N
N

N

HAL

open science

Proceedings of the 8h Python in Science conference

Gagél Varoquaux, Stefan van Der Walt, Jarrod Millman

» To cite this version:

Gagl Varoquaux, Stefan van Der Walt, Jarrod Millman. Proceedings of the 8th Python in Science
conference. SciPy 2009: 8th Python in Science Conference, Aug 2009, Pasadena, United States.

pp.1-78. hal-00502607

HAL Id: hal-00502607
https://hal.science/hal-00502607v1
Submitted on 15 Jul 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00502607v1
https://hal.archives-ouvertes.fr

SciPy 2009
conference

Python for Scientific Computing

Proceedings of the 8" Python in Science
Conference

SciPy Conference — Pasadena, CA, August 18-23, 2009.

Editors: Gaél VAROQUAUX, Stéfan VAN DER WALT, K. Jarrod MILLMAN

Contents

Editorial
G. Varoquaux, S. van der Walt, J. Millman
Cython tutorial
S. Behnel, R. Bradshaw, D. Seljebotn
Fast numerical computations with Cython
D. Seljebotn
High-Performance Code Generation Using CorePy
A. Friedley, C. Mueller, A. Lumsdaine
Convert-XY: type-safe interchange of C++ and Python containers for NumPy extensions
D. Eads, E. Rosten
Parallel Kernels: An Architecture for Distributed Parallel Computing
P. Kienzle, N. Patel, M. McKerns
PaPy: Parallel and distributed data-processing pipelines in Python
M. Cieslik, C. Mura
PMI - Parallel Method Invocation
O. Lenz
Sherpa: 1D/2D modeling and fitting in Python
B. Refsdal, S. Doe, D. Nguyen, A. Siemiginowska, N. Bonaventura, D. Burke, I. Evans, J. Evans, A. Fruscione,
E. Galle, J. Houck, M. Karovska, N. Lee, M. Nowak
The FEMhub Project and Classroom Teaching of Numerical Methods
P. Solin, O. Certik, S. Regmi
Exploring the future of bioinformatics data sharing and mining with Pygr and Worldbase
C. Lee, A. Alekseyenko, C. Brown
Nitime: time-series analysis for neuroimaging data
A. Rokem, M. Trumpis, F. Pérez
Multiprocess System for Virtual Instruments in Python
B. D’Urso
Neutron-scattering data acquisition and experiment automation with Python
P. Zolnierczuk, R. Riedel
Progress Report: NumPy and SciPy Documentation in 2009
J. Harrington, D. Goldsmith

15

23

29

36

41

48

51

58

62

68

76

81

84

The content of the articles of the Proceedings of the Python in Science Conference is copyrighted and owned by their

original authors.
For republication or other use of the material published, please contact the copyright owners to obtain permission.

Proceedings of the 8th Python in Science Conference by Gagél Varoquaux, Stéfan van der Walt, K. Jarrod Milllman

ISBN: 978-0-557-23212-3

Proceedings of the 8" Python in Science Conference (SciPy 2009)

Organization

Conference chair
K. Jarrod Millman

Tutorial Co-chairs
Dave Peterson
Fernando Perez

Program Co-chairs
Gagl Varoquaux
Stéfan van der Walt

Program Committee
Michael Aivazis

Brian Granger

Aric Hagberg

Konrad Hinsen
Randall LeVeque
Travis Oliphant
Prabhu Ramachandran
Raphael Ritz

William Stein

Proceeding reviewers
Francesc Alted
Philippe Ciuciu

Yann Cointepas
Emmanuelle Gouillart
Jonathan Guyer

Ben Herbst

Paul Kienzle

Michael McKerns
Sturla Molden
Jean-Baptiste Poline
Dag Sverre Seljebotn
Gregor Thalhammer

UC Berkeley, Helen Wills Neuroscience Institute, USA

Enthought Inc, Austin, USA
UC Berkeley, Helen Wills Neuroscience Institute, USA

INRIA Saclay, FRANCE
Stellenbosh University, SOUTH AFRICA

Center for Advanced Computing Research, California Institute of Technology USA
Physics Department, California Polytechnic State University, San Luis Obispo USA
Theoretical Division, Los Alamos National Laboratory USA

Centre de Biophysique Moléculaire, CNRS Orléans FRANCE

Mathematics, University of Washington, Seattle USA

Enthought Inc. USA

Department of Aerospace Engineering, IIT Bombay INDIA

International Neuroinformatics Coordinating Facility SWEDEN

Mathematics, University of Washington, Seattle USA

Pytables SPAIN

CEA, Neurospin FRANCE

CEA, Neurospin FRANCE

CNRS Saint Gobain FRANCE

NIST USA

Stellenbosh University, SOUTH AFRICA
NIST USA

Center for Advanced Computing Research, California Institute of Technology USA
University of Oslo NORWAY

CEA, Neurospin FRANCE

University of Oslo NORWAY

University of Florence ITALY

Proceedings of the 8" Python in Science Conference (SciPy 2009)

Editorial

Gael Varoquaux (gael.varoquaux@normalesup.org) — INRIA, Saclay FRANCE
Stéfan van der Walt (stefan@sun.ac.za) — University of Stellenbosch, Stellenbosch SOUTH AFRICA
Jarrod Millman (millman@berkeley.edu) — UC Berkeley, Berkeley, CA USA

SciPy 2009 marks our eighth annual Python in Sci-
ence conference and the second edition of the confer-
ence proceedings. The conference and these proceed-
ings highlight the ongoing focus of the community on
providing practical software tools, created to address
real scientific problems.

As in previous years, topics at the conference ranged
from the presentation of tools and techniques for scien-
tific work with the Python language, to reports on sci-
entific achievement using Python. Interestingly, sev-
eral people noticed that something important hap-
pened in the Scientific Python world during the last
year: we are no longer constantly comparing our soft-
ware with commercial packages, nor justifying the
need for Python in Science. Python has now reached
the level of adoption where this sort of justification
is no longer necessary. The exact moment when this
shift in focus occurred is difficult to identify, but that
it happened was apparent during the conference.

Recurring scientific themes

This year the conference spanned two days, and each
day commenced with a keynote address. The first
keynote was delivered by Peter Norvig, the Director
of Research at Google; the second by Jonathan Guyer,
a materials scientist in the Thermodynamics and Ki-
netics Group at the National Institute of Standards
and Technology (NIST).

Peter Norvig’s talk was titled “What to demand from a
Scientific Computing Language—even if you don’t care
about computing or languages”, where he discussed a
number of desired characteristics in a scientific com-
puting environment. Such a platform should have the
ability to share code and data with other researchers
easily, provide extremely fast computations and state-
of-the-art algorithms to researchers in the field, and be
as easy as possible to use in a time-efficient manner.
He also stressed the importance of having code that
read like the mathematical ideas it expressed.
Jonathan Guyer’s keynote centred around “Modeling
of Materials with Python”. He expanded on several
of the above-mentioned characteristics as he discussed
the development of FiPy, a framework for solving par-
tial differential equations based on a finite volume ap-
proach. Jonathan explained how FiPy was created to
provide the most advanced numerical techniques to sci-
entists, so that they could focus on the scientific ques-
tions at hand, while having a standard platform for
sharing codes with colleagues. Importantly, FiPy has
become a critical tool in Jonathan’s research group and
has been adopted by many of their colleagues for both
research as well as teaching.

Both keynote addresses served to outline prominent
themes that were repeated throughout the conference,
as witnessed by the proceedings. These themes in-
clude: the need for software tools that allow scientists
to focus on their research, while taking advantage of
best-of-class algorithms and utilizing the full power of
their computational resources; the need for a high-
level computing environment with an easy—to-write
and read syntax; the usefulness of high-quality soft-
ware tools for teaching and education; and the impor-
tance of sharing code and data in scientific research.
The first several articles address high-level approaches
aimed at improving the performance of numerical code
written in Python. While making better use of in-
creased computation resources, such as parallel pro-
cessors or graphical processing units, many of these
approaches also focus on reducing code complexity and
verbosity. Again, simpler software allows scientists to
focus on the details of their computations, rather than
on administrating their computing resources.

The remaining articles focus on work done to solve
problems in specific research domains, ranging from
numerical methods to biology and astronomy. For the
last several years, using Python to wrap existing li-
braries has been a popular way to provide a scripting
frontend to computational code written primarily in a
more low-level language like C or Fortran. However, as
these proceedings show, Python is increasingly used as
the primary language for large scientific applications.
Python and its stack of scientific tools appears to be
well suited for application areas ranging from database
applications to user interfaces and numerical compu-
tation.

Review and selection process

This year we received 30 abstracts from five differ-
ent countries. The submissions covered a number of
research fields, including bioinformatics, computer vi-
sion, nanomaterials, neutron scattering, neuroscience,
applied mathematics, astronomy, and X-ray fluores-
cence. Moreover, the articles discussed involve a num-
ber of computational tools: these include statistical
modeling, data mining, visualization, performance op-
timization, parallel computing, code wrapping, instru-
ment control, time series analysis, geographic informa-
tion science, spatial data analysis, adaptive interpola-
tion, spectral analysis, symbolic mathematics, finite
element, and virtual reality. Several abstracts also ad-
dressed the role of scientific Python in teaching and
education.

G. Varoquaux, S. van der Walt, J. Millmanin Proc. SciPy 2009, G. Varoquaux, S. van der Walt, J. Millman (Eds), pp. 2-4 2

gael.varoquaux@normalesup.org
stefan@sun.ac.za
millman@berkeley.edu

Proceedings of the 8" Python in Science Conference (SciPy 2009)

Each abstract was reviewed by both the program
chairs, as well as two members of the program com-
mittee (PC). The PC consisted of 11 members from
five countries, and represented both industry and
academia. Abstracts were evaluated according to the
following criteria:

e Relevance of the contribution, with regard to the
topics and goals of the conference.

e Scientific or technical quality of the work presented.
e Originality and soundness.

We accepted 23 (76%) submission for oral presentation
at the conference. At the closure of the conference, we
invited the presenters to submit their work for publica-
tion in the conference proceedings. These submissions
were reviewed by 11 proceeding reviewers from seven
countries, according to the following criteria:

e Does the paper describe a well-formulated scientific
or technical achievement?

e Is the content of the paper accessible to a compu-
tational scientist with no specific knowledge in the
given field?

e Are the technical and scientific decisions well-
motivated?

e Does the paper reference scientific sources and ma-
terial used?

e Are the code examples (if any) sound, clear, and
well-written?

e Is the paper fit for publication in the SciPy pro-
ceedings? Improvements may be suggested, with or
without a second review.

From the 30 original abstracts, 12(40%) have been ac-
cepted for publication in these proceedings.

Prior to commencing the conference, we had two days
of tutorials with both an introductory and advanced
track. In addition to publishing a selection of the pre-
sented work, we also selected one of this year’s tutorial
presentations for publication.

The proceedings conclude with a short progress report
on the two-year long NumPy and SciPy documentation
project.

The SciPy Conference has been supported since its
inception by the Center for Advanced Computing Re-
search (CACR) at Caltech and Enthought Inc. In ad-
dition, we were delighted to receive funding this year
from the Python Software Foundation to cover the
travel, registration, and accommodation expenses of 10
students. Finally, we are very grateful to Leah Jones
of Enthought and Julie Ponce of the CACR for their
invaluable help in organizing the conference.

http://conference.scipy.org/proceedings/SciPy2009/paper_0

http://conference.scipy.org/proceedings/SciPy2009/paper_0

Proceedings of the 8" Python in Science Conference (SciPy 2009)

Cython tutorial

Stefan Behnel (stefan_ml@behnel.de) — Senacor Technologies AG, GERMANY
Robert W. Bradshaw (robertwb@math.washington.edu) — University of Washington®, USA
Dag Sverre Seljebotn (dagss@student.matnat.uio.no) — University of Oslo®¢?, NORWAY

Department of Mathematics, University of Washington, Seattle, WA, USA

bInstitute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029 Blindern, N-0315 Oslo, Norway
¢Department of Mathematics, University of Oslo, P.O. Box 1053 Blindern, N-0316 Oslo, Norway

dCentre of Mathematics for Applications, University of Oslo, P.O. Box 1053 Blindern, N-0316 Oslo, Norway

Cython is a programming language based on Python
with extra syntax to provide static type declarations.
This takes advantage of the benefits of Python while
allowing one to achieve the speed of C. In this paper
we describe the Cython language and show how it
can be used both to write optimized code and to
interface with external C libraries.

Cython - an overview

[Cython] is a programming language based on Python,
with extra syntax allowing for optional static type
declarations. It aims to become a superset of the
[Python] language which gives it high-level, object-
oriented, functional, and dynamic programming. The
source code gets translated into optimized C/C++
code and compiled as Python extension modules. This
allows for both very fast program execution and tight
integration with external C libraries, while keeping
up the high programmer productivity for which the
Python language is well known.

The primary Python execution environment is com-
monly referred to as CPython, as it is written in
C. Other major implementations use Java (Jython
[Jython]), C# (IronPython [IronPython]) and Python
itself (PyPy [PyPy]). Written in C, CPython has been
conducive to wrapping many external libraries that in-
terface through the C language. It has, however, re-
mained non trivial to write the necessary glue code in
C, especially for programmers who are more fluent in a
high-level language like Python than in a do-it-yourself
language like C.

Originally based on the well-known Pyrex [Pyrex], the
Cython project has approached this problem by means
of a source code compiler that translates Python code
to equivalent C code. This code is executed within the
CPython runtime environment, but at the speed of
compiled C and with the ability to call directly into C
libraries. At the same time, it keeps the original inter-
face of the Python source code, which makes it directly
usable from Python code. These two-fold characteris-
tics enable Cython’s two major use cases: extending
the CPython interpreter with fast binary modules, and
interfacing Python code with external C libraries.
While Cython can compile (most) regular Python
code, the generated C code usually gains major (and
sometime impressive) speed improvements from op-
tional static type declarations for both Python and

C types. These allow Cython to assign C semantics to
parts of the code, and to translate them into very effi-
cient C code. Type declarations can therefore be used
for two purposes: for moving code sections from dy-
namic Python semantics into static-and-fast C seman-
tics, but also for directly manipulating types defined in
external libraries. Cython thus merges the two worlds
into a very broadly applicable programming language.

Installing Cython

Many scientific Python distributions, such as the
Enthought Python Distribution [EPD], Python(x,y)
[Pythonxy], and Sage [Sage], bundle Cython and no
setup is needed. Note however that if your distribu-
tion ships a version of Cython which is too old you
can still use the instructions below to update Cython.
Everything in this tutorial should work with Cython
0.11.2 and newer, unless a footnote says otherwise.
Unlike most Python software, Cython requires a C
compiler to be present on the system. The details of
getting a C compiler varies according to the system
used:

e Linux The GNU C Compiler (gcc) is usu-
ally present, or easily available through the
package system. On Ubuntu or Debian, for
instance, the command sudo apt-get install

build-essential will fetch everything you need.

e Mac OS X To retrieve gcc, one option is to install
Apple’s XCode, which can be retrieved from the Mac
OS X’s install DVDs or from http://developer.
apple.com.

e Windows A popular option is to use the open
source MinGW (a Windows distribution of gec). See
the appendix for instructions for setting up MinGW
manually. EPD and Python(x,y) bundle MinGW,
but some of the configuration steps in the appendix
might still be necessary. Another option is to use Mi-
crosoft’s Visual C. One must then use the same ver-
sion which the installed Python was compiled with.

The newest Cython release can always be downloaded
from http://cython.org. Unpack the tarball or zip
file, enter the directory, and then run:

python setup.py install

S. Behnel, R. Bradshaw, D. Seljebotnin Proc. SciPy 2009, G. Varoquaux, S. van der Walt, J. Millman (Eds), pp. 4-15 4

stefan_ml@behnel.de
robertwb@math.washington.edu
dagss@student.matnat.uio.no
http://developer.apple.com
http://developer.apple.com
http://developer.apple.com
http://developer.apple.com
http://cython.org
http://cython.org

Proceedings of the 8" Python in Science Conference (SciPy 2009)

If you have Python setuptools set up on your system,
you should be able to fetch Cython from PyPI and
install it using:

easy_install cython

For Windows there is also an executable installer avail-
able for download.

Building Cython code

Cython code must, unlike Python, be compiled. This
happens in two stages:

e A .pyx file is compiled by Cython to a .c file, con-
taining the code of a Python extension module

e The .c file is compiled by a C compiler to a .so
file (or .pyd on Windows) which can be import-ed
directly into a Python session.

There are several ways to build Cython code:
o Write a distutils setup.py.

e Use pyximport, importing Cython .pyx files as if
they were .py files (using distutils to compile and
build the background).

e Run the cython command-line utility manually to
produce the .c file from the .pyx file, then manually
compiling the .c file into a shared object library
or .d11 suitable for import from Python. (This is
mostly for debugging and experimentation.)

e Use the [Sage] notebook which allows Cython code
inline and makes it easy to experiment with Cython
code without worrying about compilation details
(see figure 1 below).

Currently, distutils is the most common way Cython
files are built and distributed.

Building a Cython module using distutils

Imagine a simple “hello world” script in a file
hello.pyx:

def say_hello_to(name):
print (Hello %s!" 7% name)

The following could be a corresponding setup.py
script:

from distutils.core import setup

from distutils.extension import Extension

from Cython.Distutils import build_ext

ext_modules = [Extension("hello", ["hello.pyx"1)]

setup(
name = ’Hello world app’,
cmdclass = {’build_ext’:
ext_modules = ext_modules

)
To build, run python setup.py build_ext
--inplace. Then simply start a Python session
and do from hello import say_hello_to and use
the imported function as you see fit.

build_ext},

Hle Edit view History Bookmarks Tools Help |
1

@ & - & © [Fhupiiocalhost:8000/home/admin/o/ 7| [GTGo0q: ‘
[Tutorial: Integration exampl... 3¢ |4 httpilocalho...ge2_spychtml 38 | zl
DSﬁl!:"—1N°teb°°k admin | Toggle | Home | Published | Log |Settings | Report a Problem | Help | Sign out
Tuf ntegration example el EReE T

ot 2. 2009 0551 AM by ade

I T I IR0 wioriconee | it [Text] Uno | Share | Pubien |

scython

cdef extern from "math.h":
double sin(double)

cdef double f(double x) except *:
return sin(x**2)

def integrate(double a, double b, int N):
cdef int i
cdef double dx, s = ©
dx = (b-a)/N
for 1 in range(N):
s += f(ari*dx)
return s * dx

__home_dag... 9_code_sage6_spyx.c __home_dag...code_sage6_spyx.html

integrate(e, 10, 1e6)

evaluate
0.58367343190152399

s
[Bone 1

Figure 1 The Sage notebook allows transparently edit-
ing and compiling Cython code simply by typing
%cython at the top of a cell and evaluate it. Variables
and functions defined in a Cython cell imported into
the running session.

Data types in Cython

Cython is a Python compiler. This means that it can
compile normal Python code without changes (with
a few obvious exceptions of some as-yet unsupported
language features). However, for performance-critical
code, it is often helpful to add static type declarations,
as they will allow Cython to step out of the dynamic
nature of the Python code and generate simpler and
faster C code - sometimes faster by orders of magni-
tude.

It must be noted, however, that type declarations can
make the source code more verbose and thus less read-
able. It is therefore discouraged to use them with-
out good reason, such as where benchmarks prove that
they really make the code substantially faster in a per-
formance critical section. Typically a few types in the
right spots go a long way. Cython can produce an-
notated output (see figure 2 below) that can be very
useful in determining where to add types.

All C types are available for type declarations: integer
and floating point types, complex numbers, structs,
unions and pointer types. Cython can automatically
and correctly convert between the types on assign-
ment. This also includes Python’s arbitrary size in-
teger types, where value overflows on conversion to a
C type will raise a Python OverflowError at runtime.
The generated C code will handle the platform depen-
dent sizes of C types correctly and safely in this case.

Faster code by adding types

Consider the following pure Python code:

http://conference.scipy.org/proceedings/SciPy2009/paper_1

http://conference.scipy.org/proceedings/SciPy2009/paper_1

Cython tutorial

File Edit View History Bookmarks Tools Help

@ & - & @ [Eheplocah

A

£:8000/hort

vefadmin/gjcells/o]_ ‘L] I@' Google 2

ttp:fflocalho...ge2 spyx.html 3€ I x

:+ include "interrupt.pxi® # ctrl-c interrupt block support
i include "stdsage.pxi” # ctrl-c interrupt block support

include "cdefs.pxi”
i cdef extern from "math.h":
double sin(double)

P0G B

cdef double f(double x) except *:
o: return sinix*+2)

1L:

12: def integrate(double a, double b, int N):

13 cdef int 1

14 cdef double dx, s = 0

15: dx = (b-a)/N

lq} for 1 in range(N):
For (_ppet 1=8; _pyxt] -
= _prrrl

17: s += f(a+i*dx)

18: return s * dx

_pyxv M _pyet la=li {

‘Done ‘w-']

Figure 2 Using the -a switch to the cython command
line program (or following a link from the Sage note-
book) results in an HTML report of Cython code
interleaved with the generated C code. Lines are col-
ored according to the level of “typedness” - white
lines translates to pure C without any Python API
calls. This report is invaluable when optimizing a
function for speed.

from math import sin

def f(x):
return sin(x**2)

def integrate_f(a, b, N):
s =0
dx = (b-a)/N
for i in range(N):
s += f(at+i*dx)
return s * dx

Simply compiling this in Cython merely gives a 5%
speedup. This is better than nothing, but adding some
static types can make a much larger difference.

With additional type declarations, this might look like:

from math import sin

def f(double x):
return sin(x**2)

def integrate_f(double a, double b, int N):
cdef int i
cdef double s, dx
s =0
dx = (b-a)/N
for i in range(N):
s += f(at+ixdx)
return s * dx

Since the iterator variable i is typed with C semantics,
the for-loop will be compiled to pure C code. Typing a,
s and dx is important as they are involved in arithmetic
withing the for-loop; typing b and N makes less of a
difference, but in this case it is not much extra work
to be consistent and type the entire function.

This results in a 24 times speedup over the pure
Python version.

cdef functions

Python function calls can be expensive, and this is
especially true in Cython because one might need to
convert to and from Python objects to do the call. In
our example above, the argument is assumed to be a
C double both inside f() and in the call to it, yet a
Python float object must be constructed around the
argument in order to pass it.

Therefore Cython provides a syntax for declaring a C-
style function, the cdef keyword:

cdef double f(double) except *:
return sin(x**2)

Some form of except-modifier should usually be added,
otherwise Cython will not be able to propagate excep-
tions raised in the function (or a function it calls).
Above except * is used which is always safe. An ex-
cept clause can be left out if the function returns a
Python object or if it is guaranteed that an exception
will not be raised within the function call.

A side-effect of cdef is that the function is no longer
available from Python-space, as Python wouldn’t know
how to call it. Using the cpdef keyword instead of
cdef, a Python wrapper is also created, so that the
function is available both from Cython (fast, passing
typed values directly) and from Python (wrapping val-
ues in Python objects).

Note also that it is no longer possible to change f at
runtime.

Speedup: 45 times over pure Python.

Calling external C functions

It is perfectly OK to do from math import sin to
use Python’s sin() function. However, calling C’s
own sin() function is substantially faster, especially
in tight loops. It can be declared and used in Cython

as follows:
cdef extern from "math.h":
double sin(double)

cdef double f(double x):
return sin(x*x)

At this point there are no longer any Python wrapper
objects around our values inside of the main for loop,
and so we get an impressive speedup to 219 times the
speed of Python.

Note that the above code re-declares the function from
math.h to make it available to Cython code. The C
compiler will see the original declaration in math.h at
compile time, but Cython does not parse “math.h” and
requires a separate definition.

When calling C functions, one must take care to link
in the appropriate libraries. This can be platform-

specific; the below example works on Linux and Mac
0OS X:

(©2009, S. Behnel, R. Bradshaw, D. Seljebotn

Proceedings of the 8" Python in Science Conference (SciPy 2009)

from distutils.core import setup
from distutils.extension import Extension
from Cython.Distutils import build_ext

ext_modules=[
Extension("demo",
["demo.pyx"],
libraries=["m"]) # Unix-like specific

]

setup(
name = "Demos",
cmdclass = {"build_ext":
ext_modules = ext_modules

)

build_ext},

If one uses the Sage notebook to compile Cython code,
one can use a special comment to tell Sage to link in
libraries:

#clib: m

Just like the sin() function from the math library, it
is possible to declare and call into any C library as long
as the module that Cython generates is properly linked
against the shared or static library. A more extensive
example of wrapping a C library is given in the section
Using C libraries.

Extension types (aka. cdef classes)

To support object-oriented programming, Cython sup-
ports writing normal Python classes exactly as in
Python:

class MathFunction(object):
def __init__(self, name, operator):
self.name = name
self.operator = operator

def __call__(self, *operands):
return self.operator (*operands)

Based on what Python calls a “built-in type”, how-
ever, Cython supports a second kind of class: exten-
sion types, sometimes referred to as “cdef classes” due
to the keywords used for their declaration. They are
somewhat restricted compared to Python classes, but
are generally more memory efficient and faster than
generic Python classes. The main difference is that
they use a C struct to store their fields and meth-
ods instead of a Python dict. This allows them to
store arbitrary C types in their fields without requir-
ing a Python wrapper for them, and to access fields
and methods directly at the C level without passing
through a Python dictionary lookup.

Normal Python classes can inherit from cdef classes,
but not the other way around. Cython requires to
know the complete inheritance hierarchy in order to
lay out their C structs, and restricts it to single in-
heritance. Normal Python classes, on the other hand,
can inherit from any number of Python classes and ex-
tension types, both in Cython code and pure Python
code.

So far our integration example has not been very useful
as it only integrates a single hard-coded function. In

order to remedy this, without sacrificing speed, we will
use a cdef class to represent a function on floating point

numbers:
cdef class Function:
cpdef double evaluate(self, double x) except *:
return 0

Like before, cpdef makes two versions of the method
available; one fast for use from Cython and one slower
for use from Python. Then:

cdef class SinOfSquareFunction(Function):
cpdef double evaluate(self, double x) except *:
return sin(x**2)

Using this, we can now change our integration exam-

ple:
def integrate(Function f, double a, double b, int N):
cdef int i
cdef double s, dx
if £ is None:
raise ValueError("f cannot be None")
s =0
dx = (b-a)/N
for i in range(N):
s += f.evaluate(a+i*dx)
return s * dx

print (integrate(SinOfSquareFunction(), 0, 1, 10000))

This is almost as fast as the previous code, however
it is much more flexible as the function to integrate
can be changed. It is even possible to pass in a new
function defined in Python-space. Assuming the above
code is in the module integrate.pyx, we can do:

>>> import integrate
>>> class MyPolynomial(integrate.Function):
def evaluate(self, x):
return 2*x*x + 3*x - 10

>>> integrate.integrate(MyPolynomial(), 0, 1, 10000)
-7.8335833300000077

This is about 20 times slower than SinOfSquareFunc-
tion, but still about 10 times faster than the origi-
nal Python-only integration code. This shows how
large the speed-ups can easily be when whole loops
are moved from Python code into a Cython module.

Some notes on our new implementation of evaluate:

e The fast method dispatch here only works because
evaluate was declared in Function. Had evaluate
been introduced in Sin0fSquareFunction, the code
would still work, but Cython would have used the
slower Python method dispatch mechanism instead.

e In the same way, had the argument £ not been typed,
but only been passed as a Python object, the slower
Python dispatch would be used.

e Since the argument is typed, we need to check
whether it is None. In Python, this would have re-
sulted in an AttributeError when the evaluate
method was looked up, but Cython would instead
try to access the (incompatible) internal structure
of None as if it were a Function, leading to a crash
or data corruption.

http://conference.scipy.org/proceedings/SciPy2009/paper_1

http://conference.scipy.org/proceedings/SciPy2009/paper_1

Cython tutorial

There is a compiler directive nonecheck which turns on
checks for this, at the cost of decreased speed. Here’s
how compiler directives are used to dynamically switch

on or off nonecheck:
#cython: nonecheck=True
77 Turns on nonecheck globally

import cython

Turn off nonecheck locally for the function
Qcython.nonecheck(False)
def func():
cdef MyClass obj = None
try:
Turn nonecheck on again for a block
with cython.nonecheck(True):
print obj.myfunc() # Raises exception
except AttributeError:
pass
print obj.myfunc() # Hope for a crash!

Attributes in cdef classes behave differently from at-
tributes in regular classes:

e All attributes must be pre-declared at compile-time

e Attributes are by default only accessible from
Cython (typed access)

e Properties can be declared to expose dynamic at-
tributes to Python-space

cdef class WaveFunction(Function):
Not available in Python-space:
cdef double offset
Available in Python-space:
cdef public double freq
Available in Python-space:
property period:
def __get__