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RANDOM DIRICHLET ENVIRONMENT VIEWED FROM THE
PARTICLE IN DIMENSION D ≥ 3
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By Christophe Sabot

Université de Lyon

We consider random walks in random Dirichlet environment
(RWDE), which is a special type of random walks in random en-
vironment where the exit probabilities at each site are i.i.d. Dirichlet
random variables. On Zd, RWDE are parameterized by a 2d-tuple of
positive reals called weights. In this paper, we characterize for d≥ 3
the weights for which there exists an absolutely continuous invari-
ant probability distribution for the process viewed from the particle.
We can deduce from this result and from [Ann. Inst. Henri Poincaré
Probab. Stat. 47 (2011) 1–8] a complete description of the ballistic
regime for d≥ 3.

1. Introduction. Multidimensional random walks in random environ-
ment have received a considerable attention in the last ten years. Some
important progress has been made in the ballistic regime (after the seminal
works [11, 29, 30, 32]) and for small perturbations of the simple random
walk [5, 31]. We refer to [34] for a detailed survey. Nevertheless, we are still
far from a complete description, and some basic questions are open such
as the characterization of recurrence, ballisticity. The point of view of the
environment viewed from the particle has been a powerful tool to investi-
gate the random conductance model; it is a key ingredient in the proof of
invariance principles [13, 15, 18, 28] but has had a rather little impact on
the nonreversible model. The existence of an absolutely continuous invariant
measure for the process viewed from the particle (the so called “equivalence
of the static and dynamical point of view”) is only known in a few cases:
for dimension 1, cf. Kesten [12] and Molchanov [19] pages 273–274; in the
case of balanced environment of Lawler [16]; for “nonnestling” RWRE in
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2 C. SABOT

dimension d≥ 4 at low disorder, cf. Bolthausen and Sznitman [4]; and in a
weaker form for ballistic RWRE (equivalence in half-space), cf. [23, 24]. Note
that invariance principles have nevertheless been obtained under special as-
sumptions: under the ballistic assumption [2, 24] and for weak disorder in
dimension d≥ 3, [6, 31].

Random walks in Dirichlet environment (RWDE) is a special case where at
each site the environment is chosen according to a Dirichlet random variable.
One remarkable property of Dirichlet environments is that the annealed law
of RWDE is the law of a directed edge reinforced random walk as remarked
initially in Pemantle’s Ph.D. thesis [20, 21], the idea of reinforced random
walks going back to Diaconis and Coppersmith; cf. [22] for a survey. While
this model of environment is fully random (the support of the distribution
on the environment is the space of weakly elliptic environment itself), it
shows some surprising analytic simplifications; cf. [8, 9, 25–27]. In particular,
in [25], the author proved that RWDE are transient on transient graphs;
cf. [25] for a precise result. This result uses in a crucial way a property of
statistical invariance by time reversal; cf. Lemma 1 of [25].

RWDE are parametrized by 2d reals called the weights (one for each
direction in Zd) which govern the behavior of the walk. In this paper we
characterize on Zd, d ≥ 3, the weights for which there exists an invariant
probability measure for the environment viewed from the particle, which
is absolutely continuous with respect to the law of the environment. More
precisely, it is shown that there is an absolutely continuous invariant prob-
ability exactly when the parameters are such that the time spent in finite
size traps has finite expectation. Together with previous results on direc-
tional transience [27] it leads, using classical results on stationary ergodic
sequences, to a complete description of the ballistic regimes for RWDE in
dimension larger or equal to 3. Besides, we think that the proof of the exis-
tence of an absolutely continuous invariant distribution for the environment
viewed from the particle could be a first step toward an implementation of
the technics developed to prove functional central limit theorems; cf., for
example, [14].

2. Statement of the results. Let (e1, . . . , ed) be the canonical base of Z
d,

and set ej =−ej−d, for j = d+ 1, . . . ,2d. The set {e1, . . . , e2d} is the set of

unit vectors of Zd. We denote by ‖z‖ =
∑d

i=1 |zi| the L1-norm of z ∈ Zd.
We write x∼ y if ‖y−x‖= 1. We consider elliptic random walks in random
environment to nearest neighbors. We denote by Ω the set of environments

Ω=

{

ω = (ω(x, y))x∼y ∈ ]0,1]E ,

such that for all x∈ Zd,
2d
∑

i=1

ω(x,x+ ei) = 1

}

.
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An environment ω defines the transition probability of a Markov chain on
Zd, and we denote by Pω

x the law of this Markov chain starting from x.

Pω
x [Xn+1 = y+ ei|Xn = y] = ω(y, y+ ei).

The classical model of nonreversible random environment corresponds to
the model where at each site x ∈ Zd the environment (ω(x,x+ ei))i=1,...,2d is
chosen independently according to the same law. Random Dirichlet environ-
ment corresponds to the case where this law is a Dirichlet law. More precisely,
we choose some positive weights (α1, . . . , α2d), and we define λ= λ(α) as the
Dirichlet law with parameters (α1, . . . , α2d). It means that λ(α) is the law on
the simplex

{

(x1, . . . , x2d) ∈ ]0,1]2d,
2d
∑

i=1

xi = 1

}

(2.1)

with density

Γ(
∑2d

i=1αi)
∏2d

i=1Γ(αi)

(

2d
∏

i=1

xαi−1
i

)

dx1 · · · dx2d−1,(2.2)

where Γ is the usual Gamma function Γ(α) =
∫∞
0 tα−1e−tdt. [In the previ-

ous expression dx1 · · · dx2d−1 represents the image of the Lebesgue measure
on R2d−1 by the application (x1, . . . , x2d−1)→ (x1, . . . , x2d−1,1− (x1 + · · ·+
x2d−1)]. Obviously, the law does not depend on the specific role of x2d.)
We denote by P(α) the law obtained on Ω by picking at each site x ∈ Zd

the transition probabilities (ω(x,x + ei))i=1,...,2d independently according

to λ(α). We denote by E(α) the expectation with respect to P(α) and by

P
(α)
x [·] = E(α)[P

(ω)
x (·)] the annealed law of the process starting at x. This

type of environment plays a special role since the annealed law corresponds
to a directed edge reinforced random walk with an affine reinforcement, that
is,

P(α)
x [Xn+1 =Xn + ei|σ(Xk, k ≤ n)] =

αi +Ni(Xn, n)
∑2d

k=1αk +Nk(Xn, n)
,

where Nk(x,n) is the number of crossings of the directed edge (x,x+ ek) up
to time n. This is just a consequence of the fact that the Dirichlet law is the
mixing measure of Polya urns so that at each site the annealed process choose
a direction following a Polya urn with parameters (αi)i=1,...,2d; cf. [20] or [21].
When the weights are constant equal to α, the environment is isotropic: when
α is large, the environment is close to the deterministic environment of the
simple random walk, when α is small the environment is very disordered.
The following parameter κ is important in the description of the RWDE:

κ= 2

(

2d
∑

i=1

αi

)

− max
i=1,...,d

(αi +αi+d).
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If i0 ∈ {1, . . . , d} realizes the maximum in the last term, then κ is the sum
of the weights of the edges exiting the set {0, ei0} (or {0,−ei0}). The real κ
must be understood as the strength of the trap {0, ei0}: indeed, if G̃

ω(0,0)
is the Green function at (0,0) of the Markov chain in environment ω killed
at its exit time of the set {0, ei0}, then G̃ω(0,0)s is integrable if and only if
s < κ [33]. In [25] it has been proved for d≥ 3 that the same is true for the
Green function G(0,0) on Zd itself: it has integrable s-moment if and only
if s < κ.

Denote by (τx)x∈Zd the shift on the environment defined by

τxω(y, z) = ω(x+ y,x+ z).

Let Xn be the random walk in environment ω. The process viewed from the
particle is the process on the state space Ω defined by

ωn = τXnω.

Under Pω0
0 , ω0 ∈Ω (resp., under P0), ωn is a Markov process on state space

Ω with generator R given by

Rf(ω) =

2d
∑

i=1

ω(0, ei)f(τeiω),

for all bounded measurable function f on Ω, and with initial distribution
δω0 (resp., P); cf., e.g., [3]. Compared to the quenched process, the process
viewed from the particle is Markovian. Since the state space is huge, one
needs to take advantage of this point of view, to have the existence of an
invariant probability measure, absolutely continuous with respect to the ini-
tial measure on the environment. The following theorem solves this problem
in the special case of Dirichlet environment in dimension d ≥ 3 and is the
main result of the paper.

Theorem 1. Let d≥ 3 and P(α) be the law of the Dirichlet environment
with weights (α1, . . . , α2d). Let κ > 0 be defined by

κ= 2

(

2d
∑

i=1

αi

)

− max
i=1,...,d

(αi +αi+d).

(i) If κ > 1, then there exists a unique probability distribution Q(α) on Ω
absolutely continuous with respect to P(α) and invariant by the generator R.

Moreover dQ(α)

dP(α) is in Lp(P
(α)) for all 1≤ p < κ.

(ii) If κ≤ 1, there does not exist any probability measure invariant by R
and absolutely continuous with respect to the measure P(α).
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We can deduce from this result and from [27, 33], a characterization of
ballisticity for d≥ 3. Let dα be the mean drift at first step

dα = E
(α)
0 (X1) =

1
∑2d

i=1αi

2d
∑

i=1

αiei.

Theorem 2. Let d≥ 3.

(i) (cf. [33]) If κ≤ 1, then

lim
n→∞

Xn

n
= 0, P

(α)
0 a.s.

(ii) If κ > 1 and dα = 0, then

lim
n→∞

Xn

n
= 0, P

(α)
0 a.s.

and for all i= 1, . . . , d

lim infXn · ei =−∞, lim supXn · ei =+∞, P
(α)
0 a.s.

(iii) If κ > 1 and dα 6= 0, then there exists v 6= 0 such that

lim
n→∞

Xn

n
= v, P

(α)
0 a.s.

Moreover, for the integers i ∈ {1, . . . , d} such that dα · ei 6= 0 we have

(dα · ei)(v · ei)> 0.

For the integers i ∈ {1, . . . , d} such that dα · ei = 0

lim infXn · ei =−∞, lim supXn · ei =+∞, P
(α)
0 a.s.

Remark 1. This answers in the case of RWDE for d≥ 3 the following
question: is directional transience equivalent to ballisticity? The answer is
formally “no” but morally “yes”: indeed, it is proved in [27] that for all i such
that dα · ei 6= 0, Xn · ei is transient; hence, for κ ≤ 1 directional transience
and zero speed can coexist. But, it appears in the proof of [33] that the
zero speed is due to finite size traps that come from the nonellipticity of the
environment. When κ > 1, the expected exit time of finite boxes is always
finite (cf. [33]) and in this case (ii) and (iii) indeed tell that directional
transience is equivalent to ballisticity. For general RWRE (and for RWDE
in dimension 2) this is an important unsolved question. Partial important
results in this direction have been obtained by Sznitman in [29, 30] for
general uniformly elliptic environment for d≥ 2.

Remark 2. A law of of large number (with eventually random or null
velocity) has been proved for general (weakly) elliptic RWRE by Zerner
(cf. [35]) using the technics of regeneration times developed by Sznitman
and Zerner in [32]. Nevertheless, when the directional 0–1 law is not valid
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it is still not known whether there is a deterministic limiting velocity (this
was solved for d≥ 5 by Berger, [1]).

Remark 3. In case (i), it would be interesting to understand the be-
havior of Xn · ei depending on the value of dα · ei as in (ii) and (iii). It is not
yet possible due to the absence of absolutely continuous invariant measure
for the process viewed from the particle. We nevertheless think that this
question should be settled in a further work.

3. Proof of Theorem 1(i). Let us first recall a few definitions and give
some notations. By a directed graph we mean a pair G= (V,E) where V is
a countable set of vertices and E the set of (directed) edges is a subset of
V ×V . For simplicity, we do not allow multiple edges or loops [i.e., edges of
the type (x,x)]. We denote by e, respectively e, the tail and the head of an
edge e ∈E, so that e= (e, e). A directed path from a vertex x to a vertex y
is a sequence σ = (x0 = x, . . . , xn = y) such that for all i= 1, . . . , n, (xi−1, xi)
is in E. The divergence operator is the function div : RE 7→ RV defined for
θ ∈RE by

∀x∈ V, div(θ)(x) =
∑

e∈E,e=x

θ(e)−
∑

e∈E,e=x

θ(e).

We consider Zd as a directed graph: GZd = (Zd,E) where the edges are the
pair (x, y) such that ‖y − x‖= 1. On E we consider the weights (α(e))e∈E
defined by

∀x∈ Zd, i= 1, . . . ,2d, α((x,x+ ei)) = αi.

Hence, under P(α), at each site x ∈ Zd, the exit probabilities (ω(e))e=x are
independent and distributed according to a Dirichlet law with parameters
(α(e))e=x.

When N ∈ N∗, we denote by TN = (Z/NZ)d the d-dimensional torus of
size N . We denote by GN = (TN ,EN ) the associated directed graph image
of the graph G= (Zd,E) by projection on the torus. We denote by d(·, ·) the
shortest path distance on the torus. We write x∼ y if (x, y) ∈ EN . Let ΩN

be the space of (weakly) elliptic environments on TN

ΩN =

{

ω = (ω(x, y))(x,y)∈EN
∈ ]0,1]EN ,

such that ∀x∈ TN ,
2d
∑

i=1

ω(x,x+ ei) = 1

}

.

ΩN is naturally identified with the space of the N -periodic environments on

Zd. We denote by P
(α)
N the Dirichlet law on the environment obtained by

picking independently at each site x∈ TN the exiting probabilities (ω(x,x+
ei))i=1,...,2d according to a Dirichlet law with parameters (αi)i=1,...,2d.
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For ω in ΩN we denote by (πω
N (x))x∈TN

the invariant probability measure
of the Markov chain on TN with transition probabilities ω (it is unique since
the environments are elliptic). Let

fN (ω) =Ndπω
N (0),

and

Q
(α)
N = fN · P

(α)
N .

Thanks to translation invariance, Q
(α)
N is a probability measure on ΩN . The-

orem 1 is a consequence of the following lemma.

Lemma 1. Let d≥ 3. For all p ∈ [1, κ[

sup
N∈N

‖fN‖
Lp(P

(α)
N

)
<∞.

Once this lemma is proved, the proof of Theorem 1 is routine argument;

cf., for example, [3], pages 18 and 19. Indeed, we consider P
(α)
N and Q

(α)
N as

probability measures on N -periodic environments. Obviously, P
(α)
N converges

weakly to the probability measure P(α). By construction, Q
(α)
N is an invariant

probability measure for the process of the environment viewed from the

particle. Since Ω is compact, we can find a subsequence Nk such that Q
(α)
Nk

converges weakly to a probability measure Q(α) on Ω. The probability Q(α)

is invariant for the process viewed from the particle, as a consequence of the

invariance of Q
(α)
N . Let g be a continuous bounded function on Ω: we have

for p such that 1< p< κ and q = p
p−1

∣

∣

∣

∣

∫

gdQ(α)

∣

∣

∣

∣

=

∣

∣

∣

∣

lim
k→∞

∫

gfNk
dP

(α)
Nk

∣

∣

∣

∣

≤ lim sup
k→∞

(
∫

|g|qdP
(α)
Nk

)1/q(∫

fp
Nk

dP
(α)
Nk

)1/p

≤ cp‖g‖Lq(P(α)),

where

cp = sup
N∈N

‖fN‖
Lp(P

(α)
N

)
<∞.

As a consequence, Q(α) is absolutely continuous with respect to P(α) and
∥

∥

∥

∥

dQ(α)

dP(α)

∥

∥

∥

∥

Lp(P(α))

≤ cp.

The uniqueness of Q(α) is classical and proved, for example, in [3], page 11.
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Proof of Lemma 1. The proof is divided into three steps. The first
step prepares the application of the property of “time reversal invariance”
(Lemma 1 of [25] or Proposition 1 of [27]). The second step is a little trick
to increase the weights in order to get the optimal exponent. The third step
makes a crucial use of the “time-reversal invariance” and uses a lemma of
the type “max-flow min-cut problem” proved in the next section.

Step 1: Let (ωx,y)x∼y be in ΩN . The time-reversed environment is defined
by

w̌x,y = πω
N (y)ωy,x

1

πω
N (x)

for x, y in TN , x∼ y. At each point x ∈ TN

∑

e=x

α(e) =
∑

e=x

α(e) =

2d
∑

j=1

αj.

It implies by Lemma 1 of [25] that if (ωx,y) is distributed according to P(α),

then w̌ is distributed according to P(α̌) where

∀(x, y) ∈EN , α̌(x,y) = α(y,x).

Let p be a real, 1≤ p < κ

(fN )p = (Ndπω
N (0))p

=

(

πω
N (0)

1/Nd
∑

y∈TN
πω
N (y)

)p

(3.1)

≤
∏

y∈TN

(

πω
N (0)

πω
N (y)

)p/Nd

,

where in the last inequality we used the arithmetico-geometric inequality. If
θ :EN →R+, we define θ̌ by

θ̌(x,y) = θ(y,x) ∀x∼ y.

For two functions γ and β on EN (resp., on TN ), we write γβ for
∏

e∈EN
γ(e)β(e)

(resp.,
∏

x∈TN
γ(x)β(x)). We clearly have

ω̌θ̌

ωθ
=
∏

e∈EN

(ω(e)πN (e)πN (e)−1)θ(e)

ω
θ(e)
e

=
∏

x∈TN

πN (x)
∑

e,e=x θ(e)−
∑

e,e=x θ(e)(3.2)

= π
div(θ)
N .
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Hence, for all θ :EN 7→R+ such that

div(θ) =
p

Nd

∑

y∈TN

(δ0 − δy)(3.3)

we have, using (3.1) and (3.2),

fp
N ≤

ω̌θ̌

ωθ
.(3.4)

Step 2: Considering that 1 =
∑

‖e‖=1ω(0, e), we have

1 = 1κ ≤ (2d)κ
2d
∑

i=1

ω(0, ei)
κ.

Hence, we get

E(α)(fp
N )≤ (2d)κ

2d
∑

i=1

E(α)(ω(0, ei)
κfp

N).

Hence, we need now to prove that for all i= 1, . . . ,2d,

sup
N∈N

E(α)(ω(0, ei)
κfp

N )<∞.(3.5)

Considering (3.4), we need to prove that for all i= 1, . . . ,2d, we can find a
sequence (θN ), where θN :EN 7→R+ satisfies (3.3) for all N , such that

sup
N∈N

E(α)

(

ωκ
(0,ei)

ω̌θ̌N

ωθN

)

<∞.(3.6)

Step 3: This is related to the max-flow min-cut problem; cf., for exam-
ple, [17], Section 3.1 or [10]. Let us first recall the notion of minimal cut-set
sums on the graph GZd . A cut-set between x ∈ Zd and ∞ is a subset S of
E such that any infinite simple directed path (i.e., an infinite directed path
that does not pass twice by the same vertex) starting from x must pass
through one (directed) edge of S. A cut-set which is minimal for inclusion
is necessarily of the form

S = ∂+(K) = {e ∈E,e ∈K,e ∈Kc},(3.7)

where K is a finite subset of Zd containing x such that any y ∈K can be
reached by a directed path in K starting at x. Let (c(e))e∈E be a set of
nonnegative reals called the capacities. The minimal cut-set sum between 0
and ∞ is defined as the value

m((c)) = inf{c(S), S is a cut-set separating 0 and ∞},

where c(S) =
∑

e∈S c(e). Observe that the infimum can be taken only on
minimal cut-set, that is, cut-set of the form (3.7).

The proof uses the following lemma, whose proof is deferred to the next
section since it is of a different nature.
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Lemma 2. Let d≥ 3. Let (c(e))e∈E be such that

inf
e∈E

c(e)> 0; sup
e∈E

c(e)<∞.

There exists a constant c1 > 0 such that for N large enough there exists a
function θN :EN 7→R+ such that

div(θN ) =m((c))
1

Nd

∑

x∈TN

(δ0 − δx),

(3.8)
‖θN‖22 =

∑

e∈EN

θN (e)2 < c1

and such that

θN (e)≤ c(e) ∀e ∈EN ,(3.9)

when we identify EN with the edges of E such that e ∈ [−N/2,N/2[d.

The strategy now is to use this result to find a sequence (θN ) which
satisfies (3.6). Let (α(i)(e))e∈E be the weights obtained by increasing the
weight α by κ on the edge (0, ei), and leaving the other values unchanged

α(i)(e) =

{

α(i)(e) = α(e), if e 6= (0, ei),

α(i)((0, ei)) = α((0, ei)) + κ= αi + κ.

Let us first note that for all i= 1, . . . ,2d,

m((α(i)))≥ κ.(3.10)

Take i = 1, . . . , d: if S contains the edge (0, ei), then α(i)(S) ≥ α
(i)
(0,ei)

≥ κ.

Otherwise, for all j = 1, . . . , d, j 6= i, S must intersect the paths (kej)k∈N,
(−kej)k∈N, (0, ei, (ei+kej)k∈N), (0, ei, (ei−kej)k∈N). These intersections are
disjoints, and it gives two edges with weights (αj) and two edges with weights
(αj+d). Moreover, S must intersect the paths (kei)k∈N, (−kei)k∈N. It gives
one edge with weight αi and one with weight αi+d. Hence,

α(i)(S)≥ 2

(

2d
∑

j=1

αj

)

− (αi +αi+d)≥ κ.

The same reasoning works for i= d+1, . . . ,2d.
Let us now prove (3.6) for i = 1; the same reasoning works for all. We

apply Lemma 2 with c(e) = α(1)(e). It gives for N large enough a function
θ̃N :EN 7→R+ which satisfies

div(θ̃N ) =
m(α(1))

Nd

∑

y∈TN

(δ0 − δy),
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and θ̃N (e)≤ α(1)(e) and with bounded L2 norm. It implies that θN = p
m(α(1))

θ̃N

satisfies

div(θN ) =
p

Nd

∑

y∈TN

(δ0 − δy),

and by (3.10) that θN (e) ≤ p
κ θ̃N (e) ≤ p

κα
(1)(e) and that θN has a bounded

L2-norm.
Let r, q be positive reals such that 1

r + 1
q = 1 and pq < κ. Using Hölder

inequality and Lemma 1 of [25], we get

E(α)

(

ω(0, e1)
κ ω̌

θ̌N

ωθN

)

≤ E(α)(ω(0, e1)
qκω−qθN )1/qE(α)(ω̌rθ̌N )1/r

= E(α)(ω(0, e1)
qκω−qθN )1/qE(α̌)(ωrθ̌N )1/r.

We set α(x) =
∑

e=xα(e) and θN (x) =
∑

e=x θN (e). Observe that α(x) =

α̌(x) =
∑2d

j=1αj for all x ∈ TN . We set α0 =
∑2d

j=1αj . For any function ξ :
EN 7→R we have

E(α)(ωξ) =
∏

x∈TN

(∏2d
i=1Γ(αi + ξ(x,x+ ei))

Γ(
∑2d

i=1αi + ξ(x,x+ ei))

Γ(α0)
∏2d

i=1Γ(αi)

)

(3.11)

if ξ(x,x+ei)>−αi for all x ∈ TN , i= 1, . . . ,2d, and +∞, otherwise. Indeed,
using the explicit form of Dirichlet distribution (2.2) and the independence
at each site, we get for any ξ :EN 7→R,

E(α)(ωξ) =

(

Γ(α0)
∏2d

i=1Γ(αi)

)|TN |
∏

x∈TN

∫ 2d
∏

i=1

x
αi+ξ(x,x+ei)−1
i dx1 · · · dx2d−1

where the last integrals are on the simplex {(x1, . . . , x2d), xi > 0,
∑

xi = 1}.
These integrals are Dirichlet integrals which are finite if and only if αi +
ξ(x,x+ ei)> 0 for all x and i. There explicit value [cf. (2.2)] gives formula
(3.11). A straightforward application of (3.11) gives

E(α)(ω(0, e1)
qκω−qθN )

=

(

∏

e∈EN
e6=(0,e1)

Γ(α(e)− qθN (e))
∏

x∈TN
x 6=0

Γ(α0 − qθN (x))

)

(

Γ(α1 + qκ− qθN ((0, e1)))

Γ(α0 + qκ− qθN(0))

)

×

(

∏

x∈TN
Γ(α0)

∏

e∈EN
Γ(α(e))

)

.

Observe that all the terms are well defined since qθN ≤ pq
κ α

(1) and qp < κ.
We have the following inequalities:

α1

(

1−
qp

κ

)

≤ α1 + qκ− qθN ((0, e1))≤ α1 + qκ
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and

α0

(

1−
qp

κ

)

≤ α0 + qκ− qθN (0)≤ α0 + qκ,

which imply that

E(α)(ω(0, e1)
qκω−qθN )1/q

≤A1

(

∏

e∈EN
e6=(0,e1)

Γ(α(e)− qθN (e))
∏

x∈TN
x 6=0

Γ(α0 − qθN (x))

)1/q(
∏

x∈TN
x 6=0

Γ(α0)
∏

e∈EN
e6=(0,e1)

Γ(α(e))

)1/q

,

where

A1 =

(

Γ(α0)

Γ(α1)

sups∈[α1(1−qp/κ),α1+qκ]Γ(s),

infs∈[α0(1−qp/κ),α0+qκ]Γ(s)

)1/q

.

Similarly, we get

E(α̌)(ωrθ̌N ) =

(

∏

e∈EN
Γ(α̌(e) + rθ̌N(e))

∏

x∈TN
Γ(α̌(x) + rθ̌N(x))

)(

∏

x∈TN
Γ(α̌(x))

∏

e∈EN
Γ(α̌(e))

)

=

(

∏

e∈EN
Γ(α(e) + rθN(e))

∏

x∈TN
Γ(α0 + rθ̌N (x))

)(

∏

x∈TN
Γ(α0)

∏

e∈EN
Γ(α(e))

)

,

where in the last line we used that α̌((x, y)) = α((y,x)) and θ̌((x, y)) =
θ((y,x)) and that α̌(x) =

∑

e=xαe = α(x) = α0 for all x. Note that θ̌(0) =

θ(0)− p and θ̌(x) = θ(x) + p
Nd for x 6= 0, thanks to (3.3). We have the fol-

lowing inequalities:

α1 ≤ α((0, e1)) + rθN ((0, e1))≤ α1(1 + r) + rκ,

α0 ≤ α(0) + rθ̌N (0)≤ α0(1 + r) + rκ.

This gives that

E(α̌)(ωrθ̌N )1/r

≤A2

(

∏

e∈EN
e6=(0,e1)

Γ(α(e) + rθN(e))
∏

x∈TN
x 6=0

Γ(α0 + rθN(x) + pr/Nd)

)1/r(
∏

x∈TN
x 6=0

Γ(α0)
∏

e∈EN
e6=(0,e1)

Γ(α(e))

)1/r

,

where

A2 =

(

Γ(α0)

Γ(α1)

sups∈[α1,α1(1+r)+rκ]Γ(s)

infs∈[α0,α0(1+r)+rκ]Γ(s)

)1/r

.
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Combining these inequalities it gives

E(α)

(

ω(0, e1)
κ ω̌

θ̌N

ωθN

)

≤A1A2 exp

(

∑

e∈EN

e 6=(0,e1)

ν(α(e), θN (e))−
∑

x∈TN

x 6=0

ν̃(α0, θN (x))

)

,

where

ν(α,u) =
1

r
lnΓ(α+ ru) +

1

q
lnΓ(α− qu)− lnΓ(α)

and

ν̃(α,u) =
1

r
lnΓ

(

α+ ru+
pr

Nd

)

+
1

q
lnΓ(α− qu)− lnΓ(α).

Let α =minαi, α=maxαi. By Taylor’s inequality and since α ≤ α(e) ≤ α
for all e ∈EN , qθN(e)≤ qp

κ α(e) for all e 6= (0, e1) and qp < κ, we can find a
constant c > 0 such that for all e 6= (0, e1),

|ν(α(e), θ(e))| ≤ cθ(e)2

and for all x 6= 0,

|ν̃(α0, θ(x))| ≤ c

(

θ(x)2 +
p

Nd

)

.

Hence, we get a positive constant C > 0 independent of N >N0 such that

E(α)

(

ω(0, e1)
κ ω̌

θ̌N

ωθN

)

≤ exp

(

C

(

∑

e∈EN

θN (e)2 +
∑

x∈TN

θN (x)2
))

.

Thus (3.6) is true, and this proves Lemma 1. �

4. Proof of Lemma 2. The strategy is to apply the max-flow min-cut
theorem (cf. [17], Section 3.1 or [10]) to an appropriate choice of capacities
on the graph GN . We first need a generalized version of the max-flow min-cut
theorem.

Proposition 1. Let G= (V,E) be a finite directed graph. Let (c(e))e∈E
be a set of nonnegative reals (called capacities). Let x0 be a vertex and
(px)x∈V be a set of nonnegative reals. There exists a nonnegative function
θ :E 7→R+ such that

div(θ) =
∑

x∈V

px(δx0 − δx) ,(4.1)

∀e ∈E, θ(e)≤ c(e),(4.2)
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if and only if for all subset K ⊂ V containing x0 we have

c(∂+K)≥
∑

x∈Kc

px,(4.3)

where ∂+K = {e ∈E,e ∈K,e ∈Kc} and c(∂+K) =
∑

e∈∂+K c(e). The same

is true if we restrict condition (4.3) to the subsets K such that any y ∈K
can be reached from 0 following a directed path in K.

Proof. If θ satisfies (4.1), then
∑

e,e∈K,e∈Kc

θ(e)−
∑

e,e∈K,e∈Kc

θ(e) =
∑

x∈K

div(θ)(x) =
∑

x∈Kc

px.

It implies (4.3) by (4.2) and positivity of θ.
The reversed implication is an easy consequence of the classical max-flow

min-cut theorem on finite directed graphs ([17], Section 3.1 or [10]). Suppose
now that (c) satisfies (4.3). Consider the new graph G̃= (V ∪ δ, Ẽ) defined
by

Ẽ =E ∪ {(x, δ), x ∈ V }.

We consider the capacities (c̃(e))e∈Ẽ defined by c(e) = c̃(e) for e ∈ E and
c((x, δ)) = px. The strategy is to apply the max-flow min-cut theorem with
capacities c̃ and with source x0 and sink δ. Any minimal cut-set between x0
and δ in the graph G̃ is of the form ∂G̃

+K where K ⊂ V is a subset containing
x0 but not δ and such that any point y ∈K can be reached from x0 following
a directed path in K. Observe that

c̃(∂G̃
+K) = c(∂G

+K) +
∑

x∈K

px.

Hence, (4.3) implies

c̃(∂G̃
+K)≥

∑

x∈V

px.

Thus the max-flow min-cut theorem gives a flow θ̃ on G̃ between x0 and δ
with strength

∑

x∈V px and such that θ̃ ≤ c̃. This necessarily implies that

θ̃((x, δ)) = px. The function θ obtained by restriction of θ̃ to E satisfies (4.2)
and (4.1). �

Lemma 3. Let d≥ 3. There exists a positive constant C2 > 0, such that
for all N > 1, and all x, y in TN there exists a unit flow θ from x to y (i.e.,
θ :EN →R+ and div(θ) = δx − δy) such that for all z ∈ TN ,

θ(z) =
∑

e=z

θ(e)≤ 1∧ (C2(d(x, z)
−(d−1) + d(y, z)−(d−1))).(4.4)
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Proof. By translation and symmetry, we can consider only the case
where x= 0 and y ∈ [N/2,N [d when TN is identified with [0,N [d. We con-
struct a flow on GZd supported by the set

Dy = [0, y1]× · · · × [0, yd]

as an integral of sufficiently dispersed path flows. It thus induces by pro-
jection a flow on TN with the same L2 norm. Let us give some definitions.
A sequence σ = (x0, . . . , xn) is a path from x to y in Zd if x0 = x, xn = y
and ‖xi+1 − xi‖1 = 1 for all i= 1, . . . , n. We say that σ is a positive path if
moreover xi+1 − xi ∈ {e1, . . . , ed} for all i= 1, . . . , n. To any path from x to
y we can associate the unit flow from x to y defined by

θσ =
n
∑

i=1

1(xi−1,xi).

For u ∈R+, we define Cu by

Cu =

{

z = (z1, . . . , zd) ∈Rd
+,

d
∑

i=1

zi = u

}

.

Clearly if y ∈Nd and if σ = (x0 = 0, . . . , xn = y) is a positive path from 0 to
y, then n= ‖y‖1 and xk ∈Ck for all k = 0, . . . ,‖y‖.

Set

∆y =Dy ∩

{

u= (u1, . . . , ud) ∈Rd
+,

d
∑

i=1

ui =
‖y‖1
2

}

.

For u ∈∆y, let Lu be the union of segments

Lu = [0, u]∪ [u, y].

We can consider Lu as the continuous path lu : [0,‖y‖] 7→ Dy from 0 to y
defined by

{lu(t)}= Lu ∩Ct.

Observe that u ∈Dy implies that lu(t) is nondecreasing on each coordinate.
There is a canonical way to associate with lu a discrete positive path σu
from 0 to y such that for all k = 0, . . . ,‖y‖,

‖lu(k)− σu(k)‖ ≤ 2d.(4.5)

Indeed, let l̃u(t) be defined by taking the integer part of each coordinate
of lu(t). At jump times of l̃u(t) the coordinates increase at most by 1. We
define σu(k) as the positive path which follows the successive jumps of l̃u(t):
if at a time t there are jumps at several coordinates, we choose to increase
first the coordinate on e1, then on e2. . .We have by construction k − d ≤
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‖l̃u(k)‖ ≤ k, hence l̃u(k) ∈ {σu(k − d), . . . , σu(k)}, so ‖σu(k) − l̃u(k)‖ ≤ d.
Since ‖lu(k)− l̃u(k)‖ ≤ d it gives (4.5). We then define

θu = θσu ,

and

θ =
1

|∆z|

∫

∆z

θu du

(where |∆z|=
∫

∆z
du), which is a unit flow from 0 to y. Clearly, θ(z)≤ 1 for

all z ∈ TN . For k = 0, . . . ,‖y‖1 and z ∈Hk, we have

θ(z)≤
1

|∆z|

∫

∆z

1‖lu(k)−z‖≤2d du.

Hence, we have for k such that 1< k ≤ ‖y‖
2 ,

θ(z)≤
1

|∆z|

∫

∆z

1‖u−z‖y‖/(2k)‖≤d‖y‖/k du.

Since y ∈ [N/2,N [d, there is a constant C2 > 0 such that

θ(z)≤C2k
−(d−1).

Similarly, if ‖y‖/2≤ k < ‖y‖,

θ(z)≤C2(‖y‖ − k)−(d−1).

Moreover θ(z) is null on the complement of Dy. By projection on GN it
gives a function on EN with the right properties. This proves Lemma 3. �

We are ready to prove Lemma 2. Let (c(e)) be such that 0<C ′ < c(e)<
C ′′ <∞. For all y ∈ TN we denote by θ0,y a unit flow from 0 to y satisfying
the conditions of Lemma 3. We set

θ̃N =
m(c)

Nd

∑

y∈TN

θ0,y.

The strategy is to apply proposition 1 to a set of capacities constructed from
θ̃N and c. Clearly,

div(θ̃N ) =
m(c)

Nd

∑

y∈TN

(δ0 − δy),(4.6)

and by simple computation we get that

θ̃N (z)≤C2m(c)

(

1∧ (d(0, z)−(d−1)) +
d2d

Nd−1

)

.(4.7)
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This implies that

∑

z∈TN

θ̃2N (z)≤ 2C2
2m(c)2

∑

z∈TN

(

1∧ (d(0, z)−2(d−1)) +
(d2d)2

N2(d−1)

)

≤ 2C2
2m(c)2

(

(d2d)2N−d+2 +
∑

z∈Zd

1∧ (d(0, z)−2(d−1))

)

.

Considering that the number of points z at distance k from 0 is smaller than
2d(2k +1)d−1, we get that

∑

z∈TN

θ̃2N (z)≤ 2C2
2m(c)2

(

(d2d)2N−d+2 +1+

∞
∑

k=1

k−2d+2(2d)(2k +1)d−1

)

.

Hence,

∑

z∈TN

θ̃2N (z)≤ 2C2
2m

2(c)(d2d)

(

1 +

∞
∑

k=1

k−(d−1)

)

+ 2C2
2m

2(c)(d2d)2N−(d−2),

and there is a constant C3 > 0 depending solely on C ′,C ′′, d such that
∑

z∈TN

θ̃2N (z)≤C3,
∑

e∈EN

θ̃2N (e)≤C3.

By (4.6) we know that for all K ⊂ TN containing 0 we have

∑

e∈EN ,e∈K,e∈Kc

θ̃N (e)−
∑

e∈EN ,e∈K,e∈Kc

θ̃N(e) =m(c)
|Kc|

Nd
,

hence,

θ̃N (∂+K)≥m(c)
|Kc|

Nd
.(4.8)

The strategy is to modify θ̃N locally around 0 in order to make it lower or
equal to c but large enough to be able to apply Proposition 1. Let us fix
some notations. For a positive integer r, BE(x0, r) denotes the set of edges

BE(x0, r) = {e ∈E,e ∈B(x0, r), e ∈B(x0, r)}

and

BE(x0, r) = {e ∈E,e ∈B(x0, r)}.

By (4.7), there exist some positive integer η0 and Ñ0, such that for all
N ≥ Ñ0 and e /∈BE(0, η0), we have

|θ̃N (e)| ≤
C ′

2
.(4.9)
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Choose now η1 > η0 such that

η1 − η0 ≥ 4
m(c)

C ′
+2.(4.10)

Finally we can find an integer N0 ≥max(Ñ0,2η1) large enough to satisfy

Nd
0 ≥m(c)

|B(0, η1)|

C ′
.(4.11)

We consider (c̃N (e))e∈EN
defined by

{

c̃N (e) = c(e), if e or e ∈B(0, η1),

c̃N (e) = θ̃N (e), otherwise.

Note that, thanks to (4.9), for all e ∈EN , c̃N (e)≤ c(e) when we identify EN

with the edges of E, which starts in [−N/2,N/2[d . In the rest of the proof
we prove that for all N ≥N0 and for all K ⊂ TN that contains 0 and which
are such that any y ∈K can be reached from 0 following a directed path in
K, we have

c̃N (∂+K)≥m(c)
|Kc|

Nd
.(4.12)

By application of Proposition 1, it would give a flow θN , which satisfies (3.8)
and (3.9), and with a bounded L2 norm, indeed,

∑

e∈EN

θN (e)2 ≤C3 + |BE(0, η1)|(C
′′)2.

We only need to check inequality (4.12) for K such that Kc has a unique
connected component. Indeed, if Kc has several connected components, say
R1, . . . ,Rk, then

∂−Ri = {e ∈EN , e ∈Ri, e ∈Rc
i}= {e ∈EN , e ∈Ri, e ∈K}.

Hence, ∂+K is the disjoint union of

∂+K =

k
⊔

i=1

∂−Ri.

Hence if we can prove (4.12) for Ki = Rc
i , we can prove it for K. Thus we

assume, moreover, that Kc has a unique connected component in the graph
GN . There are four different cases:

• If K ⊂B(0, η1), then

c̃N (∂+K) = c(∂+K).

Moreover, viewed on Zd (when TN is identified with [−N/2,N/2[) ∂+K
is a cut-set separating 0 from ∞ (indeed, N ≥N0 ≥ 2η1), thus

c(∂+K)≥m(c)≥m(c)
|Kc|

Nd
.
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• If B(0, η0)⊂K, by (4.8) and (4.9), then

c̃N (∂+K)≥ θ̃N(∂+K)≥m(c)
|Kc|

Nd
.

• If Kc ⊂B(0, η1), then by (4.11),

|Kc|

Nd
≤

|B(0, η1)|

Nd
0

≤
C ′

m(c)
,

hence,

c̃N (∂+K) = c(∂+K)≥C ′ ≥m(c)
|Kc|

Nd
,

since ∂Kc 6=∅.
• Otherwise K contains at least one point x1 in B(0, η1)

c, and Kc contains
at least one point y0 in B(0, η0) and one point y1 in B(0, η1)

c. Hence
there is a path between y0 and y1 in Kc and a directed path between 0
and x1 in K. Let S(0, i) denote the sphere with center 0 and radius i for
the shortest path distance in GN . It implies that we can find a sequence
zη0 , . . . , zη1 such that zi ∈K ∩S(0, i) and a sequence z′η0 , . . . , z

′
η1 such that

z′i ∈ Kc ∩ S(0, i). Since there is a directed path in S(0, i) ∪ S(0, i − 1)
between zi and z′i, and a directed path in K between 0 and zi, it implies
that there exists at least ⌊12(η1 − η0)⌋ different edges in ∂+K ∩BE(0, η1).
Hence

c̃N (∂+K)≥ ⌊12 (η1 − η0)⌋C
′ ≥m((c)).

This concludes the proof of (4.12) and of the lemma.

5. Proof of Theorem 1(ii) and Theorem 2. These results are based on
classical results on ergodic stationary sequence; cf. [7], pages 343–344. Let
us start with the following lemma.

Lemma 4. Suppose that there exists an invariant probability measure
Q(α), absolutely continuous with respect to P(α) and invariant for R. Then
Q(α) is equivalent to P(α) and the Markov chain (wn) with generator R, and
the initial law Q(α) is stationary and ergodic. Let (∆i)i≥1 be the sequence

∆i =Xi −Xi−1.

Under the invariant annealed measure Q
(α)
0 (·) = Q(α)(Pω

0 (·)), the sequence
(∆i) is stationary and ergodic.

Proof. The first assertion on Q(α) is classical and proved, for example,
in [3], Theorem 1.2. Since Q(α) is an invariant probability measure for ωn,
it is clear that (∆i) is stationary. The ergodicity of (∆i) is a consequence
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of the ergodicity of (ωn). Indeed, since the environment is i.i.d. and not
deterministic, there exists a measurable function f : Ω × Ω 7→ Z such that
a.s. ∆i = f(ωi−1, ωi) (indeed, for P

(α) almost all ω, τx(ω) = ω if and only if
x= 0, which means that the increment ∆i is almost surely uniquely deter-
mined by the observation of ωi−1 and ωi). This implies the ergodicity of the
sequence (∆i). �

Proof of Theorem 1(ii). Suppose that there exists an invariant prob-
ability measure Q(α), absolutely continuous with respect to P(α) and invari-

ant for R. Since (Xn) is P
(α)
0 a.s. (hence, Q

(α)
0 a.s.) transient ([25], Theo-

rem 1), it implies that

EQ(α)
(Pω

0 (H
+
0 =∞))> 0,

where H+
0 is the first positive return time of Xn to 0. Let Rn be the number

of points visited by (Xk) at time n− 1

Rn = |{Xk, k = 0, . . . , n− 1}|.

Theorem 6.3.1 of [7] and Lemma 4 tell that

P
(α)
0 a.s.,

Rn

n
→EQ(α)

(Pω
0 (H

+
0 =∞))> 0.(5.1)

Let i0 ∈ {1, . . . , d} be a direction which maximizes αi + αi+d. Theorem 3

of [33] tells that if κ≤ 1, then the expected exit time under P
(α)
0 of the finite

subset {0, ei0} or {0,−ei0} is infinite. By independence of the environment

under P(α), we can easily get that Rn

n → 0, P
(α)
0 a.s. This contradicts (5.1).

�

Proof of Theorem 2. (i) is Proposition 12 of [33]. Under the annealed

invariant law Q
(α)
0 , (∆k) is a stationary ergodic sequence with values in Zd

(hence for any i ∈ {1, . . . ,2d}, ∆k · ei is also a stationary ergodic sequence
with values in Z). Birkhoff’s ergodic Theorem ([7], page 337) gives for free
the law of large number

P
(α)
0 a.s.,

Xn

n
→EQ(α)

(Eω
0 (X1)).

If dα · ei = 0 then by symmetry of the law of the environment it implies

that EQ(α)
(Eω

0 (X1)) · ei = 0, hence by Theorem 6.3.2 of [7], we have that
Xn · ei = 0 infinitely often. By Lemma 4 of [36] it implies (ii) and the last
assertion of (iii).

For l ∈ Rd, we set Al = {Xn · l →∞}. If l 6= 0 and if P
(α)
0 (Al) > 0, then

Kalikow 0–1 law ([11], [36], Proposition 3) tells that P
(α)
0 (Al ∪ A−l) = 1.
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Suppose now that dα · ei > 0 for an integer i in {1, . . . ,2d}. In [27] we proved

that P
(α)
0 (Aei)> 0, this implies that Xn · ei visits 0 a finite number of times

Q
(α)
0 a.s. By Theorem 6.3.2 of [7] it implies that

EQ(α)
(Eω

0 (X1)) · ei 6= 0.

Moreover, we know that

P
(α)
0 a.s.,

Xn

n
→EQ(α)

(Eω
0 (X1)).

Hence, P(α)(A±ei) = 1, where ± corresponds to the sign of EQ(α)
(Eω

0 (X1)) ·

ei. Since we know that P
(α)
0 (Aei)> 0, it implies that

EQ(α)
(Eω

0 (X1)) · ei > 0. �
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[3] Bolthausen, E. and Sznitman, A.-S. (2002). Ten Lectures on Random Media. DMV
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[24] Rassoul-Agha, F. and Seppäläinen, T. (2009). Almost sure functional central

limit theorem for ballistic random walk in random environment.Ann. Inst. Henri
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