
HAL Id: hal-00502601
https://hal.science/hal-00502601v1

Submitted on 15 Jul 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Ubiquitous Fractal Components
Didier Hoareau, Yves Mahéo

To cite this version:
Didier Hoareau, Yves Mahéo. Ubiquitous Fractal Components. 5th Fractal Workshop, 20th European
Conference on Object-Oriented Programming (ECOOP’06), Jul 2006, Nantes, France. �hal-00502601�

https://hal.science/hal-00502601v1
https://hal.archives-ouvertes.fr


Ubiquitous Fractal Components

Didier Hoareau and Yves Mahéo

VALORIA Laboratory
University of South Brittany, France

{Didier.Hoareau|Yves.Maheo}@univ-ubs.fr

1 Introduction

The relationship between computers and computer users has evolved from several
users for one computer to several computers for one user. Interaction is now possible
with pervasive devices ranging from PDA and mobile phones to powerful worksta-
tions. However, unlike the hardware environment the user can be faced with, current
software elements cannot be quali�ed as ubiquitous yet. An application should be
said ubiquitous if its services are available everywhere (or at least where it makes
sense). However traditional solutions consisting in installing the whole application on
each device or relying systematically on a client-server approach are hardly applica-
ble to the kind of environment considered. Many resource-constrained devices cannot
host the entire application and the absence of permanent connectivity between the
devices makes the use of distant servers hazardous.

The overall objective of our work in project Cubik [1] is to provide middleware
support for the deployment and the execution of component-based ubiquitous ap-
plications. In our approach, for a given set M of machines composed of mobile and
resource constrained devices, we want to put at disposal all the functionalities of a
component-based application, functionalities that can be accessed from every ma-
chine of M. Moreover the devices that compose the network are characterised by
their heterogeneity, their mobility and their volatility.

In this article we will focus on one part of project Cubik, through the presentation
of a distribution scheme for Fractal-based applications that is namely based on a
user-transparent extension to the Fractal component model. This scheme allows any
Fractal application to expose it provided services in an ubiquitous way on several
machines. The mechanisms implemented support network disconnections and let the
application run in a degraded mode if necessary (e.g. parts of the application are
still available whereas others parts are unaccessible). With our extension, Fractal
components are adaptive with respect to network disconnections and reconnections
and take advantage of the available connectivity of the network in order to maximise
the number of provided interfaces that can be used.

2 Distribution of a Fractal Component: Towards Ubiquitous
Components

In our approach, making a Fractal component ubiquitous is to make its provided
interfaces available from several hosts. We propose a distribution scheme that is



based on the replication of composite components. Indeed, we allow a composite to
be duplicated on a set of hosts, although each primitive component is localised on a
single host. We do not elaborate here on the process that decides on the placement
of each component (see [3] for more details). The general principle of our distribu-
tion model is the following: a composite component c is distributed over a set of
hosts H if it exists on every host of H an instance of c. All the instances of c are
created according to the directives found in the architecture descriptor (speci�ed in
an augmented FractalADL). At execution time, each instance of c maintains locally
the con�guration of its subcomponents. The provided and required interfaces of c are
accessible on all the hosts of H. These interfaces are those de�ned in the architecture
descriptor.

A primitive component is not replicated. So the instances of a composite con-
taining a primitive component hold a distant reference to the single instance of this
primitive (except for the composite instance located on the same host as the prim-
itive instance, for which this reference is local). A composite c distributed over H
may contain a composite subcomponent c′ distributed over H ′ (H ′ must then be a
subset of H). In this case, on a host that is in H but not in H ′, the local instance of
c holds a distant reference to any one distant instance of c′.

The di�erent replicas of a composite component are created during the deploy-
ment process. The addition of a new controller, named cubik-controller, to any
Fractal component allows us to identify these replicas. When a composite component
is instantiated locally, its cubik-controller is set with the placement information
of its direct subcomponents. Our current implementation is based on Julia/ ASM2.0
and remote communication between components is achieved thanks to FractalRMI.
Each proxy component that represents a remote composite or primitive component
is a Fractal component that is created on the �y (thanks to the ASM library) and
is bound to other local components as a normal Fractal component. Distribution is
thus transparent.

3 Management of Network Disconnections

3.1 Active interfaces

Because of the dynamism of the network a machine may become unaccessible to-
gether with the primitive components which were running on this machine. Since all
provided interfaces of a replicated composite component are still accessible according
to our distribution scheme, a method invocation on an interface that is bound to tan
unaccessible remote primitive component will throw a network exception. In order
to prevent such a situation we introduce the notion of active interfaces. If a remote
component becomes (un)accessible, all interfaces that lead to the provided interfaces
of this component are (de)activated. For example on Figure 1, if m1 becomes unac-
cessible from m2, interface a on m2 is deactivated and method invocations on this
interface are blocked. On m2, only the provided interfaces of primitive component q
and interface b are still active.



3.2 Automatic activation/deactivation of interfaces

Active interfaces are implemented within the cubik-controller thanks to theMeta-
CodeGenerator interceptor of Julia: method calls on each interfaces are rei�ed and,
according to the state of the interface, a speci�c adaptation policy is applied (e.g. wait
until the interface becomes active again). When the state of an interface changes, the
cubik-controller of the corresponding component propagates this information to
the cubik-controller of its super component and by ricochet to all the components,
following the dependencies between required and provided interfaces. Programmers
can use the cubik-controller in order to discover the state of any interface so as
to implement speci�c behaviours that take into account changes in interfaces' states.
An obvious adaptation is to avoid invoking a method of an inactive interface.

We provide also a generic framework in order to give more possibilities in writing
adaptation code (e.g. when a required interface becomes inactive and instead of
directly propagate this state through the hierarchy, we may want to cache the method
call during a parameterisable amount of time). Indeed, the proxy component that
is generated on the �y is a composite component which encloses the proxy object
and an adapter component. The adapter has the same provided interfaces than the
remote component and can be used in order to write pre and post adaptation code
(cf SimpleCodeGenerator class in Julia).

Network disconnections have been taken into account thanks to D-Raje (Dis-
tributed Resource-Aware Java Environment) [4], an extensible Java-based middle-
ware developed in our team. D-Raje makes it possible to model and to monitor
hardware resources (e.g. processor, memory) and software resources (e.g. process,
socket, thread) in a distributed environment. D-Raje has been extended by adding
two new types of resources: RemoteBinding and NetworkLink. A NetworkLink re-

m 1

m 2

a

b

a

b

m 3 m 3

m 1

m 2

a

b

a

b

(a) Fully connected network (b) Network with two disconnections

p

q

p

q

Figure 1. Recon�guration of bindings according to the state of the interfaces



sources models the physical link between two hosts and rei�es the state of this con-
nection. A RemoteBinding resource listens to a NetworkLink in order to maintain
the state of a binding between two remote components: when a disconnection occurs,
the corresponding RemoteBinding resources are noti�ed and the Fractal component
interfaces are deactivated using the cubik-controller.

3.3 Automatic recon�guration of bindings

The use of active interfaces allow Fractal applications to perform in a degraded mode
even if some parts of the application are unaccessible. When this happens, in order
to maximize the number of active interfaces, it is possible to de�ne an automatic
recon�guration of the bindings that takes advantage of the network connectivity.
Indeed, in our approach, a composite component is replicated on several machines in
order to increase the availability of the application. When a component is bound to
a composite component on a speci�c host, it is possible to choose any other replica
of this component according to its accessibility.

For example Figure 1 shows how bindings between remote components are recon-
�gured according to the state of the remote interfaces: on part (a), components p and
q are available from m1 (that is, the proxy to q on m1 is a valid reference to m2) and
on part (b), m2 is no longer accessible from m1. We can notice that the composite
component on m2 performs in a degraded mode: only a subset of its subcomponents
is running.

4 Conclusion

This paper has presented a method to make Fractal-based application ubiquitous,
that is, to allow the services implemented by the application to be invoked on more
than one host. This is mainly achieved thanks to a distribution scheme of compos-
ite components that can be duplicated on several hosts. The introduction of active
interfaces to the model allows the application to perform in a degraded mode when
disconnections occur. Some simple mechanisms have also been described to show how
ubiquitous Fractal components can be tuned regarding network disconnections and
how bindings are automatically recon�gured when network failures occur.

References

1. Project Cubik web pages. http://www-valoria.univ-ubs.fr/CASA/Cubik.
2. Didier Hoareau and Yves Mahéo. Distribution of a Hierarchical Component in a Non-Connected

Environment. In 31st Euromicro Conference - Component-Based Software Engineering Track,
pages 143�150, Porto, Portugal, September 2005. IEEE CS.

3. Didier Hoareau and Yves Mahéo. Constraint-Based Deployment of Distributed Components in a
Dynamic Network. In Architecture of Computing Systems (ARCS 2006), volume 3864 of LNCS,
pages 450�464, Frankfurt/Main, Germany, March 2006. Springer Verlag.

4. Yves Mahéo, Frédéric Guidec, and Luc Courtrai. A Java Middleware Platform for Resource-
Aware Distributed Applications. In Proceedings of the 2nd International Symposium on Parallel
and Distributed Computing (ISPDC'2003), pages 96�103, Ljubljana, Slovénie, October 2003.
IEEE CS.


