
HAL Id: hal-00502630
https://hal.science/hal-00502630

Submitted on 15 Jul 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Non-linear magnetic model refinement via a finite
element subproblem method

Patrick Dular, Ruth V. Sabariego, Johan Gyselinck, Laurent Krähenbühl,
Christophe Geuzaine

To cite this version:
Patrick Dular, Ruth V. Sabariego, Johan Gyselinck, Laurent Krähenbühl, Christophe Geuzaine. Non-
linear magnetic model refinement via a finite element subproblem method. EPNC, Jun 2010, Dort-
munt, Germany. pp.39-40. �hal-00502630�

https://hal.science/hal-00502630
https://hal.archives-ouvertes.fr


 

 
NON-LINEAR MAGNETIC MODEL REFINEMENT VIA A  

FINITE ELEMENT SUBPROBLEM METHOD 
 

Patrick Dular1,2, Ruth V. Sabariego1, Johan Gyselinck3, Laurent Krähenbühl4 and Christophe Geuzaine1 
 

1
 University of Liège, Dept. of Electrical Engineering and Computer Science, ACE, B-4000 Liège, Belgium 

2
 F.R.S.-FNRS, Fonds de la Recherche Scientifique, Belgium 

3
 Bio-, Electro- and Mechanical Systems (BEAMS) Department, Université Libre de Bruxelles, Brussels B-1050, Belgium 

4 Université de Lyon, Ampère (CNRS UMR5005), École Centrale de Lyon, F-69134 Écully Cedex, France 
 
Abstract Model refinements of non-linear magnetic circuits are 
performed via a finite element subproblem method. A complete 
problem is split into subproblems to allow a progression from 1-
D to 3-D including linear to non-linear model corrections. Its 
solution is then expressed as the sum of the subproblem solutions 
supported by different meshes. A convenient and robust 
correction procedure is proposed allowing independent 
overlapping meshes for both source and reaction fields. The 
procedure simplifies both meshing and solving processes, and 
quantifies the gain given by each model refinement on both local 
fields and global quantities. 

I. INTRODUCTION 

The perturbation of finite element (FE) solutions provides 
clear advantages in repetitive analyses and helps improving 
the solution accuracy [1]-[6]. It allows to benefit from 
previous computations instead of starting a new complete FE 
solution for any variation of geometrical or physical data. It 
also allows different problem-adapted meshes and 
computational efficiency due to the reduced size of each 
subproblem. 

A FE subproblem method (SPM) is herein developed for 
coupling solutions of various dimensions, starting from 
simplified models, based on ideal flux tubes defining 1-D 
models, that evolve towards 2-D and 3-D accurate models, 
allowing leakage flux and end effects. Progressions from 
linear to non-linear models are aimed to be performed at any 
step, which extends the method proposed in [3]-[6]. A 
convenient and robust correction procedure is proposed here. 
It combines both types of changes, via volume sources (VSs) 
and surfaces sources (SSs), in single correction steps. This 
allows independent overlapping meshes for both source and 
reaction fields, which simplifies the meshing procedure. 

The developments are performed for the magnetic vector 
potential FE magnetostatic formulation, paying special 
attention to the proper discretization of the constraints 
involved in each SP. The method will be illustrated and 
validated on test problems. 

II.  PROGRESSIVE MAGNETIC SUBPROBLEMS 

A. Sequence of Subproblems 

Instead of solving a complete problem, generally with a 3-
D model, it is proposed to split it into a sequence of SPs, 
some of lower dimensions, i.e. 1-D and 2-D models, and 
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others performing adequate corrections. Linear to non-linear 
corrections can be involved at any level of this sequence. The 
complete solution is then to be expressed as the sum of the SP 
solutions. This offers a way to perform model refinements, 
with a direct access to each correction, usually of useful 
physical meaning. 

Each SP is defined in its own domain, generally distinct 
from the complete one. At the discrete level, this aims to 
decrease the problem complexity and to allow distinct meshes 
with suitable refinements. Each SP has to approximate at best 
its contribution to the complete solution. The domains of the 
SPs usually overlap. 

B. Canonical magnetic problem 

A canonical magnetostatic problem p is defined in a 
domain Ωp, with boundary ∂Ωp = Γp = Γh,p ∪ Γb,p. Subscript p 
refers to the associated problem p. The equations, material 
relation, boundary conditions (BCs) and interface conditions 
(ICs) of problem p are 

 curl hp = jp ,   div bp = 0 ,   hp = µp
–1 bp + hs,p , (1a-b-c) 

 n × hp|Γh,p
 = 0 ,  n ⋅ bp|Γb,p

 = 0 , (1d-e) 
 [n × hp]γp

 = jf,p,  [n ⋅ bp]γp
 = bf,p, (1f-g) 

where hp is the magnetic field, bp is the magnetic flux density, 
jp is the prescribed current density, µp is the magnetic 
permeability and n is the unit normal exterior to Ωp. The 
notation [ ⋅ ]γ = ⋅ |γ+  – ⋅ |γ– expresses the discontinuity of a 
quantity through any interface γ (with sides γ+ and γ–) in Ωp, 
which is allowed to be non-zero. 

The field hs,p in (1) is a VS, usually used for fixing a 
remnant induction. With the SPM, hs,p is also used for 
expressing changes of permeability. For a change of 
permeability of a region, from µq for problem q to µp for 
problem p, the VS hs,p in this region is 

 hs,p = (µp
–1 – µq

–1) bq ,  (2) 

for the total fields to be related by hq + hp = µp
–1 (bq + bp). 

The surface fields jsu,p and bsu,p in (1f-g) are generally zero 
to define classical ICs for the fields. If nonzero, they define 
possible SSs. This is the case when some field traces in a 
previous problem q have been forced to be discontinuous, e.g. 
for neglecting leakage fluxes and reducing the problem to a 
lower dimension [2]-[6]. The continuity has to be recovered 
after a correction via a problem p. The SSs in problem p are 
thus to be fixed as the opposite of the trace solution of 
problem q. 

Each problem p is constrained via the so defined VSs and 



 

SSs from parts of the solutions of other problems. This is a 
key element of the developed method, offering a wide variety 
of possible corrections [2]-[6], that should welcome linear to 
non-linear corrections as well. 

III.  VARIOUS POSSIBLE PROBLEM SPLITTINGS 

For a typical magnetic circuit, e.g. an electromagnet, the SP 
procedure splits the problem in a minimum of 3 SPs (Fig. 1): 
(1) the magnetic region and the air gaps considered as an ideal 
flux tube (with possible start from 1-D models [4]-[5]), (2) the 
stranded inductor alone, and (3) the consideration of the 
leakage flux via a SS  jf,3 on the flux tube boundary, 
simultaneously with the change of permeability due to the 
addition of the magnetic region in the inductor source field 
[6]. In this way, step 2 and step 3 are based on totally 
independent meshes; step 1 uses a portion of mesh 3. All the 
resulting total solutions have been successfully validated. 
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Fig. 1. Field lines in the ideal flux tube (b1, µr,core = 100), for the inductor 
alone (b2), for the leakage flux (b3) and for the total field (b) (left to right). 

It is herein proposed to couple changes from linear to non-
linear material characteristics with the already developed 
correction SP method. An initially linear µq can change to a 
non-linear µp to be expressed as a function of the total 
magnetic flux density. The resulting VS (2) supported by the 
non-linear region is 

 hs,p = (µp
–1(bq + bp) – µq

–1) bq , (3) 

At the discrete level, the source quantity bq = curl aq, 
initially given in mesh q, is projected in the mesh p [6], 
limited to the non-linear region. A classical non-linear 
iterative process has then to lead to the convergence of 
bp = curl ap. This solution corrects the flux linkages of the 
inductors, and consequently their reluctances. 

The non-linear SP can be split in several portions, each of 
them involved at a certain level of the whole SPM. Various 
combinations of problem splitting will be studied and 
discussed in the extended paper. The results of a two-step 
SPM are shown in Figs. 2, 3 and 4 for a low reluctance 
circuit, illustrating the way the correction fields behave. 

IV.  CONCLUSIONS 

The developed FE subproblem method allows to split 
magnetic models into subproblems of lower complexity with 
regard to meshing operations and computational aspects. A 
natural progression from simple to more elaborate models, 
from 1-D to 3-D geometries, including linear to non-linear 
corrections, is thus possible, while quantifying the gain given 
by each model refinement. From the so calculated field 
corrections, the associate corrections of global quantities 
inherent to magnetic models, i.e. fluxes, magnetomotive 
forces, can be evaluated. 

 
Fig. 2. Field lines for the linear model (b1, left) and for the non-linear 
correction (b2, right).  

 
Fig. 3. Magnetic flux density for the linear model (b1, top left), for the non-
linear correction (b2, top right) and the total solution (b1+b2, bottom left). 

 
Fig. 4. Field lines and relative permeability (elevated color map) for the total 
solution (b1+b2, µr,2). 
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