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Abstract

In this paper we raise the matter of considering a stochastic modeling of the sur-
render rate instead of the classical S-shaped deterministic curve (in function of the
spread), still used in almost all insurance companies. A stochastic model in which
surrenders are conditionally independent with respect to a S-curve disturbance would
be tempting in some extreme scenarii, especially to address the question of the lack
of data. However, we explain why this conditional independence between policy-
holders, which has the advantage to be the simplest assumption, looks particularly
maladaptive when the spread increases. Indeed the correlation between policyhold-
ers’ decisions is most likely to increase in this situation. We suggest and develop a
simple model which integrates those phenomena. With stochastic orders it is possible
to compare it to the conditional independence approach qualitatively. In an partially
internal Solvency II model, we quantify the impact of the correlation phenomenon
on a real life portfolio for a global risk management strategy.

Surrender risk, also called lapse risk represents one of the main dangers faced
by a life insurance institution. It corresponds to the risk that many policy-
holders surrender their contract earlier than expected and choose to reinvest
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their money in another product or in some project. Because fees are charged
throughout the duration of the contract, the insurer may not have enough
time to charge the fees in the case of early surrenders. Massive early surren-
ders might also cause important liquidity issues and of course a loss of market
share. Many policyholders surrender their life insurance contract every year,
mainly to finance a project (building a new house, purchasing a new car, ...)
or because the tax incentive delay (8 years in France) has been reached. In-
surers are used to forecasting lapse rates, which may be explained by different
factors (see Milhaud, Loisel & Maume-Deschamps (2010) for more details).
In Solvency II, internal or partially internal models are being developed by
many companies. They have to go from a deterministic model, often based
on a so-called S-shaped lapse rate curve to a stochastic model. The S-shaped
curve corresponds to the lapse rate expressed as a function of the difference ∆r
between the interest rate given by the contract and the one that the policy-
holder could obtain somewhere else in the market. The idea that practitioners
have followed is that even if ∆r is very small, some policyholders are going
to surrender their contract for tax reasons or to fund a personal project, that
the lapse rate is increasing in ∆r, and that even if ∆r is very large, some
policyholders are going to stay in the portfolio because they do not really pay
attention to the market evolution. The problem with this S-shaped curve is
that one has not observed policyholders’ behavior in the extreme situation in
which ∆r is very large.
To build a stochastic model, given this lack of information, one must more
rely on thought experiments than on statistical data (which simply does not
exist). It may be tempting for internal model designers to use a Gaussian
distribution around the value of the lapse rate in the S-shaped, deterministic
curve to describe stochastic surrender risk. In this paper, we explain why it
may be preferable to use a bi-modal distribution, due to the likely change
in the correlation between policyholders’ decisions in extreme scenarios. This
change of correlation in extreme situation, called correlation crisis in Biard
et al. (2008), Loisel et al. (2010) and Loisel (2008) prevents us from apply-
ing the classical Gaussian approximation based on the central limit theorem.
This theorem holds when decisions of policyholders are independent. Here,
this would be the case only given a certain factor that would incorporate the
level of information of policyholders and the reputation of the company and
of the insurance sector. This factor should be a key element in the internal
model to understand the correlation of surrender risks with other risks like
market risk or default risk.
Correlation crises have followed the sub-prime crisis in both stock markets
and credit derivatives market: in many cases, correlation increases as things
go very bad. For surrender risk, it is likely that an extreme situation in in-
terest rates markets would lead either to massive surrenders, or to almost
normal lapse rates, depending on political declarations and on other factors:
for example, one of the first things that leaders of developed countries said at
the beginning of the last crisis was: We guarantee bank deposits and classical
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savings products. This leads to anticipate policyholders’ behavior more like
a 0 − 1 law than according to a bell-shaped unimodal distribution. In this
paper, we propose a basic model that takes into account correlation crises: as
∆r increases, correlation between policyholders’ decisions increases, and one
goes (continuously) from a bell-shaped distribution in the classical regime to
a bi-modal situation when ∆r is large.

1 The model

Assume that when ∆r is zero, policyholders behave independently and that
the average lapse rate is µ(0), and that when ∆r is very large (15%, say), the
average lapse rate is 1− ε with ε very small, and that the correlation between
individual decisions is 1 − η, with η very small. A model that captures this
simple features is the following: let Ik be the random variable that takes value
1 if the kth policyholder surrenders her contract. Assume that

Ik = JkI0 + (1− Jk)I⊥k ,

where Jk corresponds to the indicator that the kth policyholder follows the
market consensus (copycat behavior). The random variable Jk follows a Bernoulli
distribution whose parameter p0 is increasing in ∆r, and I0, I⊥1 , I⊥2 , ... are in-
dependent, identically distributed random variables, whose parameter p is also
increasing in ∆r. This means that the surrender probability increases with ∆r,
and that the correlation (Kendall’s τ or Spearman ρ) between Ik and Il (for
k 6= l) is equal to P (Jk = 1 | ∆r = x) when ∆r = x, and that in general
(without conditioning) the correlation between Ik and Il (for k 6= l) is equal
to ∫ +∞

0
P (Jk = 1 | ∆r = x) dF∆r(x).

This is because given that ∆r = x, Ik and Il (for k 6= l) admit a Mardia copula
(linear sum of the independent copula and of Fréchet upper bound) 1 . For a
portfolio of 20000 policyholders, the Gaussian assumption is not too bad for
the case where ∆r = 0. We show here with realistic values of the S-shaped
curve how this bell-shaped curve progressively evolves as ∆r increases and at
some point ∆r = x0 becomes bi-modal. McNeil et al. (2005) perfectly illus-
trates the problem of correlation risk and its consequences on tail distribution
in a general context.

1 Here the copula of Ik and Il (for k 6= l) is not unique as their distributions are
not continuous.
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2 Interpretation of the model

The S-shaped curve of the surrender rate in function of ∆r on Figure 1 shows
that the less attractive the contract is, the more the policyholder tends to
surrender it. Obviously the surrender rate average is quite low in a classical
economical regime (Region 1, low ∆r on Figure 1), but is significantly increas-
ing as ∆r increases. Indeed when interest rates rise, equilibrium premiums
decrease and a newly acquired contract probably provides the same coverage
at a lower price: the investor acts as the opportunity to exploit higher yields
available on the market. On the contrary, if the interest rates drop then the
guaranteed credited rate of the contract may be (when it is possible) lowered
by the insurer (for financial reasons or to stimulate the policyholder to sur-
render).
By consequence, Region 1 in Figure 1 illustrates the case corresponding to in-
dependent decisions of policyholders (here the correlation tends to 0) whereas
Region 2 corresponds to much more correlated behaviors (correlation tends to
1 in this situation) because of a crisis for instance. The underlying idea of
the paper is that as long as the economy remains in “good health”, the corre-
lation between policyholders is quasi nonexistent and thus the surrender rate
(independent individual decisions) can be modeled thanks to the Gaussian
distribution whose mean and standard deviation are those observed. Indeed
the suitable distribution in Region 1 is the classical Normal distribution rep-
resented in Figure 2.
On the contrary the sharp rise of the surrender rate at some level ∆r in Fig-
ure 1, followed by a flat plateau which is the maximum reachable surrender
rate (this bound is often suggested by an expert since we consider that we
have never observed it), reflects that economical conditions are deteriorating.
The crucial point is to realize that in such a situation the assumption of in-
dependent behaviors can become strongly erroneous: the correlation between
policyholders’ decisions makes the surrender rate distribution change. This is
the consequence of two different behaviors or scenarii, either almost all policy-
holders surrender their contract or they don’t. The more suitable distribution
to explain it is the so-called Bi-modal distribution illustrated in Figure 2.Surrender rate VS delta_r
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Figure 1. Surrender rate versus ∆r.
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Figure 2. On the left, the density of a Gaussian distribution and on the right a
Bi-modal density (mean equals 30).

The main difference of these two models (Gaussian and Bi-modal) is that the
mean of the surrender rate is the result of two peaks of the density, what is
extremely dangerous for the insurer who can thus experiment unexpected very
high surrender rates causing big losses.
Note that irrational behavior of policyholders could also lead to correlation
crises between their decisions even if ∆r is small. We shall see that this situ-
ation is the one that has the strongest impact on economic capital needs.

3 Distribution of surrender rates

3.1 Combinatorial approach

Consider a portfolio of n ≥ 2 policyholders. Denote by

N =
n∑
k=1

Jk

be the number of copycat policyholders, and by

M =
n∑
k=1

Ik

the number of policyholders who surrender their contracts. Recall that

Ik = JkI0 + (1− Jk)I⊥k ,

where Jk corresponds to the indicator that the kth policyholder follows the
market consensus (copycat behavior), where the random variable Jk follows
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a Bernoulli distribution whose parameter p0, and where I0, I⊥1 , I⊥2 , ... are
independent, identically distributed random variables with parameter p. If
copycat behavior is surrender (when I0 = 1), then for M to be equal to some
integer k ∈ [0, n], the number N of copycat policyholders has to be smaller
or equal to k, otherwise one would have M ≥ N > k. Similarly, if copycat
behavior corresponds to no surrender (I0 = 0), then forM to be equal to some
integer k ∈ [0, n], the number N of copycat policyholders has to be smaller or
equal to n−k, otherwise one would have M ≤ n−N < n− (n−k) = k. From
the total probability formula, for 0 ≤ k ≤ n, one has

P (M = k) = P (M = k | I0 = 0)P (I0 = 0) + P (M = k | I0 = 1)P (I0 = 1)

=
k∑
i=0

P (M = k | I0 = 1, N = i)P (I0 = 1, N = i)

+
n−k∑
j=0

P (M = k | I0 = 0, N = j)P (I0 = 0, N = j) .

From the mutual independence of the (Ik)k≥0 and (J⊥l )l≥1, for 0 ≤ k ≤ n we
have

P (M = k) = p
k∑
i=0

ai,k + (1− p)
n−k∑
j=0

bj,k,

where for 0 ≤ i ≤ k,

ai,k = Ci
np

i
0(1− p0)n−iCk−i

n−ip
k−i(1− p)n−k,

and for 0 ≤ j ≤ n− k we have

bj,k = Cj
np

j
0(1− p0)n−jCk

n−jp
k(1− p)n−j−k.

Note that for fixed k, the ai,k, 0 ≤ i ≤ k and the bj,k, 0 ≤ j ≤ n − k can be
computed than to the following recursive formulas: for 0 ≤ i ≤ k, we have

ai+1,k

ai,k
=
Ci+1
n

Ci
n

p0

p (1− p0)

Ck−i−1
n−i−1

Ck−i
n−i

=
k − i
i+ 1

p0

p (1− p0)

and for 0 ≤ j ≤ n− k, we have

bj+1,k

bj,k
=
Cj+1
n

Cj
n

p0

(1− p) (1− p0)

Ck
n−j−1

Ck
n−j

=
n− j − k
j + 1

p0

(1− p) (1− p0)
.

Note that as
a0 = b0 = (1− p0)nCk

np
k(1− p)n−k

is generally quite small, it is often preferable to start by ai0 and bj0 such that ai0
and bj0 are large enough in order to minimize round-off errors. Some efficient
algorithms and associated accuracy to make this kind of computations can be
found in Viquerat (2010).
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Figure 3. Effect of the number of simulations on the surrender rate distribution: a)
100, b) 1 000, c) 10 000 and d) 1 000 000. No copycat behavior, individual surrender
probability equals 10%, 10 000 policyholders in the portfolio.

3.2 Simulation approach

Another possibility is to use Monte Carlo simulations, particularly if surrender
risk is one of the numerous risks considered in a complex internal risk model.
Below is a test of the effects of various parameters on the probability distribu-
tion of the surrender rate of some parameters like the number of simulations,
the portfolio size, the mean probability to surrender and the correlation. The

Figure 4. Effect of the portfolio size on the surrender rate distribution: a) 100 policy-
holders in the portfolio, b) 10 000 and c) 1 000 000. No copycat behavior, individual
surrender probability equals 10%, 1 000 000 simulations.
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Figure 5. Rebalancing the surrender rate distribution: individual surrender probabil-
ity equals: a) 10%, b) 30%, and c) 50%. No correlation (copycat surrender probability
is equal to 0), 10 000 insureds and 1 000 000 simulations.

number of simulations is of course a key factor to get an accurate and con-
sistent approximation of the surrender rate distribution whatever the socio-
economic context. The number of policyholders in the portfolio is somewhat
important because the range of surrender rate values narrows (less dispersion),
although it does not really affect the shape of the distribution. Figure 3 and
Figure 4 corroborate these observations and that is why hereafter one sets
the number of simulations to 1000 000 and the number of policyholders to 10
000. Figure 5 shows that the effect of the individual surrender probability (p)

Figure 6. Reshaping the surrender rate distribution (Gaussian to Bi-modal). From
top left to bottom right, copycat behavior probability equals: a) 0%, b) 2%, c) 5%,
d) 10%, e) 25% and f) 50%. Individual surrender probability equals 20%, 1 000 000
simulations and 10 000 policyholders.
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Figure 7. Distribution of the surrender rate depending on the economy. From top
left to bottom right, both correlation and surrender probability increase: individual
surrender probability and copycat behavior probability respectively equal to a) 5%
and 0%, b) 10% and 1%, c) 15% and 3%, d) 20% and 5%, e) 25% and 7%, f) 35%
and 20%.

is major but not surprising. It strongly impacts the mean of the distribution
causing the density to be greater at high values, and so provoking the portfolio
to have a risky profile.

Let us now focus on the consequences of varying the correlation, the core of
this paper. The correlation parameter represented by the probability p0 to
make the same decision (surrender or not) plays the main role: Figure 6 shows
that increasing the correlation considerably reshapes the distribution of the
surrender rate.
Actually both the surrender probability and the correlation increase during
an economic crisis, and this is no good news for the insurer who is faced to
a much more frightening situation when looking at the distribution of the
surrender rate in Figure 7. These graphs confirm the theory developed in the
previous section.
We may notice that for a given ∆r (and thus for a given p0 in theory), the
bigger the correlation parameter p0 is, the more the surrender density shape
becomes bi-modal. The insurer is interested in quantifying the difference be-
tween these distributions in terms of behavioral risk. Risk measures will help
us to get indicators of the gap between these distributions. More precisely, he
would like to compute the well-known Value-at-Risk or VaR, defined for the
random variable X and the threshold α as follows:

V aRα(X) = inf{x ∈ X, FX(x) ≥ α}
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Figure 8. Risk measures and economic capital in Normal and Bi-modal models.
Independent behaviors (black line) causes the economic capital reserves to be much
lower than with correlated behaviors (red line).

In our application, the random variable X represents the surrender rate. This
means that the insurer expects to experiment a surrender rate lower than
VaR with α% confidence. In life insurance, the classical threshold is set to
α = 99.5%.
Sometimes the insurer also fears that the surrender rate suddenly drops,
because the size of its portfolio may become too large with respect to its
capital constraints, and because interest rate levels might be unfavorable to
the insurer. In this case, the configurations defined above have to be adapted,
as illustrated on Figure 8 where the risk measures that are interesting for the
insurer are V aRα (right-hand side, risk of massive surrenders) and V aRβ (left-
hand side, risk that policyholders surrender their contract much more seldom
than expected).

4 Qualitative comparison with stochastic orders

Denote byM(p,p0) the number of policyholders who surrender their contract in
the above model when P (J1 = 1) = p0 and when P (I1 = 1) = p. Let us exam-
ine how the values of p and p0 affect the distribution of the conditional sur-
render rate. We use the concept of s−convex stochastic ordering (see Lefèvre
& Utev (1996) and Denuit et al. (1998)). Given two random variables Y and
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Z, for any s = 1, 2, . . ., we have

X ≤Ds−cx Y if E[φ(Y )] ≤ E[φ(Z)] for all s-convex function φ : D → R, (1)

i.e. in short, for any function φ on D whose s-th derivative exists and satisfies
φ(s) ≥ 0. Note that the first s − 1 moments of Y and Z are then necessarily
equal. The order ≤D1−cx is just the usual stochastic order ≤1, ≤D2−cx is the usual
convex order ≤2 (which implies in particular V ar(Y ) ≤ V ar(Z)). In addition,
X is said to be smaller than Y in the increasing convex order (denoted by
≤icx) if

E (f(X)) ≤ E (f(Y ))

for every increasing convex function such that the expectation is defined.

Proposition 1 When the correlation parameter is fixed, the number of sur-
renders is stochastically increasing in p: for fixed p0 ∈ (0, 1), if p < p′ then we
have

M(p,p0) ≤1 M(p′,p0).

Proof: The result follows from elementary, classical results about stochastic
orderings of Bernoulli and Binomial distributions. 2

Proposition 2 When the individual surrender probability p is fixed, the cor-
relation parameter induces a 2-convex ordering of numbers of surrenders: for
fixed p ∈ (0, 1), if p0 < p′0 then we have

M(p,p0) ≤2 M(p,p′0).

Proof: Given that the number of copycat policyholders N is equal to k, the
total number of surrenders reads

M(p,k) = k.I0 + 0.I⊥1 + 0.I⊥2 + ...+ 0.I⊥k + 1.I⊥k+1 + ...+ 1.I⊥n .

Given that N = k
′ with k ≤ k

′ , we have

M(p,k′) = k
′
.I0 + 0.I⊥1 + ...+ 0.I⊥k + ...+ 0.I⊥k′ + 1.I⊥k′+1 + ...+ 1.I⊥n .

The two random variablesM(p,k) andM(p,k′) may be compared with respect to
the majorization order (see e.g. Marshall & Olkin (1979)). For any vector Z,
denote by Z↓ = (z↓1 , . . . , z

↓
K) the vector with the same components, but sorted

in decreasing order. Given two vectors Y = (y1, . . . , yK) and Z = (z1, . . . , zK)
of size K ≥ 1 such that

K∑
i=1

yi =
K∑
i=1

zi,
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recall that Z is said to majorize Y if for all j ≤ K,

j∑
i=1

y↓i =
j∑
i=1

z↓i .

From Marshall & Olkin (1979), if the vector α = (α0, ..., αn) is lower than
the vector β = (β0, ..., βn) in the Majorization partial order, and if the Xi

are independent and identically distributed, then we get the following convex
ordering: ∑

i

αiXi ≤2

∑
i

βiXi.

Here we set Xi = I⊥i and

(α0, ..., αn) = (k, 0, ..., 0︸ ︷︷ ︸
k times

, 1, ..., 1) and (β0, ..., βn) = (k
′
, 0, ..., 0︸ ︷︷ ︸
k′ times

, 1, ..., 1).

For k ≤ k′, the vector (β0, ..., βn) clearly majorizes the vector (α0, ..., αn).
Moreover, the random variable (N ∼ Bin(n, p0)) is stochastically increasing
in p0. So we can conclude that for p0 ≤ p′0,

M(p,p0) ≤2 M(p,p′0),

where M(p,p0) denotes the number of policyholders who surrenders when the
copycat probability is p0 and when the individual surrender probability is p.
2

Proposition 3 In the model where both p and p0 increase with ∆r, ∆r in-
duces an increasing-convex ordering of numbers of surrenders: denote by M
(resp. M ′) the number of surrenders when ∆r = x (resp. ∆r = x′). If x < x′

then we have
M ≤icx M ′.

Proof: We use the same arguments as in the proof of Propositions 1 and 2. A
combination of these arguments yields to this proposition because when ∆r
increases, both p and p0 increase. 2

Proposition 1 implies that the expected value, the Value-at-Risk of any level
α ∈ (0, 1) and the stop-loss premiums E [(M −m)+] for 0 ≤ m ≤ n are
increasing in p and in ∆r. Proposition 2 implies that the variance and the
stop-loss premiums E [(M −m)+] for 0 ≤ m ≤ n are increasing in p0 (when p
is fixed). It also shows that if p0 < p′0, there exists some level α0 ∈ (0, 1) such
that for α > α0,

V aRα

(
M(p,p0)

)
< V aRα

(
M(p,p′0)

)
because the Karlin-Novikov cut criterion says in that case that the cumulative
distribution functions of M(p,p0) and M(p,p′0) cross only one time.
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Figure 9. Evolution of the difference between the credited rate and the risk-free
interest rate on the market (universal).

It is not surprising that, in this model, increasing the correlation parameter
and/or the marginal surrender probability leads to a higher measure of risk
in general. But the purpose of this paper is also to determine the importance
of the impact of correlation on economic capital requirements and on the
so-called account value introduced in the next section, for a real-world life
insurance portfolio.

5 Application on a real life insurance portfolio

This section does not aim at giving accurate results that are valid for all
insurance portfolios, but it illustrates how to implement in practical terms all
the theory developed previously. To quantify exactly the impact of correlated
behaviors on final economic capital of the company requires a good calibration
of all the parameters used in the following, and thus a rather complete and
reliable database. This is why all statements and computations of this section
have to be moderated.

Products in the scope of this study are savings products extracted from the
Spanish reinsurance portfolio of a global life reinsurer.

Monthly data cover the period ranging from February 2002 to December 2007.
The number of policyholders in the portfolio varies from 291 at the beginning
of the observation period to 25766 in July 2006. On average, there are 17657
policyholders in the portfolio each month. The professionals of the insurance
sector usually consider that, to be relevant, ∆r should stand for the credited
rate of the competitors on the same business line minus the one of the contract

13



Figure 10. Monthly surrender rate versus ∆r, the difference between the risk-free
rate and the credited rate.

(Milhaud, Loisel & Gonon (2010)). This information are difficult to obtain.
To overcome this problem, some experts agree to say that the credited rate
of the competitors somewhat equals to the risk-free rate plus a constant c, so
that

∆r = (risk-free rate + c)− credited rate.

In our application, we set c = 0 and this is the way we define ∆r. As you can
see on Figure 9, the credited rate of the contract is greater than the risk-free
rate during all the period, which yields to ∆r < 0. An exponential smoothing
of the surrender rate in function of ∆r on this (proprietary) data leads Fig-
ure 10: the smaller this difference, the higher the surrender rate. This is quite
normal since it means that when the credited rate decreases, ∆r tends to 0
and the contract becomes less advantageous. The exponential smoothing has
no importance except that it is useful to recognize the S-shaped curve.
As discussed in the first section, one only observes market conditions that cor-
respond to Region 1 in Figure 1. Here we assume that the maximum reachable
monthly surrender rate (flat plateau in Region 2 of Figure 1) corresponding
to the “expert opinion” is equal to 3.5% a month. Notice that this is another
source of error if the expert is wrong. Of course, the calibration is arbitrary
here. To build a better model to forecast surrender rates in another story. Here,
we are mainly interested in the impact of correlation between policyholders
and we take this model, used by some insurance companies, as a realistic il-
lustrative example.
Denote by Y the random variable that represents the surrender rate. The
empirical mean of the surrender rate in Region 1, denoted by Ỹn1 , equals

14



Ỹn1 =
1

n1

∑n1
i=1 Yi,1, where n1 is the number of observations Yi,1 in Region 1.

The empirical standard deviation, denoted by σ̃n1 , is given as usual by the
following unbiased estimator:

σ̃n1 =

√
1

(n1 − 1)

∑n1
i=1(Yi,1 − Ỹn1)

2.

Here the numerical application gives Ỹn1 = 6.73×10−3 and σ̃n1 = 4.28×10−3.

The variability coefficient, denoted by ν̃n1 , is defined by ν̃n1 =
σ̃n1

Ỹn1

.

In Region 1, ν̃n1 equals 63.5%, which reflects that data are quite highly
dispersed. Anyway, these statistics are clearly not tolerable as they are based
on a very low number of observations but this dispersion also appears because
of cohort effects conjugated to tax constraints. The effect of the date with
time dependence can also play a role here.
Because we do not have data for very high levels of the surrender rate, we
assume that the variability coefficient remains constant whatever the surrender
rate average. This assumption enables us to compute an approximation of the

standard deviation in Region 2, which is σ̃n2 =
Ỹn2

Ỹn1

σ̃n1 ' 0.022. This choice

of value is clearly arbitrary, but it would be difficult to come up with a more

Figure 11. Evolution of surrender rate distribution depending on the economic con-
text (1 000 000 simulations, 17657 policyholders). Individual surrender probabilities
and copycat behavior probabilities: a) 8.08% and 0% (theoretical Normal distribu-
tion in black), b) 15% and 1.5%, c) 30% and 10% and d) 42% and 50%.

15



objective choice.

Thus we simulate in Region 1 Bernoulli trials with parameter p1 equal to Ỹn1

and check that the distribution of the surrender rate is close to a Normal
distribution with mean Ỹn1 and standard deviation σ̃n1 . Finally, the kth poli-
cyholder makes the decision Ik ∼ Bernoulli(p1), and the Bernoulli indicator
Jk that she follows the market consensus Jk has parameter p0 = 0 (indepen-
dent decisions because we are in Region 1).
In Region 2, Ik ∼ Bernoulli(p2) (with p2 = Ỹn2 = 0.035) and the existing cor-
relation impacts the parameter p0 of Jk. Indeed one sets Jk ∼ Bernoulli(p0),
with p0 = 0.5. The number of simulations in all this section is set to 1000 000
and the number of policyholders is set to 17657. Figure 11 shows the results
of these simulations: on the top left, the simulation of behaviors confirms the
Gaussian approximation when considering independent Bernoulli trials. The
Normal distribution N (m = Ỹn1 , σ = σ̃n1) fits well and the calibration of the
standard deviation does not look so bad. On the bottom right, it is clear that
the Gaussian approximation is not at all appropriated to model policyholders’
behavior in that case! Other graphs highlight the transition between these two
caricatural situations.

Remark: we have converted monthly surrender rates to yearly ones because
VaR is usually estimated for a 1-year period in insurance. Time dependence
could also be considered and may have a strong impact on the overall surrender
risk faced by the company. Nevertheless we focus here on a 1-period framework
and keep the multi-period extension for further research. This yields to Ỹn1 '
0.0808 = 8.08%, σ̃n1 ' 0.05, Ỹn2 ' 0.42 = 42% and σ̃n2 ' 0.264.

The impact of the economical context on VaR is quite impressive: for instance
if the correlation increases from 0% to 50% in a “soft" context, the V aR99.5%

increases by 510% (difference denoted by ∆V aR99.5%). It means that if the
insurer wants to be covered against a very high surrender rate and takes
correlation crises into account, the cost of capital might be about 510% higher
than expected !
Table 1 summarizes it for different economical contexts, levels of correlation
and levels of V aR.

Detailed analysis of the V aR deviations: Let us focus on the 99.5%-
V aR because this is the V aR of interest in Solvency II. Figure 12 shows how
V aR is affected by an increase in correlation between policyholders’ decisions.
For a given individual probability to surrender, 1% say, a shift in correlation
from 0 to 1% increases V aR99.5% by 30 to 50%.
Notice that large positive deviations are mainly concentrated for small vari-
ations in correlation when considering low surrender propensity. This result is
quite interesting and we decided to define classes in terms of sensitivity (with
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Economic context Correlation value V aR90% V aR95% V aR99.5% ∆V aR99.5%

p0 = 0 8.704763 8.784052 9.055899 0 %

p0 = 0.01 9.441015 9.571275 9.735516 +7.5 %

p0 = 0.02 10.33584 10.48309 10.72662 +18.5 %

soft (p = 8.08%) p0 = 0.05 13.15059 13.31483 13.54137 +49.5 %

p0 = 0.15 22.46135 22.63125 22.87478 +152.6 %

p0 = 0.3 36.34819 36.52376 36.80693 +306.4 %

p0 = 0.5 54.81679 55.00368 55.28119 +510.4 %

p0 = 0 20.89823 21.01150 21.27768 0 %

p0 = 0.01 21.50988 21.66846 21.93464 +3.1 %

p0 = 0.02 22.22914 22.44436 22.72187 +6.8 %

Medium (p = 20%) p0 = 0.05 24.64745 24.86266 25.13451 +18.1 %

p0 = 0.15 32.70658 32.92745 33.20496 +56.1 %

p0 = 0.3 44.78111 45.00198 45.27383 +112.8 %

p0 = 0.5 60.74645 60.95599 61.24483 +187.8 %

p0 = 0 43.11604 43.25763 43.46152 0 %

p0 = 0.01 43.49550 43.67673 43.93725 +1.1 %

p0 = 0.02 43.98822 44.22042 44.52059 +2.4 %

Hard (p = 42%) p0 = 0.05 45.69859 45.95911 46.32724 +6.6 %

p0 = 0.15 51.51498 51.77550 52.16062 +20 %

p0 = 0.3 60.16877 60.41796 60.75777 +39.8 %

p0 = 0.5 71.74492 71.97712 72.28295 +66.3 %

Table 1
Estimations of Value-at-Risk for the surrender rate with different correlations.

respect to correlation):

• very sensitive configuration (red area on Figure 12): p ∈]0, 0.05] and p0 ∈
]0, 0.1] ;
• sensitive configuration (orange area): p ∈]0, 0.05] and p0 ∈ [0.1, 0.4], or
p ∈]0.05, 0.2] and p0 ∈]0, 0.3] ;
• low sensitivity configuration (yellow area): other situations.

In the very sensitive configuration, the V aR99.5% can increase by up to 70%!
In the sensitive configuration, the insurer may face less adverse movements
but is faced to a potential increase by 5 to 25 % of V aR99.5%. Finally, the low
sensitivity configuration allows the insurer to be confident because the V aR
that she has chosen is often high enough.
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Figure 12. Relative deviation (in %) of the V aR versus p0 and p.

6 Gap between standard assumptions and a more realistic model?

How do the surrender assumptions affect the funds reserves ? We
focus in this section on the consequences on insurer reserves when consider-
ing erroneous surrender rate distribution, where policyholders’ behaviors are
considered to be quite homogeneous (around a ”mean" behavior) and inde-
pendent, instead of introducing correlation. In some insurance groups, each
entity may define how to integrate the surrender assumptions and modeling
into the pricing of the product, and the estimations of its future profitability.
Sometimes several definitions are quite different even within a single entity,
depending on the product. To fix ideas, we shall assume that the so-called
Account Value (AV) is adjusted with withdrawals so that the funds returns
are re-balanced. A quite classical way for insurers to manage surrenders is to
set base surrenders and then to adjust it dynamically. The point is that this
adjustment is still based on independent behaviors of policyholders, which is
precisely what we suggest to avoid in this paper. Consider the simplified but
realistic model of adjusted AV:

AVadj(t) = AVadj(t− 1)×
[
1 + % periodical benefit× (1− surrender rate)

]
It is now possible to estimate the sensibility of the Account Value in terms
of behavioral risk by using Monte Carlo simulations of various scenarii, corre-
sponding to surrender shocks. This is precisely the recommendations of Sol-
vency II which stimulates the development of internal risk models and the
use of multiple scenarii to assess robust risk margins, the so-called economic
capital (EC), which is the difference between the V aR and the best estimate
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Scenario BE EC / AV(V aRNormal
99.5% ) Correlation EC (V aRBi−modal

99.5% ) ∆EC ∆AV

p0 = 0.05 5.45% 4.61% 5506.7

Soft 8.06% 0.84% / 1 091 029 p0 = 0.15 14.85% 14.01% 14857.1

(p = 8.08%) (p0 = 0) (p0 = 0) p0 = 0.3 28.7% 27.86% 28743.9

p0 = 0.5 47.26% 46.42% 47189.9

p0 = 0.05 5.06% 3.88% 5179.8

Medium 20.03% 1.18% / 1 078 824 p0 = 0.15 13.15% 11.97% 13182.3

(p = 20%) (p0 = 0) (p0 = 0) p0 = 0.3 25.35% 24.17% 25290.8

p0 = 0.5 41.3% 40.12% 41233.5

p0 = 0.05 4.28% 2.8% 4253.6

Hard 42.02% 1.48% / 1 056 459 p0 = 0.15 10.13% 8.65% 10036

(p = 42%) (p0 = 0) (p0 = 0) p0 = 0.3 18.76% 17.28% 18769.1

p0 = 0.5 30.21% 28.73% 30260.3

Table 2
Estimations of differences of economic capital (in terms of surrender rate) and ac-
count value with different correlations in various scenarii.

(BE) (the BE is our expectation). The bi-modal distribution of surrender
rate implies significant changes in these estimations and so in reserving: first
the account value is estimated with best estimate assumptions and then with
the V aR99.5% in the case of Normal distribution (independent behaviors) and
Bi-modal distribution (correlated behaviors). The difference of estimated eco-
nomic capitals represents the gap of reserves for the insurer in terms of lapse
rate.

Numerical application The model used to introduce dependence between
policyholders’ behaviors is described in first section. Hereafter, assume that:

• the risk term is one year ;
• the economical and financial conditions are getting worse ;
• today, the account value equals 1 000 000 US$ ;
• the yearly benefit is 10% ;
• the V aR, EC and AV are computed for the coming year.

Those parameters were chosen to reflect reality without betraying confiden-
tiality. The portfolio size is still 17657 and the number of simulations is set
to 1000 000. Table 2 highlights the potential impact of surrender modeling
on the estimations of reserves on the consider products. It summarizes the
differences of reserves in $ for different economical contexts and levels of cor-
relation. The results tell us that in a soft context, considering independent
behaviors instead of 50% correlated behaviors can cause the insurer to exper-
iment an unexpected loss up to 47 190$ of the account value at the end of the
year (4.72% of the initial wealth)! The absolute difference between the mean
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Portfolio size BE EC / AV(V aRNormal
99.5% ) Correlation EC (V aRBi−modal

99.5% ) ∆EC ∆AV

Little: p0 = 0.05 6.26% 4.5% 6280

5000 8.1% 1.76% / 1 090 140 p0 = 0.2 20.42% 18.66% 20440

policyholders (p0 = 0) (p0 = 0) p0 = 0.5 48.54% 46.78% 48560

Medium: p0 = 0.05 5.1% 4.59% 5102

50 000 8.08% 0.51% / 1 091 408 p0 = 0.2 19.01% 18.5% 19012

policyholders (p0 = 0) (p0 = 0) p0 = 0.5 46.63% 46.12% 46634

Big: p0 = 0.05 4.73% 4.59% 4731.2

500 000 8.08% 0.1426% / 1 091 777 p0 = 0.2 18.56% 18.41% 18565

policyholders (p0 = 0) (p0 = 0) p0 = 0.5 46.16% 46.01% 46158.6

Table 3
Impact of portfolio size on account value in a soft context (100 000 simulations).

expected surrender rate and the stressed one is 47.26%!
Besides the initial account value has been set to 1 000 000$, which is very
low as compared to usual equity capitals of insurance companies. Guess what
would be the actual loss of the insurer in such a casual situation...
The size of the company is also a key-factor: let us extract the part of Ta-
ble 2 concerning the “soft” context and study the impact of the number of
policyholders in the portfolio. Initially, there were 17657 policyholders. Some
huge insurance companies may think that their size prevents them from ex-
perimenting such scenario because of mutualization. The analysis of Table 3
demonstrates that the number of policyholders does not have a strong in-
fluence on the computation of the risk margin. To reserve enough money to
cover the correlation risk of surrender behaviors is very important in predicting
capital needs: underestimating this risk could make shareholders dissatisfied
because of unexpected important margin calls. Because undiversifiable risks
are present, increasing the size of the portfolio would not reduce the impact
of a correlation crisis on the considered quantities.

7 Conclusion

We have shown in this article that the impact of the surrender rate distribu-
tion is major on both predicting the economic capital needs and the reserves
of the company. This distribution results from a different point of view on
behaviors’ modeling: from conditionally independent behaviors, we move to
correlated policyholders’ decisions that better reflect the reality in our opin-
ion. For further research, it would be essential to explore the path-dependent
aspect or memory properties of the surrender rate trajectory (the present value
depends on the previous ones), which should be meaningful to forecast it and
understand its dynamics. Of course it requires to have empirical data, which
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is not always the case in practice.
To look into the question of the feedback impact of massive surrenders on
interest rates and inflation rates could also be interesting as it could create
some kind of vicious circle. Another source of risk for the insurer are options
embedded in the contracts that enable to change the underlying investment
type: for example the policyholder can move his money from Unit-Link to
Euro products (Loisel et al. (2010)) lately.
To sum up, the lapse risk is extremely complicated to study because it de-
pends on many factors: policyholders’ characteristics, personal desires and
needs, contract features and time elapsed, economical and financial context
(liquidity issues), social and cultural aspects, but also regulator decisions. A
potential intervention of the regulator might require the company to suspend
surrender payments until things calm down a bit in very adverse scenarios.
Finally the insurer cannot control all this but her target is to settle the best
Asset and Liabilities Management that he can for a robust and sustainable
solvability ; and this can start by trying to “master” the behavioral risk !
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