
green 0 average values
yellow + high values
magenta ++ very high values
red +++ highest values

The color-coding is reported on 3D trajectories, as can be seen in figure 4.

-

A

e

Fig. 4. Example of end-point trajectories segmentation (in the xy plane) using a color-coding of
quantified variables (different color or gray levels); up-left: segmentation using the product
K(t).v(); up-right: segmentation using the product Kye(t).vr,(t); down-left: using the product
x(t).v(t) for noisy data; down-right: segmentation using the product K,;(t).vr,(t) for noisy data.
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When the velocity is very low, the color is green (clear gray). In the contrary, when
the velocity is high and the curvature low, the color is red (dark gray). The level of
quantification indicates the size of the segmental units. A great similarity can be ob-
served between the segmentation of the curve v(¢). x(f) and v.(n;). K.(n;) (see figure 4
up-left and up-right).

We observe also in figure 4 (down-left and down-right) that the method is well
adapted to noisy data, the segmentation using the target-based measures of curvature
and velocity being more filtered, while keeping the main motion phases.

4.2 Gesture Analysis / Synthesis Framework

The analysis algorithm described above can be used for representing in a compact
way gesture trajectories. These trajectories can be just 3D end-point trajectories, or
multidimensional trajectories. In the latter case, the trajectories may be represented by
angular postures or Cartesian positions at each joint of the articulated chains.

We define an analysis / synthesis framework which separates the adaptive sam-
pling (DPPLA) and segmentation off-line process and the in-line data-based synthesis
process, as illustrated in figure 5.

MoCap data

. 4 Analysis
Segmentation DPPLA

) 4 Synthesis
‘F’hase1 Phase2 ’ ... | Phasei ’ Phase n
Eeithand Multimodal
controller
‘Phase1‘Phasez ‘ Phase i ‘ Phase n
Right hand

Fig. 5. Analysis / synthesis framework: up) Off-line analysis using DPPLA algorithm and the
derived automatic segmentation; down) In-line synthesis using the phase description and the
adaptive sampling within each phase.

The adaptive sampling (DPPLA algorithm) is used for automatic segmentation, as
presented in section 4.1. This process can be used jointly with a manual segmentation
process to identify phases within the gesture trajectories.

For each phase, the synthesis is achieved by an inverse kinematics process, applied
for the arms on adaptive samples of end-point trajectories, and a tracking process for
the rest of the body. The inverse kinematics is based on a sensory motor approach
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with biological relevance, as described in [18] and [19]. When applied to 3D end-
point trajectories (hand motion), the discrete representation which is provided by the
DPPLA algorithm is directly used to deal with the co-articulation between the motion
segments.

The synthesis is achieved for body, hand and arm gestures. This will be soon ex-
tended to a complete multimodal system, including the synthesis of the head motion
and gaze direction.

Note that the segmentation method can be extended to multidimensional trajecto-
ries, representing angular or Cartesian trajectories. It has already been experimented
for 6D trajectories, representing wrist and elbow Cartesian trajectories. The results are
similar to the ones obtained with 3D trajectories: we are able to identify segments
along the sequence, with a varying compression factor. But the necessity to take into
account more degrees of freedom still needs to be experimented and evaluated, both
for segmentation and synthesis purposes.

5 Conclusion and Future Perspectives

This paper presented a method for computing an approximation of the curvature and
velocity characterizing arm trajectories. This method is applied on compressed data,
obtained from a non uniform sub-sampling algorithm which automatically extracts
discrete target patterns from raw data, for a given compression rate. Given a desired
trajectory, we already showed that the targets patterns represented in an optimal way
the original trajectories.

We showed that the target-based approximations are correlated with the instanta-
neous tangential velocity and curvature. They can therefore be used as an alternative
means of representing both the geometry and the kinematics of end-point trajectories.
Moreover, this representation can be adjusted by adapting the compression rate, ac-
cording to its influence on the correlation. The results obtained for 3D trajectories are
very promising. This method for analyzing the shape and kinematics of gesture trajec-
tories leads to a new analysis tool for multidimensional data.

These empirical approximations provide a significant way to segment gestures.
The measure proposed in this paper, in terms of the product of the target-based veloc-
ity by the target-based curvature, gives us indeed an original means of delimitating
segments which are more or less short, depending on our algorithm parameterization.
In order to affirm that these segments represent meaningful components, we should
compare them with those obtained through manual segmentation, for larger sequences
of gestures containing multiple representations of motion segments. Nevertheless, for
gestures composed of chunks whose kinematics strongly discriminate them (with
different profiles of acceleration and curvature), it would by interesting to use our
segmentation algorithm as an alternative method to the classical geometrical ones.

Manual and automatic segmentation are combined in a more general analysis / syn-
thesis framework. This leads to the proposition of a data-based synthesis process,
which associates tracking and inverse kinematics, according to the phases implicitly
contained in gestures.

In future works, we will use this approach to identify meaningful units of semantic
gestures (for instance sign language gestures). We will thus determine an optimal
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compression rate, by temporally aligning the proposed segmentation with a semanti-
cally interpretable segmentation. Other variables should also be tested for segmenta-
tion, and confronted to manual segmentation. Furthermore, we intend to experiment
this approach for dealing with co-articulation aspects of gestures. The evaluation of
the synthesis methods will be conducted both for the understanding of sign language
gestures and for the realism of the produced gestures.
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