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In this paper, we study the k-means clustering scheme based on the observations of a phenomenon modelled by a sequence of random fields X 1 , • • • , X n taking values in a Hilbert space. In the k-means algorithm, clustering is performed by computing a Voronoi partition associated with centers that minimize an empirical criterion, called distorsion. The performance of the method is evaluated by comparing a theoretical distorsion of empirically optimal centers to the theoretical optimal distorsion. Our first result states that, provided the underlying distribution satisfies an exponential moment condition, an upper bound for the above performance criterion is O(1/ √ n). Then, motivated by a broad range of applications and computational matters, we use a Hölder property shared by classical random fields in stochastic modelling to construct a numerically simple algorithm that computes empirical centers based on a discretized version of the data. With a judicious choice of the discretization, we are abble to recover the same performance than in the non-discretized case.

Introduction 1.Clustering and Hölder random fields

Clustering methods aim at partitioning a complex data set into a series of piecewise groups, or clusters, each of which may then be regarded as a separate class of data, thus reducing overall data complexity. This unsupervised learning problem is one of the most widely used techniques in exploratory data analysis since in 1 many sciences, e.g. social science, biology, oceanography, meteorology, finance or computer science, practitioners try to get a first intuition about their data by identifying meaningful groups of observations. General references on the subject are to be found in [START_REF] Duda | Pattern Classification, Second Edition[END_REF], [START_REF] Gersho | Vector Quantization and Signal Compression[END_REF], [START_REF] Linder | Learning-theoretic methods in vector quantization[END_REF] among others.

Due to a great interest in stochastic modelling, the last four decades have seen the emergence of many classes of random fields, each of them corresponding to a precise phenomenon. One can quote for instance, fractional Brownian fields and their derivatives [START_REF] Lindstrøm | Fractional Brownian fields as integrals of white noise[END_REF][START_REF] Mandelbrot | Fractals and scaling in finance[END_REF][START_REF] Mandelbrot | Fractional brownian motion, fractional noises and applications[END_REF]) that has been proved to be the key tools in the modelling of longdependency phenomena, for instance in the analysis of river level height [START_REF] Kärner | Comments on Hurst exponent[END_REF] or turbulence [START_REF] Frisch | Turbulences[END_REF], to mention of few of them. In another context, we also observe that Brownian diffusion processes or Lévy fields are central objects in financial mathematics [START_REF] Cont | Financial Modelling with Jump Processes, Second Edition[END_REF]Tankov, 2003, Lamberton and[START_REF] Lamberton | Introduction to Stochastic Calculus applied to Finance[END_REF]. In each case, clustering methods play a central role in the analysis of the data sets. One can notice that, in the above models, the common point is that the data to be clustered are random fields that share a Hölder type property. The clustering scheme studied in the paper will be based on this observation.

General clustering framework

We first recall the general clustering context, in which the observation space (H , . ) is a Hilbert space. In this setting, the data to be clustered is a sequence of independent H -valued random observations X 1 , • • • , X n with the same distribution as a generic square integrable random variable X with distribution µ. We focus on the k-means clustering, which prescribes a criterion for partitioning the sample into k clusters, by minimizing the empirical distorsion

W k (c, µ n ) = 1 n n ∑ i=1 min j=1,••• ,k X i -c j 2 , over all centers c = (c 1 , • • • , c k ) ∈ H k .
Here, µ n is the empirical measure defined by

µ n (A) = 1 n n ∑ i=1 1{X i ∈ A},
for all Borel set A ⊂ H . Associated with the centers c j 's are the convex polyhedrons S j of all points in H closer to c j than to any other center. Then,

{S 1 , • • • , S k }
forms a partition of H , called the Voronoi partition, and the S j 's are the clusters of interest.

From a theoretical point of view, the performance of a clustering scheme given by the centers c

= (c 1 , • • • , c k ) ∈ H k is evaluated by the theoretical distorsion W k (c, µ) = E min j=1,••• ,k X -c j 2 .
Clustering methods aim at approximating the clustering risk, defined by

W ⋆ k (µ) = inf c∈H k W k (c, µ).
More precisely, the performance of a clustering scheme based on the empirical centers

c n = (c n1 , • • • , c nk ) is evaluated by W k (c n , µ) -W ⋆ k (µ).
Since the early work from [START_REF] Hartigan | Clustering Algorithms[END_REF][START_REF] Hartigan | Asymptotic distributions for clustering criteria[END_REF], many authors have contributed to the study of k-means clustering based on a minimizer c n of the empirical distorsion, namely

W k (c n , µ n ) = inf c∈H k W k (c, µ n ). (1.1)
Proof of the existence of c n is to be found for instance in [START_REF] Graf | Foundations of quantization for probability distributions[END_REF], Theorem 4.12. In the finite-dimensional setting, consistency properties have been studied by [START_REF] Pollard | Strong consistency of k-means clustering[END_REF]Pollard ( ,1982b)), [START_REF] Abaya | Convergence of vector quantizers with applications to optimal quantization[END_REF] among others, while rates of convergence are to be found in Pollard (1982a), [START_REF] Chou | The distorsion of vector quantizers trained on n vectors decreases to the optimum at O P (1/n)[END_REF], [START_REF] Linder | Rates of convergence in the source coding theorem, in empirical quantizer design, and in universal lossy source coding[END_REF], [START_REF] Bartlett | The minimax distorsion redundancy in empirical quantizer design[END_REF], [START_REF] Linder | On the training distortion of vector quantizers[END_REF][START_REF] Linder | Learning-theoretic methods in vector quantization[END_REF], [START_REF] Antos | Improved minimax bounds on the test and training distortion of empirically designed vector quantizers[END_REF] and [START_REF] Antos | Improved convergence rates in empirical vector quantizer design[END_REF]. The infinite-dimensional setting has been considered by [START_REF] Biau | On the performance of clustering in Hilbert spaces[END_REF]: it is proved in Corollary 2.1 that, provided X is bounded by R, then for any δ ∈]0, 1[

W k (c n , µ) -W ⋆ k (µ) ≤ 12kR 2 + 4R √ -2 ln δ √ n (1.2)
with probability at least 1δ . The proof of (??) consists in two steps: first establish the result in mean, and then conclude with the McDiarmid Inequality. In the case of non-bounded random variables, however, such a proof can not hold because McDiarmid's Inequality is based on a boundedness property of the increments.

Objectives of the paper

Despite its importance in fields clustering and due to the boundedness assumption, Inequality (??) may not be applied to the usual cases where the data are modelled by random fields like Brownian diffusion processes, fractional random fields, Lévy fields ... Many situations that naturally appear in classical stochastic modelling, as seen in subsection ??. Hence, in the non-bounded case, a natural question that arises at this step is : What are the features of the distribution µ that replace R ? Theorem ?? will be devoted to this problem.

Note also that, in view of fields clustering, the step (??), that involves a minimization in an infinite-dimensional setting, is numerically unrealistic. Based on the observation that many random fields that arise in stochastic modelling have a Hölder property, we shall construct a numerically simple algorithm involving discretized versions of the fields, i.e. step fields defined over a finite grid. More precisely, we shall study the performance of the empirically optimal centers with respect to discretized fields and we shall see in Theorem ?? that a judicious choice of the discretization level and the location of the grid points permits us to recover the same performances as in the non-discretized case.

Clustering in Hilbert spaces

In the whole paper, we denote by c n = (c n1 , • • • , c nk ) ∈ H k a vector that minimizes the empirical clustering risk in H k :

W k (c n , µ n ) = inf c∈H k W k (c, µ n ).
(2.1)

Then, {S n1 , • • • , S nk } stands for the Voronoi partition of H which is associated with the centers c n1 ∈ S n1 , • • • , c nk ∈ S nk (for a definition and properties of the Voronoi partition, we refer the reader to Chapter 1 in [START_REF] Graf | Foundations of quantization for probability distributions[END_REF]. We know from Lemma 1 in [START_REF] Linder | Learning-theoretic methods in vector quantization[END_REF] that for all j = 1, • • • , k, the center c n j has the following expression:

c n j = ∑ n i=1 X i 1{X i ∈ S n j } ∑ n i=1 1{X i ∈ S n j } . (2.2)
In this section, we study the performance of the empirical centers

c n = (c n1 , • • • , c nk ) ∈ H k .
We shall assume that, for some τ > 0,

E e τ X < ∞, (2.3)
and we denote by R(µ) the quantity:

R(µ) = 1 τ 1 + ω(µ) + ln E e τ X ,
where

ω(µ) = ln -[W ⋆ k-1 (µ) -W ⋆ k (µ)], if ln -x = max(0, -ln x) stands for the negative part of ln x. Recall that W ⋆ k-1 (µ) > W ⋆ k (µ)
when the support of µ contains at least k points (e.g., see Theorem 4.12 in [START_REF] Graf | Foundations of quantization for probability distributions[END_REF].

Theorem 2.1. Assume that (??) holds and the support of µ contains at least k points. There exists a universal constant C > 0 such that for all δ ∈]0, 1[, one has

W k (c n , µ) -W ⋆ k (µ) ≤ C R(µ) 2 k ln(k/δ ) √ n , with probability (1 -δ ) + O(e -rn 1/5
), where r > 0. Moreover, for all S > 0, the term O(e -rn 1/5 ) is uniform among the measures µ such that R(µ) ≤ S.

Due to the generality of the situation under study, the obtained value for the numerical constant C is large. However, the interest of Theorem ?? is to point out the contribution of each parameter, especially n, δ and µ.

Examples:

1. Bounded random variable. Though our study is not fully adapted to the bounded case, it is of importance to compare the previous result to its equivalent as given in [START_REF] Biau | On the performance of clustering in Hilbert spaces[END_REF]. In the case where µ has a bounded support, i.e. X ≤ M for some M > 0, then τ can be chosen arbitrarily large, say τ = ∞. Theorem ?? reveals that there exists a universal constant C > 0 such that for all δ ∈]0, 1[,

W k (c n , µ) -W ⋆ k (µ) ≤ C M 2 k ln(k/δ ) √ n ,
with probability (1δ ) + O(e -rn 1/5 ), where r > 0. In this result, the contribution of each parameter n, k, δ and M is very closed to that of Corollary 2.1 in [START_REF] Biau | On the performance of clustering in Hilbert spaces[END_REF].

2. Diffusion process. We let H = L 2 [0, 1] be the set of square integrable and real-valued functions on [0, 1], and we assume that X = (X(t)) t∈[0,1] is a solution to the stochastic differential equation:

dX(t) = b(t, X(t))dW (t) + σ (t, X(t))dt, (2.4) 
where W = (W (t)) t∈[0,1] is a standard one-dimensional brownian motion, and b, σ are real-valued fonctions defined on [0, 1] × R. (For an overview on stochastic differential equations, we refer the reader to the book by [START_REF] Revuz | Continuous martingales and Brownian motion[END_REF]. In a recent paper, [START_REF] Huang | Exponential integrability of Itô's processes[END_REF] finds a wide class of diffusion processes such as (??) so that the exponential condition (??) holds. For simplicity, we shall assume for this example the stronger conditions that functions b and σ are bounded. In this case, we can prove (see the Appendix) that, for some judicious choice of τ > 0,

R(µ) ≤ 4(sup |b| + sup |σ |) 1 + ω(µ).
(2.5)

Then by Theorem ??, there exists a universal constant C > 0 such that for all δ ∈]0, 1[,

W k (c n , µ) -W ⋆ k (µ) ≤ C (sup |b| + sup |σ |) 2 (1 + ω(µ)) k ln(k/δ ) √ n ,
with probability (1δ ) + O(e -rn 1/5 ), where r > 0.

3 Hölder fields clustering

Numerical step in fields clustering

In practise, the data x ∈ H is assigned to the j-th cluster if for all ℓ = 1,

• • • , k, x -c n j ≤ x -c nℓ ,
where

c n = (c n1 , • • • , c nk ) is defined by (??); that is, if c n j is the nearest-neighbor of x among {c n1 , • • • , c nk }.
However, when the dimension of H is infinite, the step (??) is numerically unrealistic since it involves a minimization in the space H k . To circumvent this drawback, [START_REF] Biau | On the performance of clustering in Hilbert spaces[END_REF] proposed to make use of the so-called random projections method, leading to a minimization step in a finite dimensional space. Roughly speaking, they proved that a projected version of c n in a (n ln n)-dimensional space has the same performance than c n (Corollary 3.1 in [START_REF] Biau | On the performance of clustering in Hilbert spaces[END_REF].

If the previous approach has the advantage to hold whatever is the situation, it leads to many complications in term of the computational complexity (e.g., computation of the random projections, orthonormal representation of the data), and it does not fully exploit the particular form of the data under study. Indeed, as mentionned in the introduction, classical stochastic modelling often leads to consider diffusion processes, fractional brownian fields, Lévy fields, ... The common point here, is that most of these random fields satisfy a Hölder property. The aim of the next subsection is to exploit this fact in order to derive a simple and tractable method for clustering, in which the numerical step (??) is computationaly feasible.

Discretized fields

For the rest of the section, we assume that H = L 2 ([0, 1] s ) is the set of square integrable and real-valued functions defined on [0, 1] s . (Here, the choice of [0, 1] s instead of a general space is for convenience of the reader and simplicity of the statements; it turns out that the case of a compact s-dimensional space could be considered as well.) In this setting, the random variable X = (X(t)) t∈[0,1] s is a random field taking values in H .

Our goal is to evaluate the performance of the natural method that simply consists to create the empirical quantizer, based on the partial informations carried by the data that are evaluated over a common finite grid

S = {t 1 , • • • ,t d } of [0, 1] s .
With this respect, the natural questions that arise are: Where must be located the points of S and what must be the size of S , so that the performance of an optimal quantizer associated with the descretized data is comparable to that of c n ?

We fix a partition

π = {V 1 , • • • ,V d } of [0, 1] s such that t i ∈ V i for all i = 1, • • • , d.
In the sequel, the number d is refered to as the discretization level. To any function x = (x(t)) t∈[0,1] s ∈ L 2 ([0, 1] s ), we associate the discretized function x π = (x π (t)) t∈[0,1] s defined as follows:

x π (t) = x(t i ) if t ∈ V i , for all i = 1, • • • , d. In the sequel, L π 2 ([0, 1] s )
is the Hilbert space defined by

L π 2 ([0, 1] s ) = {x π , x ∈ L 2 ([0, 1] s )}.
Let now µ π n be the empirical measure associated with the transformed data

X π 1 , • • • , X π n , i.e. for any borel set A ⊂ L π 2 ([0, 1] s ): µ π n (A) = 1 n n ∑ i=1 1{X π i ∈ A}.
We define the discretized empirical centers

c π n = (c π n1 , • • • , c π nk ) by W k (c π n , µ π n ) = inf c∈(L π 2 ([0,1] s )) k W k (c, µ π n ). (3.1)
Observe that, provided the cells V j have the same volume, say vol(

V j ) = v, then for any c = (c 1 , • • • , c k ) ∈ (L π 2 ([0, 1] s )) k : W k (c, µ π n ) = v n n ∑ i=1 min j=1,••• ,k d ∑ ℓ=1 X i (t ℓ ) -c j (t ℓ ) 2 .
Consequently, in comparison with the minimization step (??), step (??) only requires to minimize the function

(R d ) k ∋ (c 1 , • • • , c k ) → n ∑ i=1 min j=1,••• ,k | Xi -c j | 2 ,
hence a minimization over a d × k-dimensional space. In the previous formula, |.| stands for the euclidean norm on R d and Xi is the random vector with coordinates

(X i (t 1 ), • • • , X i (t d ))
. The aim now is to find the value of d, and the location of the t i 's so that the center c π n has the same performance than the center c n .

Result

In this subsection, we shall make use of a mean Hölder condition on the random field X. As mentioned in the introduction, this is a mild assumption which is satisfied by most of the relevant random fields that arise in stochastic modelling, such as fractional Brownian fields or diffusion processes for instance. We assume that X satisfies the inequality:

E|X(s) -X(t)| 2 ≤ L |s -t| h , ∀s,t ∈ [0, 1] s , (3.2)
for some h > 0 and L > 0. Here, |.| stands for the euclidean norm in [0, 1] s . Observe that assumption (??) does not mean that X has Hölder paths, as illustrated by the case of the Poisson process (for which h = 1).

For simplicity, we assume that X(0) = 0 and a stronger property than (??), namely that for some τ > 0,

E e τ X ∞ < ∞, (3.3) if . ∞ stands for the supremum norm of X = (X(t)) t∈[0,1] s . Furthemore, we let R ∞ (µ) = 1 τ 1 + ω(µ) + ln E e τ X ∞ .
The next result shows how to choose the partition π and the discretization level d so that the empirical center c π n have the same performance than c n . Theorem 3.1. Assume that (??) and (??) hold, and that the support of µ contains at least k points. If d = [n s/h ] and for all i = 1, • • • , d, V i is an hypercube with edge length 1/d 1/s , then there exists a universal constant C > 0 such that for all δ ∈]0, 1[, one has

W k (c π n , µ) -W ⋆ k (µ) ≤ C L s h/4 + kR ∞ (µ) 2 ln(k/δ ) √ n ,
with probability (1δ ) + O(e -rn 1/5 ), for some r > 0.

Except for some specific cases, e.g. the diffusion process (??) in which h = 1, the exact value of h is usually unknown. Estimation of h has paid much attention in the litterature, for instance in the gaussian or Lévy field cases. With this respect, we refer the reader to the recent papers by Brouste et al (2007), [START_REF] Breton | Exact confidence intervals for the Hurst parameter of a fractional Brownian motion[END_REF], [START_REF] Coeurjolly | Hurst exponent estimation of locally self-similar Gaussian processes using sample quantiles[END_REF], [START_REF] Lacaux | Hurst exponent estimation of fractional Lévy motions[END_REF] and the references therein.

When s = h (e.g. the Brownian diffusion process), step (??) leads to a minimization in a k × n-dimensional space, a closed result to that of Corollary 3.1 in [START_REF] Biau | On the performance of clustering in Hilbert spaces[END_REF]. Nevertheless, we recall that our approach is much simpler from a computational point of view. Note also that in the case where < h (e.g. a wide part of the class of fractional Brownian fields) however, the complexity of the optimisation algorithm may be considerably improved.

Examples:

1. Diffusion process. Suppose that X is the process defined by (??). Burholder's inequality (see [START_REF] Revuz | Continuous martingales and Brownian motion[END_REF] and (??) of the Appendix ensures that assumptions (??) and (??) are satisfied for any τ > 0, with h = 1 and L = 4(sup b 2 + sup σ 2 ). By Theorems ?? and ??, up to some constant terms, the performances of the discretized centers c π n are the same as those of c n , provided the discretization level d is n. 2. Fractional Brownian field. Assume that X is the fractional Brownian field of index H ∈ (0, 2) (for an overview on fractional Brownian motion/field, we refer the reader to [START_REF] Pipiras | Fractional calculus and its connection to fractional Brownian motion[END_REF][START_REF] Pipiras | Fractional calculus and its connection to fractional Brownian motion[END_REF][START_REF] Lindstrøm | Fractional Brownian fields as integrals of white noise[END_REF]. In this case, both conditions (??) and (??) hold, with L = 1 and h = H. Hence, we deduce from Theorems ?? and ?? that, up to some constant terms, the performances of the empirical quantizers c π n and c n are the same, provided the discretization level d is chosen so that d = n s/H . In the motion case (i.e. s = 1) of positive correlation for instance (i.e. H > 1), the process has an aggregation behavior, and the numerical step (??) is reduced to a minimization in a n 1/H × k-dimensional space. From a computational point of view, we considerably improve the complexity of the minimization procedure, in comparison with the diffusion process above for instance.

Proofs

Proof of Theorem ??

It is proved in the Appendix that under the exponential moment condition (??), one has for all p ≥ 2:

E X p ≤ p!C p κ p , (4.1) 
where κ = (1 + ln E exp[τ X ])/τ and C > 0 is a universal constant. For simplicity of the proofs, we shall assume in the sequel that the universal constant C = 1, i.e. we have:

E X p ≤ p!κ p , (4.2) 
Furthemore, we let for any measure ν on H and c

= (c 1 , • • • , c k ) ∈ H k : Wk (c, ν) = H min j=1,••• ,k -2 < x, c j > + c j 2 ν(dx),
where < ., . > stands for the scalar product in H . Finally, we denote by B ρ the centered ball in H with radius ρ.

The proof of the next lemma will borrow some arguments in [START_REF] Biau | On the performance of clustering in Hilbert spaces[END_REF].

Lemma 4.1. Let ρ,t > 0 such that 4(κ 2 + tκ/(32kρ)) ≤ ρ 2 . Then,

P sup c∈B k ρ | Wk (c, µ n ) -Wk (c, µ)| ≥ t ≤ 32k 3 exp - nt 2 512k 2 ρ 4 .
PROOF. The classical symmetrisation argument (see Devroye et al, 1996, pp. 193-195) 

reveals that P sup c∈B k ρ | Wk (c, µ n ) -Wk (c, µ)| ≥ t ≤ 4P S k ≥ t 4 , (4.3) 
where for all m = 1,

• • • , k: S m = sup c∈B m ρ 1 n n ∑ i=1 σ i min j=1,••• ,m ℓ c j (X i ) , with ℓ c (x) = -2 < x, c > + c 2 for x, c ∈ H , and σ 1 , • • • , σ n are i.i.d. Rademacher random variables, independent of the data X 1 , • • • , X n .
Here and in the sequel, the components of c ∈ H m are denoted by

(c 1 , • • • , c m ).
We now proceed to bound the rightmost term in (??). Using the equality

min(a, b) = 1 2 (a + b -|a -b|) , a, b ∈ R,
we deduce that for all u > 0 and m = 0, • • • , k:

P(S k ≥ u) ≤ P S m ≥ u 2 + P S k-m ≥ u 2 +P   sup c∈B k ρ 1 n n ∑ i=1 σ i min j=1,••• ,m ℓ c j (X i ) -min j=m+1,••• ,k ℓ c j (X i ) ≥ u   .
According to the contraction principle (see Chapter 4 in [START_REF] Ledoux | Probability in Banach spaces[END_REF], the rightmost term is bounded by

2P   sup c∈B k ρ 1 n n ∑ i=1 σ i min j=1,••• ,m ℓ c j (X i ) -min j=m+1,••• ,k ℓ c j (X i ) ≥ u   ≤ 2P S m ≥ u 2 + 2P S k-m ≥ u 2 .
Hence, we have for all m = 1, • • • , k:

P(S k ≥ u) ≤ 3P S m ≥ u 2 + 3P S k-m ≥ u 2 ,
and we easily deduce that

P(S k ≥ u) ≤ 2k 3 P S 1 ≥ u 2k . (4.4)
Observe now that

P S 1 ≥ u 2k = P sup c∈B ρ 1 n n ∑ i=1 σ i ℓ c (X i ) ≥ u 2k ≤ P sup c∈B ρ 2 n n ∑ i=1 σ i < X i , c > ≥ u 4k + P ρ 2 n n ∑ i=1 σ i ≥ u 4k ≤ P n ∑ i=1 σ i X i ≥ un 8kρ + P n ∑ i=1 σ i ≥ un 4kρ 2 .
According to Hoeffding inequality (see Bosq, 2000, Chapter 2) for the righmost term, and Bernstein inequality for Banach-valued random variables (see Bosq, 2000, Chapter 2) for the former term, we deduce from (??) that

P S 1 ≥ u 2k ≤ 2 exp - u 2 n 128k 2 ρ 2 (κ 2 + uκ/(8kρ)) + 2 exp - u 2 n 32k 2 ρ 4 .
We can now conclude from (??) and (??) that

P sup c∈B k ρ | Wk (c, µ n ) -Wk (c, µ)| ≥ t ≤ 16k 3 exp - t 2 n 2048k 2 ρ 2 (κ 2 + tκ/(32kρ)) + 16k 3 exp - t 2 n 512k 2 ρ 4 .
Therefore, provided the inequality

4 κ 2 + tκ 32kρ ≤ ρ 2
is satisfied, we have

P sup c∈B k ρ | Wk (c, µ n ) -Wk (c, µ)| ≥ t ≤ 32k 3 exp - t 2 n 512k 2 ρ 4 ,
hence the lemma.

We now fix ρ > 0 such that:

ρ 2 µ B ρ/10 ≥ 100E X 2 and 4E X 2 1{ X ≥ 2ρ/5} < α/2, (4.5) where 2α = W ⋆ k-1 (µ) -W ⋆ k (µ) > 0.
Then, one can prove that (e.g. see the proof of Theorem 4.12 in Graff and Lushgy, 2000):

c / ∈ B k ρ ⇒ W k (c, µ) ≥ W ⋆ k (µ) + α. (4.6)
Lemma 4.2. Assume that ρ satisfies (??) and fix S > 0. Then, there exists r > 0 such that P c / ∈ B k ρ = O e -rn 1/5 , uniformly over all measures µ such that R(µ) ≤ S.

PROOF. Since ρ satisfies (??), we know from (??) that

P c n / ∈ B k ρ ≤ P (W k (c n , µ) -W ⋆ k (µ) ≥ α) Observe that, since for all c = (c 1 , • • • , c k ) ∈ H k , W k (c, µ) = E X 2 + E min j=1,••• ,k -2 < X, c j > + c j 2 ,
we also have

P c n / ∈ B k ρ ≤ P ( Wk (c n , µ) -W ⋆ k (µ) ≥ α) .
According to Theorem 4.12 in Graff and Lushgy (2000), there exists η 0 > 0 such that W ⋆ k (µ) = inf c∈B k η 0 Wk (c, µ). Then, for all η ≥ η 0 ,

P(c n / ∈ B k ρ ) ≤ P Wk (c n , µ) -Wk (c n , µ n ) ≥ α 2 , c n ∈ B k η +P Wk (c n , µ n ) -inf c∈B k η Wk (c, µ) ≥ α 2 , c n ∈ B k η + P(c n / ∈ B k η ) ≤ 2P sup c∈B k η | Wk (c, µ n ) -Wk (c, µ)| ≥ α 2 + P c n / ∈ B k η , (4.7) because Wk (c n , µ n ) = inf c∈B k η Wk (c, µ n ) when c n ∈ B k η .
We know from Lemma ?? that provided η is large enough,

P sup c∈B k η | Wk (c, µ n ) -Wk (c, µ)| ≥ α 2 ≤ 32k 3 exp - α 2 n 1024k 2 η 4 .
(4.8)

Moreover, according to (??) we get c

n j ≤ max i=1,••• ,n X i for all j = 1, • • • , k so that P c n / ∈ B k η ≤ k max j=1,••• ,k P c n j / ∈ B η ≤ k P max i=1,••• ,n X i ≥ η ≤ k n P ( X ≥ η) ≤ k n e -τη E e τ X .
(4.9)

Letting η = n 1/5 + ln n/τ, we deduce from above and (??), (??) that

P c n / ∈ B k ρ ≤ 32k 3 + kEe τ X e -rn 1/5 ,
for some constant r > 0, hence the lemma. The uniformity result derives from (??) and (??).

We are now in position to prove Theorem ??.

PROOF OF THEOREM ??. Let us fix ρ that satisfies (??). For all t > 0,

P (W k (c n , µ) -W ⋆ k (µ) ≥ t) = P ( Wk (c n , µ) -W ⋆ k (µ) ≥ t) ≤ P Wk (c n , µ) -W ⋆ k (µ) ≥ t, c n ∈ B k ρ +P c n / ∈ B k ρ ≤ 2P sup c∈B k ρ | Wk (c, µ) -Wk (c, µ n )| ≥ t 2 +P c n / ∈ B k ρ .
By Lemmas ?? and ??, we deduce that

P (W k (c n , µ) -W ⋆ k (µ) ≥ t) ≤ 64k 3 exp - t 2 n 2048k 2 ρ 4 + O(e -rn 1/5 ),
for some r > 0, provided t and ρ satisfy the inequality 4 κ 2 + tκ 64kρ ≤ ρ 2 . (4.10)

(ii) According to Lemma 3 in Linder ( 2001) and (??),

W ⋆ k (µ π ) 1/2 -W ⋆ k (µ) 1/2 2 ≤ E X π -X 2 = d ∑ p=1 V p E X(t p ) -X(t) 2 dt ≤ L d ∑ p=1 V p |t p -t| h dt ≤ L s h/2 d h/s , because vol(V p ) = 1/d and diam(V p ) = √ s/d 1/s for all p = 1, • • • , d. Conse- quently, |W ⋆ k (µ π ) -W ⋆ k (µ)| ≤ 2 max W ⋆ k (µ π ) 1/2 ,W ⋆ k (µ) 1/2 √ L s h/2 d h/(2s) ≤ 2 W ⋆ k (µ) 1/2 + √ L √ L s h/2 d h/(2s) ≤ 4L s h/4 d h/(2s) , since W ⋆ k (µ) ≤ E X 2 ≤ L, hence (ii). 
(iii) Observing that inequality (ii) holds with k -1 instead of k, we can deduce that, provided d is large enough so that W ⋆ k-1 (µ) -W ⋆ k (µ) ≥ 8Ls h/4 d -h/(2s) , then

W ⋆ k-1 (µ π ) -W ⋆ k (µ π ) ≥ 1 2 (W ⋆ k-1 (µ) -W ⋆ k (µ)).
Therefore, ω(µ π ) ≤ ω(µ) + ln 2.

The conclusion is now straightforward, since X ≤ X ∞ .

We are now in position to prove Theorem ??.

PROOF OF THEOREM ??. Recall that the term O(e -rn 1/5 ) in Theorem ?? holds for all measure µ such that R(µ) ≤ S, with a fixed S > 0. Therefore, by Lemma ?? and Theorem ?? applied with the measure µ π , we have:

W k (c π n , µ) -W ⋆ k (µ) = [W k (c π n , µ) -W k (c π n , µ π )] + [W k (c π n , µ π ) -W ⋆ k (µ π )] + [W ⋆ k (µ π ) -W ⋆ k (µ)] ≤ 8Ls h/4 d h/(2s) +C R(µ) 2 k ln(k/δ ) √ n ,
with probability (1δ ) + O(e -rn 1/5 ), hence the result.

Appendix

PROOF OF (??) Since the function x → (ln x) p defined on ] exp(p -1), ∞[ is concave, one has according to Jensen's Inequality: PROOF OF (??). We first proceed to bound E exp(τ X ) ≤ E exp(τ X ∞ ), where . ∞ stands for the supremum norm. Denote by (Z(t)) t∈[0,1] the continuous-time martingale defined for all t ∈ [0, 1] by Therefore, by Doob's exponential inequality for continuous martingales (see [START_REF] Revuz | Continuous martingales and Brownian motion[END_REF]:

E X p ≤ p τ p + 1 τ p E ln e τ X p 1 X ≥ p -1 τ ≤ p τ p + 1 τ p ln E e τ X p
Z(t) =
E e τ Z ∞ = 1 + ∞ 0 P Z ∞ ≥ v τ e v dv ≤ 1 + 2 ∞ 0 e -v 2 /(2τ 2 b2 ) e v dv.
According to (??), we then have for all τ > 0:

E e τ X ∞ ≤ e τ σ 1 + √ 2π τ b e τ 2 b2 /2 .

(5.2)

It is an easy exercise to deduce that inf τ>0 R(µ) = inf 

≤ p τ p 1 +

 1 ln E e τ X p .There exists a universal constant C > 0 such that p p ≤ C p p!. Therefore,E X p ≤ p! C τ p 1 + ln Ee τ X p ,hence (??).

  , X(s))dW (s).Since σ is bounded, say σ = sup |σ |, we have for any τ > 0:E e τ X ∞ ≤ e τ σ E e τ Z ∞ .(5.1)Hence one only needs to bound the rightmost term. Observe that the quadratic variation < Z > of Z satisfies< Z > t = t 0 b 2 (s, X(s))ds ≤ b2 , for all t ∈ [0, 1], where b stands for the supremum of |b|, i.e. b = sup |b|.

  (µ) + ln E e τ X ≤ 4(sup |b| + sup |σ |) 1 + ω(µ),hence the result.

Note that by Lemma ??, the term O(e -rn 1/5 ) is uniform over all measures µ such that R(µ) ≤ S, for any S > 0. Then, for a choice of t such that

we have

It is an easy exercise to prove that when t is subject to (??), then each choice of ρ such that

satisfies both conditions (??) and (??). Consequently, for a sufficiently large numerical constant C, one has

with probability (1δ ) + O(e -rn 1/5 ). Since R(µ) = κ + ln -α/τ, the theorem is proved.

Proof of Theorem ??

In the sequel, µ π stands for the law of X π . 2s) , then R(µ π ) ≤ 2R ∞ (µ).

PROOF. We only prove (ii) and (iii).