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RANDOM DIRICHLET ENVIRONMENT VIEWED FROM THE

PARTICULE IN DIMENSION d ≥ 3

CHRISTOPHE SABOT

Abstract: We consider random walks in random Dirichlet environment (RWDE)
which is a special type of random walks in random environment where the exit prob-
abilities at each site are i.i.d. Dirichlet random variables. On Zd, RWDE are parame-
terized by a 2d-uplet of positive reals called weights. In this paper, we characterize for
d ≥ 3 the weights for which there exists an absolutely continuous invariant probability
for the process viewed from the particule. We can deduce from this result and from
[27] a complete description of the ballistic regime for d ≥ 3.

1. Introduction

Multidimensional random walks in random environment have received a consider-
able attention in the last ten years. Some important progress has been made in the
ballistic regime (after the seminal works [12, 33, 30, 31]) and for small perturbations of
the simple random walk ([32, 1]). We refer to [35] for a detailled survey. Nevertheless,
we are still far from a complete description and some basic questions are open such as
the characterization of recurrence, ballisticity. The point of view of the environment
viewed from the particule has been a powerful tool to investigate the random conduc-
tance model, it is a key ingredient in the proof of invariance principles ([14, 16, 28, 19])
but has had a rather little impact on the non-reversible model. The existence of an
absolutely continuous invariant measure for the process viewed from the particule (the
so called ”equivalence of the static and dynamical point of view”) is only known in a
few cases: for dimension 1, cf Kesten [13] and Molchanov [20] p.273-274, in the case of
balanced environment of Lawler, [17], for ”non-nestling” RWRE in dimension d ≥ 4
at low disorder, cf Bolthausen and Sznitman [5] and in a weaker form for ballistic
RWRE (equivalence in half-space), cf [24, 25]. Note that invariance principles have
nevertheless been obtained under special assumptions: under the ballistic assumption
[25, 3] and for weak disorder in dimension d ≥ 3, [32, 6].

Random walks in Dirichlet environment (RWDE) is a special case where at each
site the environment is chosen according to a Dirichlet random variable. The annealed
law of RWDE is the law of a directed edge reinforced random walk. While this model
of environment is fully random (the support of the distribution on the environment
is the space of weakly elliptic environment itself) its shows some surprising analytic
simplifications (cf [26, 27, 9, 34]). In particular in [26] it is proved that RWDE are
transient on transient graphs (cf [26] for a precise result). This result uses in a crucial
way a property of statistical invariance by time reversal (cf lemma 1 of [26]).
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2 C. SABOT

RWDE are parametrized by 2d reals called the weights (one for each direction in Zd)
which govern the behavior of the walk. In this paper we characterize on Zd, d ≥ 3, the
weights for which there exists an invariant probability measure for the environment
viewed from the particule, which is absolutely continuous with respect to the law of
the environment. More precisely, it is shown that there is an absolutely continuous
invariant probability exactly when the parameters are such that the time spent in
finite size traps has finite expectation. Together with previous results on directional
transience ([27]) it leads, using classical results on stationary ergodic sequences, to a
complete description of the ballistic regimes for RWDE in dimension larger or equal
to 3. Besides, we think that the proof of the existence of an absolutely continuous
invariant distribution for the environment viewed from the particule could be a first
step towards an implementation of the technics developed to prove functional central
limit theorems (cf e.g. [15]).

2. statement of the results

Let (e1, . . . , ed) be the canonical base of Z
d, and set ej = −ej−d, for j = d+1, . . . , 2d.

The set {e1, . . . , e2d} is the set of unit vectors of Zd. We denote by ‖z‖ =
∑d

i=1 |zi| the
L1-norm of z ∈ Zd. We write x ∼ y if ‖y−x‖ = 1. We consider elliptic random walks
in random environment to nearest neighbors. We denote by Ω the set of environments

Ω = {ω = (ω(x, y))x∼y ∈]0, 1]
E, such that for all x ∈ Zd,

2d
∑

i=1

ω(x, x+ ei) = 1}.

An environment ω defines the transition probability of a Markov chain on Zd, and we
denote by P ω

x the law of this Markov chain starting from x:

P ω
x [Xn+1 = y + ei|Xn = y] = ω(y, y + ei).

The classical model of non-reversible random environment corresponds to the model
where at each site x ∈ Zd the environment (ω(x, x + ei))i=1,...,2d are chosen indepen-
dently according to the same law. Random Dirichlet environment corresponds to
the case where this law is a Dirichlet law. More precisely, we choose some positive
weights (α1, . . . , α2d) and we define λ = λ(α) as the Dirichlet law with parameters
(α1, . . . , α2d). It means that λ(α) is the law on the simplex

{(x1, . . . , x2d) ∈]0, 1]
2d,

2d
∑

i=1

xi = 1}(2.1)

with density

Γ(
∑2d

i=1 αi)
∏2d

i=1 Γ(αi)

(

2d
∏

i=1

xαi−1
i

)

dx1 · · · dx2d−1,(2.2)

where Γ is the usual Gamma function Γ(α) =
∫∞

0
tα−1e−tdt. (In the previous ex-

pression dx1 · · · dx2d−1 represents the image of the Lebesgue measure on R2d−1 by the
application (x1, . . . , x2d−1) → (x1, . . . , x2d−1, 1 − (x1 + · · · + x2d−1)). Obviously, the
law does not depend on the specific role of x2d.) We denote by P(α) the law obtained
on Ω by picking at each site x ∈ Zd the transition probabilities (ω(x, x + ei))i=1,...,2d

independently according to λ(α). We denote by E(α) the expectation with respect

to P(α) and by P
(α)
x [·] = E(α)[P

(ω)
x (·)] the annealed law of the process starting at x.
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This type of environment plays a special role since the annealed law corresponds to a
directed edge reinforced random walk with an affine reinforcement, i.e.

P(α)
x [Xn+1 = Xn + ei|σ(Xk, k ≤ n)] =

αi +Ni(Xn, n)
∑2d

k=1 αk +Nk(Xn, n)
,

where Nk(x, n) is the number of crossings of the directed edge (x, x+ ek) up to time
n (cf [21], [10]). When the weights are constant equal to α, the environment is
isotropic: when α is large, the environment is close to the deterministic environment
of the simple random walk, when α is small the environment is very disordered. The
following parameter κ is important in the description of the RWDE

κ = 2

(

2d
∑

i=1

αi

)

− max
i=1,...,d

(αi + αi+d).

If i0 ∈ {1, . . . , d} realizes the maximum in the last term then κ is the sum of the weights
of the edges exiting the set {0, ei0} (or {0,−ei0}). The real κ must be understood
as the strength of the trap {0, ei0}: indeed, if G̃

ω(0, 0) is the Green function at (0, 0)
of the Markov chain in environment ω killed at its exit time of the set {0, ei0}, then
G̃ω(0, 0)s is integrable if and only if s < κ ([34]). In [26] it has been proved for d ≥ 3
that the same is true for the Green function G(0, 0) on Zd itself: it has integrable
s-moment if and only if s < κ.

Denote by (τx)x∈Zd the shift on the environment defined by

τxω(y, z) = ω(x+ y, x+ z).

Let Xn be the random walk in environment ω. The process viewed from the particule
is the process on the state space Ω defined by

ωn = τXn
ω.

Under P ω0
0 , ω0 ∈ Ω (resp. under P0) ωn is a Markov process on state space Ω with

generator R given by

Rf(ω) =

2d
∑

i=1

ω(0, ei)f(τeiω),

for all bounded measurable function f on Ω, and with initial distribution δω0 (resp. P),
cf e.g. [4]. Compared to the quenched process, the process viewed from the particule is
Markovian. Since the state space is huge one needs, to take advantage if this point of
view, to have the existence of an invariant probability measure, absolutely continuous
with respect to the initial measure on the environment. The following theorem solves
this problem in the special case of Dirichlet environment in dimension d ≥ 3 and is
the main result of the paper.

Theorem 1. Let d ≥ 3 and P(α) be the law of the Dirichlet environment with weights
(α1, . . . , α2d). Let κ > 0 be defined by

κ = 2

(

2d
∑

i=1

αi

)

− max
i=1,...,d

(αi + αi+d).

(i) If κ > 1 then there exists a unique probability distribution Q(α) on Ω absolutely

continuous with respect to P(α) and invariant by the generator R. Moreover dQ(α)

dP(α) is

in Lp(P
(α)) for all 1 ≤ p < κ.
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(ii) If κ ≤ 1, there does not exist any probability measure invariant by R and
absolutely continuous with respect to the measure P(α).

We can deduce from this result and from [34], [27], a characterization of ballisticity
for d ≥ 3. Let dα be the mean drift at first step:

dα = E
(α)
0 (X1) =

1
∑2d

i=1 αi

2d
∑

i=1

αiei.

Theorem 2. Let d ≥ 3.

i) (cf [34]) If κ ≤ 1, then

lim
n→∞

Xn

n
= 0, P

(α)
0 p.s.

ii) If κ > 1 and dα = 0 then

lim
n→∞

Xn

n
= 0, P

(α)
0 p.s.

and for all i = 1, . . . , d

lim infXn · ei = −∞, lim supXn · ei = +∞, P
(α)
0 p.s.

iii) If κ > 1 and dα 6= 0 then there exists v 6= 0 such that

lim
n→∞

Xn

n
= v, P

(α)
0 p.s.

Moreover, for the integers i ∈ {1, . . . , d} such that dα · ei 6= 0 we have

(dα · ei)(v · ei) > 0.

For the integers i ∈ {1, . . . , d} such that dα · ei = 0

lim infXn · ei = −∞, lim supXn · ei = +∞, P
(α)
0 p.s.

Remark 1. This answers in the case of RWDE for d ≥ 3 the following question:
is directional transience equivalent to ballisticity? The answer is formally ”no” but
morally ”yes”: indeed, it is proved in [27] that for all i such that dα · ei 6= 0, Xn ·
ei is transient; hence, for κ ≤ 1 directional transience and zero speed can coexist.
But, it appears in the proof of [34] that the zero speed is due to finite size traps that
come from the non-ellipticity of the environment. When κ > 1, the expected exit
time of finite boxes is always finite (cf [34]) and in this case ii) and iii) indeed tell
that directional transience is equivalent to ballisticity. For general RWRE (and for
RWDE in dimension 2) this is an important unsolved question. Partial important
results in this direction have been obtained by Sznitman in [30, 31] for general elliptic
environment for d ≥ 2.

Remark 2. A law of of large number (with eventually null velocity) has been proved for
general (weakly) elliptic RWRE by Zerner, cf [37], using the technics of regeneration
times developed by Sznitman and Zerner in [33]. Nevertheless, when the directional
0-1 law is not valid it is still not known wether there is a deterministic limiting velocity
(this was solved for d ≥ 5 by Berger, [2]).
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3. Proof of theorem 1 i)

Let us first recall a few definitions and give some notations. By a directed graph
we mean a couple G = (V,E) where V is a countable set of vertices and E the set of
(directed) edges is a subset of V × V . For simplicity, we do not allow multiple edges
or loops (i.e. edges of the type (x, x)). We denote by e, resp. e, the tail and the head
of an edge e ∈ E, so that e = (e, e). A directed path from a vertex x to a vertex y is
a sequence σ = (x0 = x, . . . , xn = y) such that for all i = 1, . . . , n, (xi−1, xi) is in E.
The divergence operator is the function div : RE 7→ RV defined for θ ∈ RE by

∀x ∈ V, div(θ)(x) =
∑

e∈E, e=x

θ(e)−
∑

e∈E, e=x

θ(e).

We consider Zd as a directed graph: GZd = (Zd, E) where the edges are the couple
(x, y) such that ‖y − x‖ = 1. On E we consider the weights (α(e))e∈E defined by

∀x ∈ Zd, i = 1, . . . , 2d, α((x, x+ ei)) = αi.

Hence, under P(α), at each site x ∈ Zd, the exit probabilities (ω(e))e=x are independent
and distributed according to a Dirichlet law with parameters (α(e))e=x.

When N ∈ N∗, we denote by TN = (Z/NZ)d the d-dimensional torus of size N .
We denote by GN = (TN , EN) the associated directed graph image of the graph
G = (Zd, E) by projection on the torus. We denote by d(·, ·) the shortest path
distance on the torus. We write x ∼ y if (x, y) ∈ EN . Let ΩN be the space of
(weakly) elliptic environments on TN :

ΩN = {ω = (ω(x, y))(x,y)∈EN
∈]0, 1]EN , such that ∀ x ∈ TN ,

2d
∑

i=1

ω(x, x+ ei) = 1}.

ΩN is naturally identified with the space of the N -periodic environments on Zd. We

denote by P
(α)
N the Dirichlet law on the environment obtained by picking independently

at each site x ∈ TN the exiting probabilities (ω(x, x + ei))i=1,...,2d according to a
Dirichlet law with parameters (αi)i=1,...,2d.

For ω in ΩN we denote by (πω
N(x))x∈TN

the invariant probability measure of the
Markov chain on TN in the environment ω (it is unique since the environments are
elliptic). Let

fN(ω) = Ndπω
N(0),

and
Q

(α)
N = fN · P

(α)
N .

Thanks to translation invariance, Q
(α)
N is a probability measure on ΩN . Theorem 1 is

a consequence of the following lemma.

Lemma 1. For all p ∈ [1, κ[

sup
N∈N

‖fN‖Lp(P
(α)
N

)
< ∞.

Once this lemma is proved the proof of theorem 1 is routine argument (cf for

example [4] page 18,19). Indeed, we consider P
(α)
N and Q

(α)
N as probability measures

on N -periodic environments. Obviously, P
(α)
N converges weakly to the probability

measure P(α). By construction, Q
(α)
N is an invariant probability measure for the process

of the environment viewed from the particule. Since Ω is compact, we can find a
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subsequence Nk such that Q
(α)
Nk

converges weakly to a probability measure Q(α) on

Ω. The probability Q(α) is invariant for the process viewed from the particule, as a

consequence of the invariance of Q
(α)
N . Let g be a continuous bounded function on Ω:

we have for p such that 1 < p < κ and q = p
p−1

.
∣

∣

∣

∣

∫

gdQ(α)

∣

∣

∣

∣

=

∣

∣

∣

∣

lim
k→∞

∫

gfNk
dP

(α)
Nk

∣

∣

∣

∣

≤ lim sup
k→∞

(∫

|g|qdP
(α)
Nk

)
1
q
(∫

f p
Nk
dP

(α)
Nk

)
1
p

≤ cp‖g‖Lq(P(α))

where
cp = sup

N∈N
‖fN‖Lp(P

(α)
N

)
< ∞.

As a consequence Q(α) is absolutely continuous with respect to P(α) and
∥

∥

∥

∥

dQ(α)

dP(α)

∥

∥

∥

∥

Lp(P(α))

≤ cp.

The uniqueness of Q(α) is classical and proved e.g. in [4] p. 11.

Proof. of lemma 1.

The proof is divided into three steps. The first step prepares the application of
the property of ”time reversal invariance” (lemma 1 of [26], or proposition 1 of [27]).
The second step is a little trick to increase the weights in order to get the optimal
exponent. The third step makes a crucial use of the ”time-reversal invariance” and
uses a lemma of the type ”max-flow min-cut problem” proved in the next section.

Step 1: Let (ωx,y)x∼y be in ΩN . The time-reversed environment is defined by

w̌x,y = πω
N (y)ωy,x

1

πω
N(x)

for x, y in TN , x ∼ y. At each point x ∈ TN

∑

e=x

α(e) =
∑

e=x

α(e) =
2d
∑

j=1

αj ,

It implies by lemma 1 of [26] that if (ωx,y) is distributed according to P(α), then w̌ is
distributed according to P(α̌) where

∀(x, y) ∈ EN , α̌(x,y) = α(y,x).

Let p be a real, 1 < p < κ.

(fN)
p = (Ndπω

N (0))
p

=

(

πω
N(0)

1
Nd

∑

y∈TN
πω
N(y)

)p

≤
∏

y∈TN

(

πω
N (0)

πω
N (y)

)p/Nd

(3.1)
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where in the last inequality we used the arithmetico-geometric inequality. If θ : EN →
R+ we define θ̌ by

θ̌(x,y) = θ(y,x), ∀x ∼ y.

We clearly have

ω̌θ̌

ωθ
= π

div(θ)
N ,(3.2)

where for γ and β two functions on EN (resp. on TN) we write γβ for
∏

e∈EN
γ(e)β(e)

(resp.
∏

x∈TN
γ(x)β(x)). Hence, for all θ : EN 7→ R+ such that

div(θ) =
p

Nd

∑

y∈TN

(δ0 − δy).(3.3)

we have using (3.1), and (3.2)

f p
N ≤

ω̌θ̌

ωθ
(3.4)

Step 2: Considering that 1 =
∑

‖e‖=1 ω(0, e), we have

1 = 1κ ≤ (2d)κ
2d
∑

i=1

ω(0, ei)
κ.

Hence, we get

E(α) (f p
N) ≤ (2d)κ

2d
∑

i=1

E(α) (ω(0, ei)
κf p

N )

Hence, we need now to prove that for all i = 1, . . . , 2d,

sup
N∈N

E(α) (ω(0, ei)
κf p

N ) < ∞.(3.5)

Considering (3.4), we need to prove that for all i = 1, . . . , 2d, we can find a sequence
(θN ), where θN : EN 7→ R+ satisfies (3.3) for all N , such that

sup
N∈N

E(α)

(

ωκ
(0,ei)

ω̌θ̌N

ωθN

)

< ∞.(3.6)

Step 3: This is related to the max-flow min-cut problem (cf e.g. [18] section 3.1
or [11]). Let us first recall the notion of minimal cut-set sums on the graph GZd.
A cut-set between x ∈ Zd and ∞ is a subset S of E such that any infinite simple
directed path (i.e. an infinite directed path that does not pass twice by the same
vertex) starting from x must pass through one (directed) edge of S. A cut-set which
is minimal for inclusion is necessarily of the form

S = ∂+(K) = {e ∈ E, e ∈ K, e ∈ Kc},(3.7)

where K is a finite subset of Zd containing x such that any y ∈ K can be reached by
a directed path in K starting at x. Let (ce)e∈E be a set of non-negative reals called
the capacities. The minimal cut-set sum between 0 and ∞ is defined as the value

m((c)) = inf{c(S), S is a cut-set separating 0 and ∞},

where c(S) =
∑

e∈S c(e). Remark that the infimum can be taken only on minimal
cut-set, i.e. cut-set of the form (3.7).
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The proof uses the following lemma, whose proof is deferred to the next section
since it is of a different nature.

Lemma 2. Let C ′ and C ′′ be two reals such that 0 < C ′ < C ′′ < ∞. There exists a
constant c1 > 0 and an integer N0 > 0 depending only on C ′, C ′′, d, such that for all
sequence (ce)e∈E such that

∀e ∈ E, C ′ < ce < C ′′,

and for all integer N > N0, there exists a function θN : EN 7→ R+ such that

div(θN ) = m((c))
1

Nd

∑

x∈TN

(δ0 − δx),(3.8)

‖θN‖
2
2 =

∑

e∈EN

θN(e)
2 < c1

and such that

θN (e) ≤ c(e), ∀e ∈ EN ,(3.9)

when we identify EN with the edges of E such that e ∈ [−N/2, N/2[d.

The strategy now is to use this result to find a sequence (θN ) which satisfies (3.6).
Let (α(i)(e))e∈E be the weights obtained by increasing the weight α by κ on the edge
(0, ei), and leaving the other values unchanged

α(i)(e) =

{

α(i)(e) = α(e), if e 6= (0, ei),
α(i)((0, ei)) = α((0, ei)) + κ = αi + κ.

Let us first remark that for all i = 1, . . . , 2d,

m((α(i))) ≥ κ.(3.10)

Take i = 1, . . . , d : if S contains the edge (0, ei) then α(i)(S) ≥ α
(i)
(0,ei)

≥ κ. Otherwise,

for all j = 1, . . . , d, j 6= i, S must intersect the paths (kej)k∈N, (−kej)k∈N, (0, ei, (ei +
kej)k∈N), (0, ei, (ei − kej)k∈N). These intersections are disjoints and it gives two edges
with weights (αj) and two edges with weights (αj+d). Moreover, S must intersect the
paths (kei)k∈N, (−kei)k∈N. It gives one edge with weight αi and one with weight αi+d.
Hence,

α(i)(S) ≥ 2

(

2d
∑

j=1

αj

)

− (αi + αi+d) ≥ κ.

The same reasoning works for i = d+ 1, . . . , 2d.

Let us now prove (3.6) for i = 1, the same reasoning works for all. We apply lemma
2 with c(e) = p

κ
α(1)(e). It gives for N ≥ N0 a function θN : EN 7→ R+ which satisfies

div(θ) =
p

Nd

∑

y∈TN

(δ0 − δy),

and θN (e) ≤
p
κ
α(1)(e) and with bounded L2 norm (indeed by (3.10), m(( p

κ
α(1))) ≥ κ).

Let r, q be positive reals such that 1
r
+ 1

q
= 1 and pq < κ. Using Hölder inequality

and lemma 1 of [26] we get
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E(α)

(

ω(0, e1)
κ ω̌

θ̌N

ωθN

)

≤ E(α)
(

ω(0, e1)
qκω−qθN

)1/q
E(α)

(

ω̌rθ̌N
)1/r

= E(α)
(

ω(0, e1)
qκω−qθN

)1/q
E(α̌)

(

ωrθ̌N
)1/r

We set α(x) =
∑

e=x α(e) and θN (x) =
∑

e=x θN (e). Remark that α(x) = α̌(x) =
∑2d

j=1 αj for all x ∈ TN . We set α0 =
∑2d

j=1 αj. Simple computation gives

E(α)
(

ω(0, e1)
qκω−qθN

)

=




∏

e∈EN
e6=(0,e1)

Γ(α(e)− qθN (e))
∏

x∈TN
x 6=0

Γ(α0 − qθN (x))





(

Γ(α1 + qκ− qθN ((0, e1))

Γ(α0 + qκ− qθN (0))

)

(

∏

x∈TN
Γ(α0)

∏

e∈EN
Γ(α(e))

)

Remark that all the terms are well-defined since qθN ≤ pq
κ
α(1) and qp < κ. We have

the following inequalities.

α1(1−
qp

κ
) ≤ α1 + qκ− qθN ((0, e1)) ≤ α1 + qκ,

and

α0(1−
qp

κ
) ≤ α0 + qκ− qθN (0) ≤ α0 + qκ,

which imply that

E(α)
(

ω(0, e1)
qκω−qθN

)1/q
≤ A1





∏

e∈EN
e6=(0,e1)

Γ(α(e)− qθN(e))
∏

x∈TN
x 6=0

Γ(α0 − qθN (x))





1/q



∏

x∈TN
x 6=0

Γ(α0)
∏

e∈EN
e6=(0,e1)

Γ(α(e))





1/q

where

A1 =

(

Γ(α0)

Γ(α1)

sups∈[α1(1−
qp

κ
),α1+qκ] Γ(s),

infs∈[α0(1−
qp

κ
),α0+qκ] Γ(s)

)1/q

.

Similarly, we get

E(α̌)
(

ωrθ̌N
)

=

(

∏

e∈EN
Γ(α̌(e) + rθ̌N(e))

∏

x∈TN
Γ(α̌(x) + rθ̌N(x))

)(

∏

x∈TN
Γ(α̌(x))

∏

e∈EN
Γ(α̌(e))

)

=

(

∏

e∈EN
Γ(α(e) + rθN (e))

∏

x∈TN
Γ(α0 + rθ̌N (x))

)(

∏

x∈TN
Γ(α0)

∏

e∈EN
Γ(α(e))

)

where in the last line we used that α̌((x, y)) = α((y, x)) and θ̌((x, y)) = θ((y, x))
and that α̌(x) =

∑

e=x αe = α(x) = α0 for all x. Remark that θ̌(0) = θ(0) − p and

θ̌(x) = θ(x) + p
Nd for x 6= 0, thanks to (3.3). We have the following inequalities

α1 ≤ α((0, e1)) + rθN((0, e1)) ≤ α1(1 + r) + rκ

α0 ≤ α(0) + rθ̌N(0) ≤ α0(1 + r) + rκ.

This gives that

E(α̌)
(

ωrθ̌N
)

1
r

≤ A2





∏

e∈EN
e6=(0,e1)

Γ(α(e) + rθN (e))
∏

x∈TN
x 6=0

Γ(α0 + rθN(x) +
pr
Nd )





1/r



∏

x∈TN
x 6=0

Γ(α0)
∏

e∈EN
e6=(0,e1)

Γ(α(e))





1/r
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where

A2 =

(

Γ(α0)

Γ(α1)

sups∈[α1,α1(1+r)+rκ] Γ(s)

infs∈[α0,α0(1+r)+rκ] Γ(s)

)1/r

.

Combining these inequalities it gives

E(α)

(

ω(0, e1)
κ ω̌

θ̌N

ωθN

)

≤ A1A2 exp







∑

e∈EN
e6=(0,e1)

ν(α(e), θN(e))−
∑

x∈TN
x 6=0

ν̃(α0, θN(x))






,

where

ν(α, u) =
1

r
ln Γ(α + ru) +

1

q
ln Γ(α− qu)− ln Γ(α).

and

ν̃(α, u) =
1

r
ln Γ(α + ru+

pr

Nd
) +

1

q
ln Γ(α− qu)− ln Γ(α).

Let α = minαi, α = maxαi. By Taylor inequality and since α ≤ α(e) ≤ α for all
e ∈ EN , qθN(e) ≤

qp
κ
α(e) for all e 6= (0, e1) and qp < κ, we can find a constant c > 0

such that for all e 6= (0, e1)

|ν(α(e), θ(e))| ≤ cθ(e)2.

and for all x 6= 0

|ν̃(α0, θ(x))| ≤ c(θ(x)2 +
p

Nd
).

Hence, we get a positive constante C > 0 independent of N > N0 such that

E(α)

(

ω(0, e1)
κ ω̌

θ̌N

ωθN

)

≤ exp

(

C

(

∑

e∈EN

θN (e)
2 +

∑

x∈TN

θN (x)
2

))

,

Thus, (3.6) is thrue and this proves lemma 1. �

4. Proof of lemma 2

The strategy is to apply the max-flow Min-cut theorem (cf [18] section 3.1 or [11])
to an appropriate choice of capacities on the graph GN . We first need a generalized
version of the max-flow min-cut theorem.

Proposition 1. Let G = (V,E) be a finite directed graph. Let (c(e))e∈E be a set
of non-negative reals (called capacities). Let x0 be a vertex and (px)x∈V be a set of
non-negative reals. There exists a non-negative function θ : E 7→ R+ such that

div(θ) =
∑

x∈V

px(δx0 − δx),(4.1)

∀e ∈ E, θ(e) ≤ c(e),(4.2)

if and only if for all subset K ⊂ V containing x0 we have

c(∂+K) ≥
∑

x∈Kc

px,(4.3)
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where ∂+K = {e ∈ E, e ∈ K, e ∈ Kc} and c(∂+K) =
∑

e∈∂+K c(e). The same is true

if we restrict the condition (4.3) to the subsets K such that any y ∈ K can be reached
from 0 following a directed path in K.

Proof. If θ satisfies (4.1) and (4.2) then
∑

e, e∈K,e∈Kc

θ(e)−
∑

e, e∈K,e∈Kc

θ(e) =
∑

x∈K

div(θ)(x) =
∑

x∈Kc

px.

It implies (4.3) by (4.2) and positivity of θ.

The reversed implication is an easy consequence of the classical max-flow min-cut
theorem on finite directed graphs ([18] section 3.1 or [11]). Suppose now that (c)

satisfies (4.3). Consider the new graph G̃ = (V ∪ δ, Ẽ) defined by

Ẽ = E ∪ {(x, δ), x ∈ V }.

We consider the capacities (c̃(e))e∈Ẽ defined by c(e) = c̃(e) for e ∈ E and c((x, δ)) =
px. The strategy is to apply the max-flow min-cut theorem with capacities c̃ and with
source x0 and sink δ. Any minimal cutset between x0 and δ in the graph G̃ is of the

form ∂G̃
+K where K ⊂ V is a subset containing x0 but not δ and such that any point

y ∈ K can be reached from x0 following a directed path in K. Remark that

c̃(∂G̃
+K) = c(∂G

+K) +
∑

x∈K

px.

Hence, (4.3) implies

c̃(∂G̃
+K) ≥

∑

x∈V

px.

Thus the max-flow min-cut theorem gives a flow θ̃ on G̃ between x0 and δ with
strength

∑

x∈V px and such that θ̃ ≤ c̃. This necessarily implies that θ̃((x, δ)) = px.

The function θ obtained by restriction of θ̃ to E satisfies (4.2) and (4.1).

�

Lemma 3. Let d ≥ 3. There exists a positive constant C2 > 0, such that for all
N > 1, and all x, y in TN there exists a unit flow θ from x to y (i.e. θ : EN → R+

and div(θ) = δx − δy) such that for all z ∈ TN ,

θ(z) =
∑

e=z

θ(e) ≤ 1 ∧
(

C2

(

d(x, z)−(d−1) + d(y, z)−(d−1)
))

.(4.4)

Proof. By translation and symmetry, we can consider only the case where x = 0
and y ∈ [N/2, N [d when TN is identified with [0, N [d. We construct a flow on GZd

supported by the set
Dy = [0, y1]× · · · × [0, yd]

as an integral of sufficiently dispersed path flows. It thus induces by projection a
flow on TN with the same L2 norm. Let us give some definitions. A sequence σ =
(x0, . . . , xn) is a path from x to y in Zd if x0 = x, xn = y and ‖xi+1 − xi‖1 = 1 for all
i = 1, . . . , n. We say that σ is a positive path if moreover xi+1 − xi ∈ {e1, . . . , ed} for
all i = 1, . . . , n. To any path from x to y we can associate the unit flow from x to y
defined by

θσ =

n
∑

i=1

1(xi−1,xi).
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For u ∈ R+, we define Cu by

Cu = {z = (z1, . . . , zd) ∈ Rd
+,

d
∑

i=1

zi = u}.

Clearly if y ∈ Nd and if σ = (x0 = 0, . . . , xn = y) is a positive path from 0 to y then
n = ‖y‖1 and xk ∈ Ck for all k = 0, . . . , ‖y‖.

Set

∆y = Dy ∩ {u = (u1, . . . , ud) ∈ Rd
+,

d
∑

i=1

ui =
‖y‖1
2

}.

For u ∈ ∆y, let Lu be the union of segments

Lu = [0, u] ∪ [u, y].

We can consider Lu as the continuous path lu : [0, ‖y‖] 7→ Dy from 0 to y defined by

{lu(t)} = Lu ∩ Ct.

Remark that u ∈ Dy implies that lu(t) is non-decreasing on each coordinates. There
is a canonical way to associate with lu a discrete positive path σu from 0 to y such
that for all k = 0, . . . , ‖y‖

‖lu(k)− σu(k)‖ ≤ 2d.(4.5)

Indeed, let l̃u(t) be defined by taking the integer part of each coordinate of lu(t). At

jump times of l̃u(t) the coordinates increase at most by 1. We define σu(k) as the

positive path which follows the succesive jumps of l̃u(t): if at a time t there are jumps
at several coordinates, we choose to increase first the coordinate on e1, then on e2...
We have by construction k − d ≤ ‖l̃u(k)‖ ≤ k, hence l̃u(k) ∈ {σu(k − d), . . . , σu(k)},
so ‖σu(k)− l̃u(k)‖ ≤ d. Since ‖lu(k)− l̃u(k)‖ ≤ d it gives (4.5). We then define

θu = θσu
,

and

θ =
1

|∆z|

∫

∆z

θudu.

(where |∆z| =
∫

∆z
du) which is a unit flow from 0 to y. Clearly, θ(z) ≤ 1 for all

z ∈ TN . For k = 0, . . . , ‖y‖1 and z ∈ Hk we have

θ(z) ≤
1

|∆z|

∫

∆z

1‖lu(k)−z‖≤2ddu.

Hence, we have for k such that 1 < k ≤ ‖y‖
2

θ(z) ≤
1

|∆z|

∫

∆z

1
‖u−z ‖y‖

2k
‖≤ d‖y‖

k

du.

Since y ∈ [N/2, N [d, there is a constant C2 > 0 such that

θ(z) ≤ C2k
−(d−1).

Similarly, if ‖y‖/2 ≤ k < ‖y‖

θ(z) ≤ C2(‖y‖ − k)−(d−1).

Moreover θ(z) is null on the complement of Dy. By projection on GN it gives a
function on EN with the right properties. This proves lemma 3. �
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We are now ready to prove lemma 2. For all y ∈ TN we denote by θ0,y a unit flow
from 0 to y satisfying the conditions of lemma 3. We set

θ̃N =
m(c)

Nd

∑

y∈TN

θ0,y.

The strategy is to apply proposition 1 to a set of capacities constructed from θ̃N and
c. Clearly,

div(θ̃N ) =
m(c)

Nd

∑

y∈TN

(δ0 − δy),(4.6)

and by simple computation we get that

θ̃N (z) ≤ C2m(c)

(

1 ∧ (d(0, z)−(d−1)) +
d2d

Nd−1

)

.(4.7)

Hence,

∑

z∈TN

θ̃2N (z) ≤ C2
2m

2(c)(d2d)(1 +
∞
∑

k=1

k−(d−1)) + C2
2m

2(c)(d2d)2N−(d−2),

and there is a constant C3 > 0 depending solely on C ′, C ′′, d such that
∑

z∈TN

θ̃2N (z) ≤ C3,
∑

e∈EN

θ̃2N (e) ≤ C3.

By (4.6) we know that for all K ⊂ TN containing 0 we have
∑

e∈EN , e∈K, e∈Kc

θ̃N(e)−
∑

e∈EN , e∈K, e∈Kc

θ̃N (e) = m(c)
|Kc|

Nd
,

hence,

θ̃N (∂+K) ≥ m(c)
|Kc|

Nd
.(4.8)

Let (c(e)) be such that 0 < C ′ < c(e) < C ′′ < ∞. The strategy is to modify θ̃N locally
around 0 in order to make it lower or equal to c but large enough to be able to apply
proposition 1. Let us fix some notations. For a positive integer r, BE(x0, r) denotes
the set of edges

BE(x0, r) = {e ∈ E, e ∈ B(x0, r), e ∈ B(x0, r)}.

and
BE(x0, r) = {e ∈ E, e ∈ B(x0, r)}.

By (4.7), there exists η0 and Ñ0 such that for all N ≥ Ñ0 and e 6∈ BE(0, η0) we have

|θ̃N (e)| ≤
C ′

2
.(4.9)

Choose now η1 > η0 such that

η1 − η0 ≥ 2
m(c)

C ′
.(4.10)

Finally we can find an integer N0 ≥ Ñ0 ∧ (2η1) large enough to satisfy

Nd
0 ≥ m(c)

|B(0, η1)|

C ′
.(4.11)
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We consider (c̃N(e))e∈EN
defined by

{

c̃N(e) = c(e) if e or e ∈ B(0, η1),
c̃N(e) = θ(e) otherwise .

Remark that thanks to (4.9) for all e ∈ EN , c̃N(e) ≤ c(e) when we identify EN with
the edges of E which starts in [−N/2, N/2[d. In the rest of the proof we prove that
for all N ≥ N0 and for all K ⊂ TN that contain 0 and which are such that any y ∈ K
can be reached from 0 following a directed path in K we have

c̃N(∂+K) ≥ m(c)
|Kc|

Nd
.(4.12)

By application of proposition 1 it would give a flow θN which satisfies (3.8) and (3.9)
and with a bounded L2 norm, indeed,

∑

e∈EN

θN (e)
2 ≤ C3 + |BE(0, η1)|(C

′′)2.

We only need to check the inequality (4.12) forK such thatKc has a unique connected
component. Indeed, if Kc has several connected components, say R1, . . . , Rk, then

∂−Ri = {e ∈ EN , e ∈ Ri, e ∈ Rc
i} = {e ∈ EN , e ∈ Ri, e ∈ K}.

Hence, ∂+K is the disjoint union of

∂+K = ⊔k
i=1∂−Ri.

Hence if we can prove (4.12) for Ki = Rc
i we can prove it for K. Thus we assume

moreover that Kc has a unique connected component in the graph GN . There are
four different cases.

• If K ⊂ B(0, η1) then
c̃(∂+K) = c(∂+K).

Moreover, viewed on Zd (when TN is identified with [−N/2, N/2[) ∂+K is a
cut-set separating 0 from ∞ (indeed, N ≥ N0 ≥ 2η1), thus

c(∂+K) ≥ m(c) ≥ m(c)
|Kc|

Nd
.

• If B(0, η0) ⊂ K, by (4.8) and (4.9) then

c̃(∂+K) ≥ θ̃N(∂+K) ≥ m(c)
|Kc|

Nd
.

• If Kc ⊂ B(0, η1) then by (4.11)

|Kc|

Nd
≤

|B(0, η1)|

Nd
0

≤
C ′

m(c)
,

hence,

c̃(∂+K) = c(∂+K) ≥ C ′ ≥ m(c)
|Kc|

Nd
.

since ∂Kc 6= ∅.
• Otherwise K contains at least one point x1 in B(0, η1)

c and Kc contains at
least one point y0 in B(0, η0) and one point y1 in B(0, η1)

c. Hence there is a
path between y0 and y1 in Kc and a directed path between 0 and x1 in K.
Let S(0, i) denotes the sphere with center 0 and radius i for the shortest path
distance in GN . It implies that we can find a sequence zη0 , . . . , zη1 such that
zi ∈ K ∩ S(0, i) and a sequence z′η0 , . . . , z

′
η1

such that z′i ∈ Kc ∩ S(0, i). Since
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there is a directed path on S(0, i) between zi and z′i and a directed path in K
between 0 and zi, it implies that there exists at least η1 − η0 different edges in
∂+K ∩ BE(0, η1). Hence

c̃(∂+K) ≥ (η1 − η0)C
′ ≥ m((c)).

This concludes the proof of (4.12) and of the lemma.

5. Proof of theorem 1 ii) and theorem 2

These results are based on classical results on ergodic stationary sequence, cf [8]
page 343-344. Let us start with the following lemma.

Lemma 4. Suppose that there exists an invariant probability measure Q(α), abso-
lutely continuous with respect to P(α) and invariant for R. Then Q(α) is ergodic and
equivalent to P(α). Let (∆i)i≥1 be the sequence

∆i = Xi −Xi−1.

Under the invariant annealed measure Q
(α)
0 (·) = Q(α)(P ω

0 (·)) the sequence (∆i) is
stationary and ergodic.

Proof. The first assertion on Q(α) is classical and proved e.g. in [4], chapter 2. Since
Q(α) is an invariant probability measure for ωn it is clear that (∆i) is stationary. Let
us prove it is ergodic. Suppose now that A is a measurable subset of (Zd)N such that
θ−1(A) = A where θ is the time shift. Set

r(x, ω) = P ω
x ((∆i) ∈ A), r(ω) = r(0, ω).

For all environment ω

lim
n→∞

r(Xn, ω) = 1A((∆i)), P ω
x p.s.(5.1)

Indeed, we have

P ω
x ((∆i) ∈ A | Fn) = P ω

x ((∆i+n) ∈ A | Fn) = P ω
Xn

((∆i) ∈ A) = r(Xn, ω)

where Fn = σ(X0, . . . , Xn). Hence, r(Xn, ω) is a bounded martingale and by the
almost sure convergence theorem we get (5.1) since 1A((∆i)) is F∞-measurable. Re-
mark now that r(Xn, ω) = r(ωn). Birkoff’s ergodic theorem tells that for Q(α) almost
all ω we have

lim
n→∞

1

n
(r(X0, ω) + · · ·+ r(Xn−1, ω)) = EQ(α)

(r(ω)), P ω
0 p.s.

Comparing with (5.1) it implies that EQ(α)
(r(ω)) ∈ {0, 1}. �

Proof. of theorem 1 ii). Suppose that there exists an invariant probability measure
Q(α), absolutely continuous with respect to P(α) and invariant for R. Since (Xn) is

P
(α)
0 p.s. (hence, Q

(α)
0 p.s.) transient ([26], theorem 1), it implies that

EQ(α)

(P ω
0 (H

+
0 = ∞)) > 0,

where H+
0 is the first positive return time of Xn to 0. Let Rn be the number of point

visited by (Xk) at time n− 1

Rn = |{Xk, k = 0, . . . , n− 1}|.
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Theorem 6.3.1 of [8] and lemma 4 tells that

P
(α)
0 p.s.,

Rn

n
→ EQ(α) (

P ω
0 (H

+
0 = ∞

)

) > 0.(5.2)

Let i0 ∈ {1, . . . , d} be a direction which maximizes αi + αi+d. Theorem 3 of [34] tells

that if κ ≤ 1 then the expected exit time under P
(α)
0 of the finite subset {0, ei0} or

{0,−ei0} is infinite. By independence of the environment under P(α), we can easily

get that Rn

n
→ 0, P

(α)
0 p.s. This contradicts (5.2). �

Proof. of theorem 2. i) is proposition 11 of [34]. Under the annealed invariant law

Q
(α)
0 , (∆i) is a stationary ergodic sequence. Birkoff’s ergodic theorem ([8], page 337)

gives for free the law of large number

P
(α)
0 p.s.,

Xn

n
→ EQ(α)

(Eω
0 (X1)) .

If dα · ei = 0 then by symmetry of the law of the environment it implies that

EQ(α)
(Eω

0 (X1)) · ei = 0, hence by theorem 6.3.2 of [8] we have ii) and the last as-
sertion of iii).

For l ∈ Rd we set Al = {Xn · l → ∞}. If l 6= 0 and if P
(α)
0 (Al) > 0 then Kalikow

0-1 law ([12], [36] proposition 3) tells that P
(α)
0 (Al ∪ A−l) = 1. Suppose now that

dα · ei > 0 for i ∈ 1, . . . , 2d. In [27] we proved that P
(α)
0 (Aei) > 0, this implies that

Xn · ei visits 0 a finite number of times Q
(α)
0 p.s.. By theorem 6.3.2 of [8] and Birkoff’s

theorem it implies that

EQ(α)

(Eω(X1)) · ei > 0.

�
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Birkhäuser, Basel, 2008.

[4] Bolthausen, Erwin; Sznitman, Alain-Sol, Ten lectures on random media. DMV Seminar, 32.
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