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On Hölder fields clustering

Benoı̂t CADRE, Quentin PARIS

IRMAR, ENS Cachan Bretagne, CNRS, UEB

Campus de Ker Lann

Avenue Robert Schuman, 35170 Bruz, France

cadre, paris@bretagne.ens-cachan.fr

Abstract

In this paper, we study the k-means clustering scheme based on the observa-

tions of a phenomenon modelled by a sequence of random fields X1, · · · ,Xn

taking values in a Hilbert space. In the k-means algorithm, clustering is

performed by computing a Voronoi partition associated with centers that

minimize an empirical criterion, called distorsion. The performance of the

method is evaluated by comparing a theoretical distorsion of empirically op-

timal centers to the theoretical optimal distorsion. Our first result states that,

provided the underlying distribution satisfies an exponential moment condi-

tion, an upper bound for the above performance criterion is O(1/
√

n). Then,

motivated by a broad range of applications and computational matters, we

use a Hölder property shared by classical random fields in stochastic mod-

elling to construct a numerically simple algorithm that computes empirical

centers based on a discretized version of the data. With a judicious choice

of the discretization, we are abble to recover the same performance than in

the non-discretized case.

Index Terms — Random fields, Clustering, k-means, Vector quantization,

Hilbert space, Empirical risk minimization.

1 Introduction

1.1 Clustering and Hölder random fields

Clustering methods aim at partitioning a complex data set into a series of piece-

wise groups, or clusters, each of which may then be regarded as a separate class of

data, thus reducing overall data complexity. This unsupervised learning problem

is one of the most widely used techniques in exploratory data analysis since in
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many sciences, e.g. social science, biology, oceanography, meteorology, finance

or computer science, practitioners try to get a first intuition about their data by

identifying meaningful groups of observations. General references on the sub-

ject are to be found in Duda et al (2000), Gersho and Gray (1992), Linder (2001)

among others.

Due to a great interest in stochastic modelling, the last four decades have seen

the emergence of many classes of random fields, each of them corresponding to

a precise phenomenon. One can quote for instance, fractional Brownian fields

and their derivatives (Lindstrøm, 1993, Mandelbrot, 1997, Mandelbrot and van

Ness, 1968) that has been proved to be the key tools in the modelling of long-

dependency phenomena, for instance in the analysis of river level height (Kärner,

2001) or turbulence (Frisch, 1995), to mention of few of them. In another context,

we also observe that Brownian diffusion processes or Lévy fields are central ob-

jects in financial mathematics (Cont and Tankov, 2003, Lamberton and Lapeyre,

1996). In each case, clustering methods play a central role in the analysis of the

data sets. One can notice that, in the above models, the common point is that

the data to be clustered are random fields that share a Hölder type property. The

clustering scheme studied in the paper will be based on this observation.

1.2 General clustering framework

We first recall the general clustering context, in which the observation space

(H ,‖.‖) is a Hilbert space. In this setting, the data to be clustered is a sequence

of independent H -valued random observations X1, · · · ,Xn with the same distri-

bution as a generic square integrable random variable X with distribution µ . We

focus on the k-means clustering, which prescribes a criterion for partitioning the

sample into k clusters, by minimizing the empirical distorsion

Wk(c,µn) =
1

n

n

∑
i=1

min
j=1,··· ,k

‖Xi − c j‖2,

over all centers c = (c1, · · · ,ck) ∈ H k. Here, µn is the empirical measure defined

by

µn(A) =
1

n

n

∑
i=1

1{Xi ∈ A},

for all Borel set A ⊂ H . Associated with the centers c j’s are the convex polyhe-

drons S j of all points in H closer to c j than to any other center. Then, {S1, · · · ,Sk}
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forms a partition of H , called the Voronoi partition, and the S j’s are the clusters

of interest.

From a theoretical point of view, the performance of a clustering scheme given

by the centers c = (c1, · · · ,ck) ∈ H k is evaluated by the theoretical distorsion

Wk(c,µ) = E min
j=1,··· ,k

‖X − c j‖2.

Clustering methods aim at approximating the clustering risk, defined by

W ⋆
k (µ) = inf

c∈H k
Wk(c,µ).

More precisely, the performance of a clustering scheme based on the empirical

centers cn = (cn1, · · · ,cnk) is evaluated by

Wk(cn,µ)−W ⋆
k (µ).

Since the early work from Hartigan (1975, 1978), many authors have contributed

to the study of k-means clustering based on a minimizer cn of the empirical dis-

torsion, namely

Wk(cn,µn) = inf
c∈H k

Wk(c,µn). (1.1)

Proof of the existence of cn is to be found for instance in Graf and Luschgy (2000),

Theorem 4.12. In the finite-dimensional setting, consistency properties have been

studied by Pollard (1981,1982b), Abaya and Wise (1984) among others, while

rates of convergence are to be found in Pollard (1982a), Chou (1994), Linder et

al (1994), Bartlett et al (1998), Linder (2000, 2001), Antos (2005) and Antos

et al (2005). The infinite-dimensional setting has been considered by Biau et al

(2008): it is proved in Corollary 2.1 that, provided X is bounded by R, then for

any δ ∈]0,1[

Wk(cn,µ)−W ⋆
k (µ) ≤ 12kR2 +4R

√
−2lnδ√

n
(1.2)

with probability at least 1− δ . The proof of (??) consists in two steps: first es-

tablish the result in mean, and then conclude with the McDiarmid Inequality. In

the case of non-bounded random variables, however, such a proof can not hold

because McDiarmid’s Inequality is based on a boundedness property of the incre-

ments.
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1.3 Objectives of the paper

Despite its importance in fields clustering and due to the boundedness assump-

tion, Inequality (??) may not be applied to the usual cases where the data are

modelled by random fields like Brownian diffusion processes, fractional random

fields, Lévy fields ... Many situations that naturally appear in classical stochastic

modelling, as seen in subsection ??. Hence, in the non-bounded case, a natural

question that arises at this step is : What are the features of the distribution µ that

replace R ? Theorem ?? will be devoted to this problem.

Note also that, in view of fields clustering, the step (??), that involves a min-

imization in an infinite-dimensional setting, is numerically unrealistic. Based on

the observation that many random fields that arise in stochastic modelling have

a Hölder property, we shall construct a numerically simple algorithm involving

discretized versions of the fields, i.e. step fields defined over a finite grid. More

precisely, we shall study the performance of the empirically optimal centers with

respect to discretized fields and we shall see in Theorem ?? that a judicious choice

of the discretization level and the location of the grid points permits us to recover

the same performances as in the non-discretized case.

2 Clustering in Hilbert spaces

In the whole paper, we denote by cn = (cn1, · · · ,cnk)∈H k a vector that minimizes

the empirical clustering risk in H k :

Wk(cn,µn) = inf
c∈H k

Wk(c,µn). (2.1)

Then, {Sn1, · · · ,Snk} stands for the Voronoi partition of H which is associated

with the centers cn1 ∈ Sn1, · · · ,cnk ∈ Snk (for a definition and properties of the

Voronoi partition, we refer the reader to Chapter 1 in Graf and Luschgy, 2000).

We know from Lemma 1 in Linder (2001) that for all j = 1, · · · ,k, the center cn j

has the following expression:

cn j =
∑

n
i=1 Xi1{Xi ∈ Sn j}

∑
n
i=1 1{Xi ∈ Sn j}

. (2.2)

In this section, we study the performance of the empirical centers cn =(cn1, · · · ,cnk)∈
H k.
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We shall assume that, for some τ > 0,

Eeτ‖X‖ < ∞, (2.3)

and we denote by R(µ) the quantity:

R(µ) =
1

τ

(

1+ω(µ)+ lnEeτ‖X‖
)

,

where ω(µ) = ln−[W ⋆
k−1(µ)−W ⋆

k (µ)], if ln− x = max(0,− lnx) stands for the

negative part of lnx. Recall that W ⋆
k−1(µ) >W ⋆

k (µ) when the support of µ contains

at least k points (e.g., see Theorem 4.12 in Graf and Luschgy, 2000).

Theorem 2.1. Assume that (??) holds and the support of µ contains at least k

points. There exists a universal constant C > 0 such that for all δ ∈]0,1[, one has

Wk(cn,µ)−W ⋆
k (µ) ≤C

R(µ)2k ln(k/δ )√
n

,

with probability (1− δ )+ O(e−rn1/5
), where r > 0. Moreover, for all S > 0, the

term O(e−rn1/5
) is uniform among the measures µ such that R(µ) ≤ S.

Due to the generality of the situation under study, the obtained value for the

numerical constant C is large. However, the interest of Theorem ?? is to point out

the contribution of each parameter, especially n, δ and µ .

Examples:

1. Bounded random variable. Though our study is not fully adapted to the

bounded case, it is of importance to compare the previous result to its equiva-

lent as given in Biau et al (2008). In the case where µ has a bounded support,

i.e. ‖X‖ ≤ M for some M > 0, then τ can be chosen arbitrarily large, say τ = ∞.

Theorem ?? reveals that there exists a universal constant C > 0 such that for all

δ ∈]0,1[,

Wk(cn,µ)−W ⋆
k (µ) ≤C

M2k ln(k/δ )√
n

,

with probability (1−δ )+O(e−rn1/5
), where r > 0. In this result, the contribution

of each parameter n, k, δ and M is very closed to that of Corollary 2.1 in Biau et

al (2008).
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2. Diffusion process. We let H = L2[0,1] be the set of square integrable and

real-valued functions on [0,1], and we assume that X = (X(t))t∈[0,1] is a solution

to the stochastic differential equation:

dX(t) = b(t,X(t))dW (t)+σ(t,X(t))dt, (2.4)

where W = (W (t))t∈[0,1] is a standard one-dimensional brownian motion, and b,σ
are real-valued fonctions defined on [0,1]×R. (For an overview on stochastic

differential equations, we refer the reader to the book by Revuz and Yor, 1999). In

a recent paper, Huang (2009) finds a wide class of diffusion processes such as (??)

so that the exponential condition (??) holds. For simplicity, we shall assume for

this example the stronger conditions that functions b and σ are bounded. In this

case, we can prove (see the Appendix) that, for some judicious choice of τ > 0,

R(µ) ≤ 4(sup |b|+ sup |σ |)
√

1+ω(µ). (2.5)

Then by Theorem ??, there exists a universal constant C > 0 such that for all

δ ∈]0,1[,

Wk(cn,µ)−W ⋆
k (µ) ≤C (sup |b|+ sup |σ |)2 (1+ω(µ))

k ln(k/δ )√
n

,

with probability (1−δ )+O(e−rn1/5
), where r > 0.

3 Hölder fields clustering

3.1 Numerical step in fields clustering

In practise, the data x ∈ H is assigned to the j-th cluster if for all ℓ = 1, · · · ,k,

‖x− cn j‖ ≤ ‖x− cnℓ‖,

where cn = (cn1, · · · ,cnk) is defined by (??); that is, if cn j is the nearest-neighbor

of x among {cn1, · · · ,cnk}. However, when the dimension of H is infinite, the

step (??) is numerically unrealistic since it involves a minimization in the space

H k. To circumvent this drawback, Biau et al (2008) proposed to make use of the

so-called random projections method, leading to a minimization step in a finite

dimensional space. Roughly speaking, they proved that a projected version of cn
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in a (n lnn)-dimensional space has the same performance than cn (Corollary 3.1

in Biau et al, 2008).

If the previous approach has the advantage to hold whatever is the situation, it

leads to many complications in term of the computational complexity (e.g., com-

putation of the random projections, orthonormal representation of the data), and it

does not fully exploit the particular form of the data under study. Indeed, as men-

tionned in the introduction, classical stochastic modelling often leads to consider

diffusion processes, fractional brownian fields, Lévy fields, ... The common point

here, is that most of these random fields satisfy a Hölder property. The aim of

the next subsection is to exploit this fact in order to derive a simple and tractable

method for clustering, in which the numerical step (??) is computationaly feasible.

3.2 Discretized fields

For the rest of the section, we assume that H = L2([0,1]s) is the set of square

integrable and real-valued functions defined on [0,1]s. (Here, the choice of [0,1]s

instead of a general space is for convenience of the reader and simplicity of the

statements; it turns out that the case of a compact s-dimensional space could be

considered as well.) In this setting, the random variable X = (X(t))t∈[0,1]s is a

random field taking values in H .

Our goal is to evaluate the performance of the natural method that simply con-

sists to create the empirical quantizer, based on the partial informations carried by

the data that are evaluated over a common finite grid S = {t1, · · · , td} of [0,1]s.
With this respect, the natural questions that arise are: Where must be located

the points of S and what must be the size of S , so that the performance of an

optimal quantizer associated with the descretized data is comparable to that of cn ?

We fix a partition π = {V1, · · · ,Vd} of [0,1]s such that ti ∈Vi for all i = 1, · · · ,d.

In the sequel, the number d is refered to as the discretization level. To any func-

tion x = (x(t))t∈[0,1]s ∈ L2([0,1]s), we associate the discretized function xπ =
(xπ(t))t∈[0,1]s defined as follows:

xπ(t) = x(ti) if t ∈Vi,

for all i = 1, · · · ,d. In the sequel, L
π
2 ([0,1]s) is the Hilbert space defined by

L
π
2 ([0,1]s) = {xπ ,x ∈ L2([0,1]s)}.
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Let now µπ
n be the empirical measure associated with the transformed data

Xπ
1 , · · · ,Xπ

n , i.e. for any borel set A ⊂ L
π
2 ([0,1]s):

µπ
n (A) =

1

n

n

∑
i=1

1{Xπ
i ∈ A}.

We define the discretized empirical centers cπ
n = (cπ

n1, · · · ,cπ
nk) by

Wk(c
π
n ,µπ

n ) = inf
c∈(Lπ

2 ([0,1]s))k
Wk(c,µπ

n ). (3.1)

Observe that, provided the cells Vj have the same volume, say vol(Vj) = v, then

for any c = (c1, · · · ,ck) ∈ (Lπ
2 ([0,1]s))k:

Wk(c,µπ
n ) =

v

n

n

∑
i=1

min
j=1,··· ,k

d

∑
ℓ=1

(

Xi(tℓ)− c j(tℓ)
)2

.

Consequently, in comparison with the minimization step (??), step (??) only re-

quires to minimize the function

(Rd)k ∋ (c1, · · · ,ck) 7→
n

∑
i=1

min
j=1,··· ,k

|X̂i − c j|2,

hence a minimization over a d×k-dimensional space. In the previous formula, |.|
stands for the euclidean norm on R

d and X̂i is the random vector with coordinates

(Xi(t1), · · · ,Xi(td)). The aim now is to find the value of d, and the location of the

ti’s so that the center cπ
n has the same performance than the center cn.

3.3 Result

In this subsection, we shall make use of a mean Hölder condition on the random

field X . As mentioned in the introduction, this is a mild assumption which is

satisfied by most of the relevant random fields that arise in stochastic modelling,

such as fractional Brownian fields or diffusion processes for instance. We assume

that X satisfies the inequality:

E|X(s)−X(t)|2 ≤ L |s− t|h, ∀s, t ∈ [0,1]s, (3.2)

for some h > 0 and L > 0. Here, |.| stands for the euclidean norm in [0,1]s. Ob-

serve that assumption (??) does not mean that X has Hölder paths, as illustrated
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by the case of the Poisson process (for which h = 1).

For simplicity, we assume that X(0) = 0 and a stronger property than (??),

namely that for some τ > 0,

Eeτ‖X‖∞ < ∞, (3.3)

if ‖.‖∞ stands for the supremum norm of X = (X(t))t∈[0,1]s . Furthemore, we let

R∞(µ) =
1

τ

(

1+ω(µ)+ lnEeτ‖X‖∞

)

.

The next result shows how to choose the partition π and the discretization level

d so that the empirical center cπ
n have the same performance than cn.

Theorem 3.1. Assume that (??) and (??) hold, and that the support of µ contains

at least k points. If d = [ns/h] and for all i = 1, · · · ,d, Vi is an hypercube with

edge length 1/d1/s, then there exists a universal constant C > 0 such that for all

δ ∈]0,1[, one has

Wk(c
π
n ,µ)−W ⋆

k (µ) ≤C
Lsh/4 + kR∞(µ)2 ln(k/δ )√

n
,

with probability (1−δ )+O(e−rn1/5
), for some r > 0.

Except for some specific cases, e.g. the diffusion process (??) in which h = 1,

the exact value of h is usually unknown. Estimation of h has paid much attention

in the litterature, for instance in the gaussian or Lévy field cases. With this re-

spect, we refer the reader to the recent papers by Brouste et al (2007), Breton et al

(2009), Coeurjolly (2008), Lacaux and Loubès (2007) and the references therein.

When s = h (e.g. the Brownian diffusion process), step (??) leads to a min-

imization in a k × n-dimensional space, a closed result to that of Corollary 3.1

in Biau et al (2008). Nevertheless, we recall that our approach is much simpler

from a computational point of view. Note also that in the case where s < h (e.g.

a wide part of the class of fractional Brownian fields) however, the complexity of

the optimisation algorithm may be considerably improved.

Examples:

1. Diffusion process. Suppose that X is the process defined by (??). Burholder’s

inequality (see Revuz and Yor, 1999) and (??) of the Appendix ensures that as-

sumptions (??) and (??) are satisfied for any τ > 0, with h = 1 and L = 4(supb2 +
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supσ2). By Theorems ?? and ??, up to some constant terms, the performances of

the discretized centers cπ
n are the same as those of cn, provided the discretization

level d is n.

2. Fractional Brownian field. Assume that X is the fractional Brownian field of

index H ∈ (0,2) (for an overview on fractional Brownian motion/field, we refer

the reader to Pipiras and Taqqu, 2003 and Lindstrøm, 1993). In this case, both

conditions (??) and (??) hold, with L = 1 and h = H. Hence, we deduce from

Theorems ?? and ?? that, up to some constant terms, the performances of the em-

pirical quantizers cπ
n and cn are the same, provided the discretization level d is

chosen so that d = ns/H . In the motion case (i.e. s = 1) of positive correlation

for instance (i.e. H > 1), the process has an aggregation behavior, and the nu-

merical step (??) is reduced to a minimization in a n1/H × k-dimensional space.

From a computational point of view, we considerably improve the complexity of

the minimization procedure, in comparison with the diffusion process above for

instance.

4 Proofs

4.1 Proof of Theorem ??

It is proved in the Appendix that under the exponential moment condition (??),

one has for all p ≥ 2:

E‖X‖p ≤ p!Cpκ p, (4.1)

where κ = (1+ lnEexp[τ‖X‖])/τ and C > 0 is a universal constant. For simplic-

ity of the proofs, we shall assume in the sequel that the universal constant C = 1,

i.e. we have:

E‖X‖p ≤ p!κ p, (4.2)

Furthemore, we let for any measure ν on H and c = (c1, · · · ,ck) ∈ H k:

W̄k(c,ν) =
∫

H

min
j=1,··· ,k

[

−2 < x,c j > +‖c j‖2
]

ν(dx),

where < ., . > stands for the scalar product in H . Finally, we denote by Bρ the

centered ball in H with radius ρ .

The proof of the next lemma will borrow some arguments in Biau et al (2008).
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Lemma 4.1. Let ρ, t > 0 such that 4(κ2 + tκ/(32kρ)) ≤ ρ2. Then,

P

(

sup
c∈Bk

ρ

|W̄k(c,µn)−W̄k(c,µ)| ≥ t
)

≤ 32k3 exp

(

− nt2

512k2ρ4

)

.

PROOF. The classical symmetrisation argument (see Devroye et al, 1996, pp.

193-195) reveals that

P

(

sup
c∈Bk

ρ

|W̄k(c,µn)−W̄k(c,µ)| ≥ t
)

≤ 4P

(

Sk ≥
t

4

)

, (4.3)

where for all m = 1, · · · ,k:

Sm = sup
c∈Bm

ρ

1

n

∣

∣

∣

∣

∣

n

∑
i=1

σi min
j=1,··· ,m

ℓc j
(Xi)

∣

∣

∣

∣

∣

,

with ℓc(x) =−2 < x,c > +‖c‖2 for x,c∈H , and σ1, · · · ,σn are i.i.d. Rademacher

random variables, independent of the data X1, · · · ,Xn. Here and in the sequel, the

components of c ∈ H m are denoted by (c1, · · · ,cm).

We now proceed to bound the rightmost term in (??). Using the equality

min(a,b) =
1

2
(a+b−|a−b|) , a,b ∈ R,

we deduce that for all u > 0 and m = 0, · · · ,k:

P(Sk ≥ u) ≤ P

(

Sm ≥ u

2

)

+P

(

Sk−m ≥ u

2

)

+P



 sup
c∈Bk

ρ

1

n

∣

∣

∣

∣

∣

n

∑
i=1

σi

∣

∣

∣

∣

min
j=1,··· ,m

ℓc j
(Xi)− min

j=m+1,··· ,k
ℓc j

(Xi)

∣

∣

∣

∣

∣

∣

∣

∣

∣

≥ u



 .

According to the contraction principle (see Chapter 4 in Ledoux and Talagrand,

1991), the rightmost term is bounded by

2P



 sup
c∈Bk

ρ

1

n

∣

∣

∣

∣

∣

n

∑
i=1

σi

(

min
j=1,··· ,m

ℓc j
(Xi)− min

j=m+1,··· ,k
ℓc j

(Xi)

)

∣

∣

∣

∣

∣

≥ u





≤ 2P

(

Sm ≥ u

2

)

+2P

(

Sk−m ≥ u

2

)

.

11



Hence, we have for all m = 1, · · · ,k:

P(Sk ≥ u) ≤ 3P

(

Sm ≥ u

2

)

+3P

(

Sk−m ≥ u

2

)

,

and we easily deduce that

P(Sk ≥ u) ≤ 2k3
P

(

S1 ≥
u

2k

)

. (4.4)

Observe now that

P

(

S1 ≥
u

2k

)

= P

(

sup
c∈Bρ

1

n

∣

∣

∣

∣

∣

n

∑
i=1

σiℓc(Xi)

∣

∣

∣

∣

∣

≥ u

2k

)

≤ P

(

sup
c∈Bρ

2

n

∣

∣

∣

∣

∣

n

∑
i=1

σi < Xi,c >

∣

∣

∣

∣

∣

≥ u

4k

)

+P

(

ρ2

n

∣

∣

∣

∣

∣

n

∑
i=1

σi

∣

∣

∣

∣

∣

≥ u

4k

)

≤ P

(∥

∥

∥

∥

∥

n

∑
i=1

σiXi

∥

∥

∥

∥

∥

≥ un

8kρ

)

+P

(∣

∣

∣

∣

∣

n

∑
i=1

σi

∣

∣

∣

∣

∣

≥ un

4kρ2

)

.

According to Hoeffding inequality (see Bosq, 2000, Chapter 2) for the righmost

term, and Bernstein inequality for Banach-valued random variables (see Bosq,

2000, Chapter 2) for the former term, we deduce from (??) that

P

(

S1 ≥
u

2k

)

≤ 2exp

(

− u2n

128k2ρ2 (κ2 +uκ/(8kρ))

)

+2exp

(

− u2n

32k2ρ4

)

.

We can now conclude from (??) and (??) that

P

(

sup
c∈Bk

ρ

|W̄k(c,µn)−W̄k(c,µ)| ≥ t
)

≤ 16k3 exp

(

− t2n

2048k2ρ2 (κ2 + tκ/(32kρ))

)

+16k3 exp

(

− t2n

512k2ρ4

)

.

Therefore, provided the inequality

4

(

κ2 +
tκ

32kρ

)

≤ ρ2

is satisfied, we have

P

(

sup
c∈Bk

ρ

|W̄k(c,µn)−W̄k(c,µ)| ≥ t
)

≤ 32k3 exp

(

− t2n

512k2ρ4

)

,

12



hence the lemma. �

We now fix ρ > 0 such that:

ρ2µ
(

Bρ/10

)

≥ 100E‖X‖2 and 4E‖X‖21{‖X‖ ≥ 2ρ/5} < α/2, (4.5)

where 2α = W ⋆
k−1(µ)−W ⋆

k (µ) > 0. Then, one can prove that (e.g. see the proof

of Theorem 4.12 in Graff and Lushgy, 2000):

c /∈ Bk
ρ ⇒Wk(c,µ) ≥W ⋆

k (µ)+α. (4.6)

Lemma 4.2. Assume that ρ satisfies (??) and fix S > 0. Then, there exists r > 0

such that

P

(

c /∈ Bk
ρ

)

= O
(

e−rn1/5
)

,

uniformly over all measures µ such that R(µ) ≤ S.

PROOF. Since ρ satisfies (??), we know from (??) that

P

(

cn /∈ Bk
ρ

)

≤ P(Wk(cn,µ)−W ⋆
k (µ) ≥ α)

Observe that, since for all c = (c1, · · · ,ck) ∈ H k,

Wk(c,µ) = E‖X‖2 +E min
j=1,··· ,k

[

−2 < X ,c j > +‖c j‖2
]

,

we also have

P

(

cn /∈ Bk
ρ

)

≤ P(W̄k(cn,µ)−W̄ ⋆
k (µ) ≥ α) .

According to Theorem 4.12 in Graff and Lushgy (2000), there exists η0 > 0 such

that W̄ ⋆
k (µ) = infc∈Bk

η0

W̄k(c,µ). Then, for all η ≥ η0,

P(cn /∈ Bk
ρ) ≤ P

(

W̄k(cn,µ)−W̄k(cn,µn) ≥
α

2
,cn ∈ Bk

η

)

+P

(

W̄k(cn,µn)− inf
c∈Bk

η

W̄k(c,µ) ≥ α

2
,cn ∈ Bk

η

)

+P(cn /∈ Bk
η)

≤ 2P

(

sup
c∈Bk

η

|W̄k(c,µn)−W̄k(c,µ)| ≥ α

2

)

+P

(

cn /∈ Bk
η

)

, (4.7)

because W̄k(cn,µn) = infc∈Bk
η

W̄k(c,µn) when cn ∈ Bk
η . We know from Lemma ??

that provided η is large enough,

P

(

sup
c∈Bk

η

|W̄k(c,µn)−W̄k(c,µ)| ≥ α

2

)

≤ 32k3 exp

(

− α2n

1024k2η4

)

. (4.8)
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Moreover, according to (??) we get ‖cn j‖ ≤ maxi=1,··· ,n ‖Xi‖ for all j = 1, · · · ,k
so that

P

(

cn /∈ Bk
η

)

≤ k max
j=1,··· ,k

P
(

cn j /∈ Bη

)

≤ kP

(

max
i=1,··· ,n

‖Xi‖ ≥ η
)

≤ k nP(‖X‖ ≥ η)

≤ k ne−τη
Eeτ‖X‖. (4.9)

Letting η = n1/5 + lnn/τ , we deduce from above and (??), (??) that

P

(

cn /∈ Bk
ρ

)

≤
(

32k3 + kEeτ‖X‖
)

e−rn1/5

,

for some constant r > 0, hence the lemma. The uniformity result derives from

(??) and (??). �

We are now in position to prove Theorem ??.

PROOF OF THEOREM ??. Let us fix ρ that satisfies (??). For all t > 0,

P(Wk(cn,µ)−W ⋆
k (µ) ≥ t) = P(W̄k(cn,µ)−W̄ ⋆

k (µ) ≥ t)

≤ P

(

W̄k(cn,µ)−W̄ ⋆
k (µ) ≥ t,cn ∈ Bk

ρ

)

+P

(

cn /∈ Bk
ρ

)

≤ 2P

(

sup
c∈Bk

ρ

|W̄k(c,µ)−W̄k(c,µn)| ≥
t

2

)

+P

(

cn /∈ Bk
ρ

)

.

By Lemmas ?? and ??, we deduce that

P(Wk(cn,µ)−W ⋆
k (µ) ≥ t) ≤ 64k3 exp

(

− t2n

2048k2ρ4

)

+O(e−rn1/5

),

for some r > 0, provided t and ρ satisfy the inequality

4

(

κ2 +
tκ

64kρ

)

≤ ρ2. (4.10)
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Note that by Lemma ??, the term O(e−rn1/5
) is uniform over all measures µ such

that R(µ) ≤ S, for any S > 0. Then, for a choice of t such that

t2 ≥ 2048k2ρ4

n
ln

64k3

δ
, (4.11)

we have

P(Wk(cn,µ)−W ⋆
k (µ) ≥ t) ≤ δ +O(e−rn1/5

). (4.12)

It is an easy exercise to prove that when t is subject to (??), then each choice of ρ

such that

ρ ≥ 60

(

κ +
ln−α

τ

)

,

satisfies both conditions (??) and (??). Consequently, for a sufficiently large nu-

merical constant C, one has

Wk(cn,µ)−W ⋆
k (µ) ≤ Ck√

n

(

κ +
ln−α

τ

)2

ln
k

δ
,

with probability (1−δ )+O(e−rn1/5
). Since R(µ) = κ + ln−α/τ , the theorem is

proved. �

4.2 Proof of Theorem ??

In the sequel, µπ stands for the law of Xπ .

Lemma 4.3. (i) For all c ∈ H k, |Wk(c,µπ)−Wk(c,µ)| ≤ 4Lsh/4d−h/(2s).

(ii) We have |W ⋆
k (µπ)−W ⋆

k (µ)| ≤ 4Lsh/4d−h/(2s).

(iii) If d satisfies W ⋆
k−1(µ)−W ⋆

k (µ) ≥ 8Lsh/4d−h/(2s), then R(µπ) ≤ 2R∞(µ).

PROOF. We only prove (ii) and (iii).
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(ii) According to Lemma 3 in Linder (2001) and (??),

∣

∣

∣
W ⋆

k (µπ)1/2 −W ⋆
k (µ)1/2

∣

∣

∣

2

≤ E‖Xπ −X‖2

=
d

∑
p=1

∫

Vp

E
∣

∣X(tp)−X(t)
∣

∣

2
dt

≤ L
d

∑
p=1

∫

Vp

|tp − t|hdt

≤ Lsh/2

dh/s
,

because vol(Vp) = 1/d and diam(Vp) =
√

s/d1/s for all p = 1, · · · ,d. Conse-

quently,

|W ⋆
k (µπ)−W ⋆

k (µ)| ≤ 2max
(

W ⋆
k (µπ)1/2,W ⋆

k (µ)1/2
)

√
Lsh/2

dh/(2s)

≤ 2
(

W ⋆
k (µ)1/2 +

√
L
)

√
Lsh/2

dh/(2s)

≤ 4Lsh/4

dh/(2s)
,

since W ⋆
k (µ) ≤ E‖X‖2 ≤ L, hence (ii).

(iii) Observing that inequality (ii) holds with k− 1 instead of k, we can deduce

that, provided d is large enough so that W ⋆
k−1(µ)−W ⋆

k (µ) ≥ 8Lsh/4d−h/(2s), then

W ⋆
k−1(µπ)−W ⋆

k (µπ) ≥ 1

2
(W ⋆

k−1(µ)−W ⋆
k (µ)).

Therefore,

ω(µπ) ≤ ω(µ)+ ln2.

The conclusion is now straightforward, since ‖X‖ ≤ ‖X‖∞. �

We are now in position to prove Theorem ??.

PROOF OF THEOREM ??. Recall that the term O(e−rn1/5
) in Theorem ?? holds

for all measure µ such that R(µ) ≤ S, with a fixed S > 0. Therefore, by Lemma
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?? and Theorem ?? applied with the measure µπ , we have:

Wk(c
π
n ,µ)−W ⋆

k (µ) = [Wk(c
π
n ,µ)−Wk(c

π
n ,µπ)]+ [Wk(c

π
n ,µπ)−W ⋆

k (µπ)]

+[W ⋆
k (µπ)−W ⋆

k (µ)]

≤ 8Lsh/4

dh/(2s)
+C

R(µ)2k ln(k/δ )√
n

,

with probability (1−δ )+O(e−rn1/5
), hence the result. �

5 Appendix

PROOF OF (??) Since the function x 7→ (lnx)p defined on ]exp(p−1),∞[ is con-

cave, one has according to Jensen’s Inequality:

E‖X‖p ≤
( p

τ

)p

+
1

τ p
E

(

lneτ‖X‖
)p

1
{

‖X‖ ≥ p−1

τ

}

≤
( p

τ

)p

+
1

τ p

(

lnEeτ‖X‖
)p

≤
( p

τ

)p(

1+ lnEeτ‖X‖
)p

.

There exists a universal constant C > 0 such that pp ≤Cp p!. Therefore,

E‖X‖p ≤ p!

(

C

τ

)p(

1+ lnEeτ‖X‖
)p

,

hence (??).

PROOF OF (??). We first proceed to bound Eexp(τ‖X‖) ≤ Eexp(τ‖X‖∞), where

‖.‖∞ stands for the supremum norm. Denote by (Z(t))t∈[0,1] the continuous-time

martingale defined for all t ∈ [0,1] by

Z(t) =
∫ t

0
b(s,X(s))dW (s).

Since σ is bounded, say σ̄ = sup |σ |, we have for any τ > 0:

Eeτ‖X‖∞ ≤ eτσ̄
Eeτ‖Z‖∞. (5.1)
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Hence one only needs to bound the rightmost term. Observe that the quadratic

variation < Z > of Z satisfies

< Z >t=
∫ t

0
b2(s,X(s))ds ≤ b̄2,

for all t ∈ [0,1], where b̄ stands for the supremum of |b|, i.e. b̄ = sup |b|. There-

fore, by Doob’s exponential inequality for continuous martingales (see Revuz-Yor,

1999):

Eeτ‖Z‖∞ = 1+
∫ ∞

0
P

(

‖Z‖∞ ≥ v

τ

)

evdv ≤ 1+2

∫ ∞

0
e−v2/(2τ2b̄2)evdv.

According to (??), we then have for all τ > 0:

Eeτ‖X‖∞ ≤ eτσ̄
(

1+
√

2π τ b̄ eτ2b̄2/2
)

. (5.2)

It is an easy exercise to deduce that

inf
τ>0

R(µ) = inf
τ>0

1

τ

(

1+ω(µ)+ lnEeτ‖X‖
)

≤ 4(sup |b|+ sup |σ |)
√

1+ω(µ),

hence the result. �
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Lévy motions, Alea, pp. 143-164.

Lamberton, D. and Lapeyre, B. (1996). Introduction to Stochastic Calculus ap-

plied to Finance, Chapman and Hall, CRC Press, London.

19



Ledoux, M. and Talagrand, M. (1991). Probability in Banach spaces, Springer-

Verlag, New-York.

Linder, T. (2000). On the training distortion of vector quantizers, IEEE Trans.

Inform. Theory, pp. 1617–1623.

Linder, T. (2001). Learning-theoretic methods in vector quantization, Lecture

Notes for the Advanced School on the Principle of Nonparamteric Learning, Udine,

Italy, July 9-13.

Linder, T., Lugosi, G. and Zeger, K. (1994). Rates of convergence in the source

coding theorem, in empirical quantizer design, and in universal lossy source cod-

ing, IEEE Trans. Inform. Theory, pp. 1728–1740.

Lindstrøm, T. (1993). Fractional Brownian fields as integrals of white noise, Bull.

London Math. Soc., pp. 83-88.

Mandelbrot, B. (1997). Fractals and scaling in finance. Selected Works of Benoit

B. Mandelbrot. Discontinuity, concentration, risk. Selecta Vol. E, with a forward

by R. E. Gomory. Springer-Verlag, New York.

Mandelbrot, B. and van Ness, J. (1968). Fractional brownian motion, fractional

noises and applications. SIAM Rev., pp. 422–437.

Pipiras, V. and Taqqu, M.S. (2003). Fractional calculus and its connection to frac-

tional Brownian motion, in: Long Range Dependence, pp. 166-201, Birkhäuser,
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