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Summary. Model refinements of magnetic circuits are 
performed via a subdomain finite element method. A 
complete problem is split into subproblems with overlap-
ping meshes, to allow a progression from source to reac-
tion fields, ideal to real flux tubes, 1-D to 3-D models, 
perfect to real materials, statics to dynamics, with any cou-
pling of these changes. Its solution is then the sum of the 
subproblem solutions. The procedure simplifies both 
meshing and solving processes, and quantifies the gain 
given by each refinement on both local fields and global 
quantities. 

1 Introduction 

The perturbation of finite element (FE) solutions 
provides clear advantages in repetitive analyses and 
helps improving the solution accuracy [1-6]. It al-
lows to benefit from previous computations instead 
of starting a new complete FE solution for any geo-
metrical, physical or model variation. It also allows 
different problem-adapted meshes and computational 
efficiency due to the reduced size of each subprob-
lem. 

A general framework allowing a wide variety of 
refinements is herein developed. It is defined as a 
subproblem FE approach based on canonical magne-
tostatic and magnetodynamic problems solved in a 
sequence, with at each step volume sources (VSs) 
and surface sources (SSs) originated from previous 
solutions. VSs express changes of material proper-
ties. SSs express changes of boundary conditions 
(BCs) or interface conditions (ICs). Common and 
useful changes from source to reaction fields, ideal 
to real flux tubes (with leakage flux), 1-D to 3-D 
models, perfect to real materials, and statics to dy-
namics, can all be defined through combinations of 
VSs and SSs. 

The developments are performed for the magnetic 
vector potential FE formulation, paying special at-
tention to the proper discretization of the constraints 
involved in each subproblem. The method will be il-
lustrated and validated on various problems. 

2. Series of Coupled Subproblems 

Instead of solving a complete problem, with all its 
details, it is proposed to split it into a sequence of 
subproblems, some with approximated geometrical 
or physical data, including model simplifications, 
and others performing adequate corrections. The 
complete solution is then the sum of the subproblem 
solutions. This offers a way to perform model re-
finements, with a direct access to each correction, 
usually of useful physical meaning. 

Each subproblem is defined in its own domain, 
generally distinct from the complete one. At the dis-
crete level, this aims to decrease the problem com-
plexity and to allow distinct meshes with suitable re-
finements. Each subproblem approximates at best its 
contribution to the complete solution. The domains 
of the subproblems usually overlap. 

Each subproblem p is defined in a domain Ωp, 
with boundary ∂Ωp = Γp. It is governed by magne-
tostatic or magnetodynamic equations and con-
strained with VSs and SSs, of which some compo-
nents originate from previous problems q. The in-
volved fields are the magnetic field hp, the magnetic 
flux density bp and the electric field ep. 

Classical VSs fix remnant inductions in magnetic 
materials and current densities in stranded inductors. 
Similar VSs can also express changes of permeabil-
ity µ and conductivity σ from a problem q to a prob-
lem p [4, 5]. For changes from µq to µp and from σq 
to σp, the magnetic and electric material relations for 
problem p are hp = µp

–1 bp + hs,p and jp = σp ep + js,p, 
with VSs hs,p = (µp

–1 – µq
–1) bq and js,p = (σp – σq) eq 

limited to the modified regions. 
The usually homogeneous SSs, i.e. BCs or ICs for 

the traces n × hp|γp
, n ⋅ bp|γp

 and n × ep|γp
, with n the 

unit exterior normal and γp ⊂ Γp, can be extended to 
non-zero constraints. The resulting ICs, i.e. the dis-
continuities [n × hp]γp

 = jf,p, [n ⋅ bp]γp
 = bf,p and 

[n × ep]γp
 = ff,p through an interface γp, involve SSs  

jf,p, bf,p and ff,p obtained from previous problems. 
Usually, free forced discontinuities in a problem q, 
allowing some simplifications with idealized thin re-
gions [2-5], can be removed in a problem p via op-
posed SSs, i.e. jf,p = – [n × hq]γp

, bf,p = – [n ⋅ bq]γp
 and  

ff,p = – [n × eq]γp
 (γp and γq only differ at the discrete 

level by their meshes). For the ICs to be defined in a 
weak sense, a post-treatment of the FE weak formu-
lation is done to naturally express the SSs via a vol-
ume integration limited to a layer of FEs surrounding 
the interface [2-5]. 

VSs and SSs involve previous solutions in subdo-
mains of the current problem p. At the discrete level, 
this means these solutions have to be expressed in 
portions of the mesh of problem p, while initially 
given in the mesh of problem q. This is done via an 
L2-projection [2-6]. 

3. Various Correction Procedures 

Various correction schemes, appropriate to practical 
magnetic system analyses, can benefit from the de-
veloped subproblem approach. These are summa-
rized below and will be discussed in details. 



 
 

(1) Change of material properties (Fig. 1) – A 
typical problem is that of a region put in an initially 
calculated source field b1. The associated subprob-
lem 2 is solved in its proper mesh, with the added 
core and its surrounding region, and VSs limited to 
this core, where µ and/or σ are modified. Such 
changes can occur when adding or suppressing mate-
rials or portions of those, in, e.g., shape optimiza-
tion, non-destructive testing [1, 6], moving systems. 

(2) Change from ideal to real flux tubes [3-4] 
(Fig. 2) – A problem q can first consider ideal tubes 
[7], i.e. surrounded by perfect flux walls through 
which n ⋅ bq|γq

 is zero and bq and hq outside are zero. 
The complementary trace n × hq|γq

 is unknown and 
non-zero. Consequently, a change to a permeable 
flux wall defines a problem p with SSs opposed to 
this non-zero trace. This change (2) can be done si-
multaneously with change (1), which is the case in 
Fig. 3: the leakage flux b3 completes the ideal distri-
bution b1 while knowing the source b2 proper to the 
inductor; this allows independent overlapping 
meshes for both source and reaction fields. 

(3) Change from 1-D to 3-D [5] – Change (2) can 
be extended to allow a dimension change, e.g. from 
2-D to 3-D: a 2-D solution is first considered as lim-
ited to a certain thickness in the third dimension, 
with a zero field outside; on the other side, another 
independent problem is solved. Changes of ICs on 
each side of this portion, via SSs, then allow the cal-
culation of 3-D end effects. Series connections of 
flux tubes use a similar procedure: a violation of ICs 
when connecting two flux tubes can be corrected via 
an opposed SS, e.g. which allows changes from 1-D 
to 2-D (Fig. 3). 

(4) Change from perfect to real materials [2] 
(Fig. 4) – A problem q can first consider perfect 
conducting (resp. magnetic) materials, with σq→∞ 
(resp. µq→∞), in which case the trace n ⋅ bq|γq

 (resp. 
n × hq|γq

) on its boundary is zero and bq (resp. hq) in-
side is zero. The complementary trace n × hq|γq

 (resp. 
n ⋅ bq|γq

) is unknown and non-zero. Consequently, a 
change to a finite σp (resp. µp) defines a problem p 
with SSs opposed to this non-zero trace. 

(5) Change from statics to dynamics, to accurately 
render skin and proximity effects. 
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Fig. 1. Field lines for an inductor alone (b1, left) and for an added 
core (b2, µr,core = 100) (right); distinct meshes are used for prob-
lems 1 and 2. 
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Fig. 2. An electromagnet: field lines in an ideal flux tube (b1, 
µr,core = 100), for the inductor alone (b2), for the leakage flux (b3) 
and for the total field (b) (left to right). 

Y

XZ

 

Y

XZ

 

Y

XZ  

Fig. 3. Series connection of two flux tubes: field lines in ideal 
flux tubes (b1, left), local correction at the junction (b2, middle) 
and complete solution (b, right). 
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Fig. 4. Transverse flux system (3-turn inductor above a half plate, 
with perpendicular flux horizontal symmetry axis below); a low 
(left) and a high (right) electric conductivity are considered for 
the plate; from top to bottom: magnetic flux lines (phase 0) for 
the reference solution b1 with a perfectly conductive inductor, the 
perturbation solution b2 and the perturbed solutions b; bottom: 
current density distribution (modulus). 


