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1 Introduction

In the wake of the celebrated results of Moser [21] concerning the classical inte-

grability of the geodesic flow on the ellipsoid (first proved by Jacobi in the three-

dimensional case), and of the Neumann-Uhlenbeck problem on the n-dimensional

spheres, we will present a (to our knowledge) new integrable system which relies on

a preferred conformally flat metric on Sn. This integrable system is actually dual (in

the sense of projective equivalence [28, 20]) to the above-mentioned Jacobi-Moser

system.
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Among the techniques found in the literature, we will mention two different

constructs that produce integrable systems together with their Poisson-commuting

first integrals:

• Bihamiltonian systems initiated by Magri [19] and Benenti [3], and further

elaborated by, e.g., Ibort, Magri, and Marmo [14], Falqui and Pedroni [13].

• Projectively equivalent systems discovered by Levi-Civita [17], and geometrical-

ly developed by Tabachnikov [28, 29], Topalov and Matveev [30].

The equivalence of these two theories has been proved by Bolsinov and Matveev [6].

We have chosen to work using Tabachnikov’s approach. With the help of his

general construction [28, 22] providing, e.g., the Jacobi-Moser first integrals, and,

adopting a “dual” approach, we derive the Poisson-commuting first integrals of the

new geodesic flow, which we call the dual Moser system. This enables us to provide

a global expression for these new first integrals.

Our dual Moser system turns out to be locally Stäckel (in ellipsoidal coordi-

nates); it shows up as a “mirror image” of Jacobi-Moser relatively to Neumann-

Uhlenbeck (see Table 1).

In contradistinction to the Jacobi-Moser system, conformal flatness of the new

system is a fundamental input at the classical, and at the quantum level as well.

To deal with quantum integrability of these systems, we will resort to its com-

monly accepted definition, namely that the quantized first integrals should still be

in involution. This, of course, leaves open the choice of an adapted quantization

procedure.

It has been shown [9] that Stäckel systems, using Carter’s quantization pres-

cription [7], do remain integrable at the quantum level provided Robertson’s con-

dition holds [25]. It is therefore worthwhile to study quantum integrability making

use of a genuine quantization theory that takes into account the conformal geom-

etry underlying the dual Moser system: the conformally equivariant quantization

[11, 10]. One striking discovery is that the dual Moser system passes the quantum

test using the conformally equivariant quantization. We note that the same is true

for the Neumann-Uhlenbeck system.

1.1 Prolegomena

Let us recall that two independent metrics on a Riemannian manifold are said to be

projectively equivalent if they have the same unparametrized geodesics. A shown in,

e.g., [30, 6] this entails that the associated geodesic flows are Liouville-integrable.

We will resort to this pathbreaking result in the specific, historical, yet fundamental

example of the geodesic flow of the ellipsoid.
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The key point of our approach to Liouville/quantum integrability of the geodesic

flow of the ellipsoid, En, lies in the fact that En = {Q ∈ Rn+1|
∑n

α=0 (Q
α)2/aα = 1}

with metric g1 =
∑n

α=0 (dQ
α)2|En admits, as a matter of fact, another independent,

and projectively equivalent Riemannian metric, g2, that we will introduce shortly.

Put Qα = qα
√
aα for all α = 0, . . . , n, so that we have q · q =

∑n
α=0 (q

α)2 = 1.

The mapping Q 7→ q : En → Sn is a diffeomorphism and the metric on Sn, induced

from the Euclidean ambient metric, reads now1

g1 = g|Sn where g =

n∑

α=0

aαdq
2
α (1.1)

where g is, at the moment, viewed as a (flat) metric on Rn+1. The equations of the

geodesics of the ellipsoid are well-known, and retain the form

q̈α + Γα
βγ q̇

β q̇γ = 0, (1.2)

for all α = 0, . . . , n, where the Christoffel symbols of (Sn, g1) are given by

Γα
βγ =

qα

aα

δβγ∑
q2λ/aλ

(1.3)

for all α, β, γ = 0, . . . , n. (See also Equation (2.12) yielding the associated geodesic

spray.) We note that the constraint equation

q̇2 + q · q̈ = 0 (1.4)

is indeed satisfied by (1.2).

Following [28, 30], let us define, on Sn, the conformally flat metric

g2 = g|Sn with g =
1∑
q2β/aβ

n∑

α=0

dq2α (1.5)

where the conformally flat metric g is defined on Rn+1\{0}.
The equations of the geodesics for the latter metric are readily found by using

the expression of the Christoffel symbols of g, namely

Γ
α

βγ =
1∑
q2λ/aλ

[
δβγ

qα

aα
− δαβ

qγ
aγ

− δαγ
qβ
aβ

]
(1.6)

for all α, β, γ = 0 . . . , n. One obtains the equations of the geodesic of (Rn+1\{0}, g),
viz.,

q̈α +
qα

aα

∑
q̇2β∑

q2γ/aγ
= 2q̇α

∑
qβ q̇

β/aβ∑
q2γ/aγ

(1.7)

1To avoid clutter, we will oftentimes write qα ≡ qα, as no confusion occurs in Euclidean space.
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for all α = 0, . . . , n. The latter, suitably restrained to Sn, is precisely Equation (1.2)

with a different parametrization (again, the constraint (1.4) is duly preserved by

Equation (1.7)); the metrics g1 and g2 are projectively equivalent.

We will put this fact in broader perspective within Section 2.

Remark 1.1. The Γα
βγ and Γ

α

βγ, given by (1.3) and (1.6) respectively, may be viewed

as the components of two projectively equivalent linear connections ∇ and ∇ on

Rn+1\{0}. While ∇ is clearly the Levi-Civita connection of the metric g, the con-

nection ∇ is, instead, a Newton-Cartan connection (see, e.g., [15]). This means

that ∇ is a symmetric linear connection that parallel-transports a (spacelike) con-

travariant symmetric 2-tensor γ =
∑n

α,β=0 γ
αβ∂qα ⊗ ∂qβ and a (timelike) 1-form

θ =
∑n

α=0 θαdq
α spanning ker(γ). Here, the degenerate “metric” is given by

γαβ =
1

aα
δαβ − qαqβ

aαaβ

1∑
q2λ/aλ

and θα = qα. (1.8)

1.2 Main results

The main results of our article can be summarized as follows.

Theorem 1.2. The geodesic flow on (T ∗Sn,
∑

α dpα ∧ dqα) above the conformally

flat manifold (Sn, g2) is Liouville-integrable, and admits the following set of Poisson-

commuting first integrals

Fα = q2α

n∑

β=0

aβp
2
β +

∑

β 6=α

(aαpαqβ − aβpβqα)
2

aα − aβ
(1.9)

with α = 0, . . . , n. We will call the system (F0, . . . , Fn) the dual Moser system.

This theorem follows directly from Propositions 2.7, 2.8, and 2.10.

Let us callD 1

2
, 1
2

(Sn) the space of differential operators on Sn with arguments and

values in the space of 1
2
-densities of the sphere Sn; we, likewise, denote by Pol(T ∗Sn)

the space of fiberwise polynomial functions on T ∗M . It has been proved [11] that

there exists a unique invertible linear mapping Q 1

2
, 1
2

: Pol(T ∗Sn) → D 1

2
, 1
2

(Sn) that

(i) intertwines the action of the conformal group O(n + 1, 1) and (ii) preserves the

principal symbol: we call it the conformally equivariant quantization mapping.

Theorem 1.3. Quantum integrability of the dual Moser system holds true in terms

of the conformally equivariant quantization Q 1

2
, 1
2

.

This last result stems from Theorem 3.4, Propositions 3.6, and 3.12.
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1.3 Plan of the article

The paper is organized as follows.

Section 2 gives us the opportunity to introduce three distinguished classically

integrable systems on the sphere, namely, the Jacobi-Moser system, its dual counter-

part, and the Neumann-Uhlenbeck system. The construction of the set of mutually

Poisson-commuting first integrals is reviewed and specialized to the case of the

dual Moser system. The resulting system is shown to be Stäckel, the ellipsoidal

coordinates being the separating ones.

In Section 3 we address the quantum integrability issue of these systems, in

terms of the conformally equivariant quantization. We prove that the Neumann-

Uhlenbeck and the dual Moser systems are, indeed, quantum integrable using this

quantization method, well adapted to the conformal flatness of configuration space.

Section 4, provides a conclusion to the present article, and gathers some per-

spectives for future work.

2 A novel integrable system on the sphere: the

dual Moser system

2.1 Projectively equivalent metrics and conservation laws

Let us recall, almost verbatim, Tabachnikov’s construction [28] of a maximal set

of independent Poisson-commuting first integrals for a special Liouville-integrable

system, namely a bi-Hamiltonian system associated with two projectively equivalent

metrics, g1 and g2, on a configuration manifoldM .2 See also [20, 6] for an alternative

construction.

We start with two Riemannian manifolds (M, g1) and (M, g2) of dimension n.

The tangent bundle TM is endowed with two distinguished 1-forms λ1 and λ2,

namely λN = g∗Nθ, where θ is the canonical 1-form of T ∗M , and gN : TM → T ∗M

is viewed as a bundle isomorphism. We then write, locally, λN = gNiju
idxj where

gN = gNij (x)dx
i ⊗ dxj for N = 1, 2. Likewise, the Lagrangian functions to consider

are the fiberwise quadratic polynomials LN = 1
2
gNij (x)u

iuj. Denote by ωN = dλN
the corresponding symplectic 2-forms of TM , and also by XN = XLN

the associated

geodesic sprays. We have

λN(XN) = 2LN and ωN(XN) = −dLN (2.1)

for all N = 1, 2. The (maximal) integral curves of the vector fields XN on TM

project onto configuration space as the geodesics of (M, gN).

2The formalism can be easily extended to the case of Finsler structures [28]; here, we will not
need such a generality.
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Introduce then the diffeomorphism φ : TM → TM defined by φ(x, u) = (x, ũ)

where ũ = u
√
L1(x, u)/L2(x, u).

3 This diffeomorphism is, indeed, designed to relate

the two Lagrangians, viz.,

L1 = φ∗L2. (2.2)

Clearly, the two metrics g1 and g2 have the same unparametrized geodesics (we

write g1 ∼ g2) iff

φ∗(X1) ∧X2 = 0 (2.3)

i.e., iff the the push-forward φ∗(X1) and X2 are functionally dependent.

The method, to obtain a generating function for the conserved quantities in

involution, consists then in singling out, apart from ω1, a preferred X1-invariant

2-form constructed in terms of ω2.

Proposition 2.1. Suppose that g1 ∼ g2, and define ω′
2 = d(L

− 1

2

2 λ2), then

LX1
(φ∗ω′

2) = 0. (2.4)

Proof. We have LX1
(φ∗ω′

2) = d((φ∗ω′
2)(X1)) = φ∗d(ω′

2(φ∗X1)) = φ∗d(hω′
2(X2)), for

some function h (see (2.3)). The definition of ω′
2 then readily yields LX1

(φ∗ω′
2) =

φ∗d(h d(L
− 1

2

2 λ2)(X2)) = φ∗d(h(−1
2
L
− 3

2

2 (dL2 ∧ λ2)(X2) + L
− 1

2

2 ω2(X2))) = 0 in view

of (2.1).

So, the sought extra X1-invariant 2-form is φ∗ω′
2. (Note that LX1

(φ∗ω2) 6= 0.)

It enters naturally into the definition of a “generating function” ft ∈ C∞(TM,R)

of first-integrals given below.

Corollary 2.2. The function

ft =
(t−1ω1 + φ∗ω′

2)
n

ωn
1

(2.5)

is X1-invariant whenever t 6= 0.

2.2 The example of two projectively equivalent geodesic

sprays for the n-sphere

We recall the construction of the first-integrals in involution yielding the Liouville-

integrability of the geodesic flow on TEn ∼= TSn.

Let us parametrize TRn+1 by the couples q, v ∈ Rn+1. The constraints defining

the embedding TSn →֒ TRn+1 are

q2 :=

n∑

α=0

q2α = 1 and v · q :=
n∑

α=0

vαqα = 0. (2.6)

3Note that φ is the identity on the zero section of TM .
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As already mentioned in Section 1, the (unparametrized) geodesics of the el-

lipsoid En with semi-axes4 a0, a1, · · · , an are precisely given by those of the sphere

Sn = {q ∈ Rn+1|∑n
α=0 q

2
α = 1} endowed with either projectively equivalent metrics

g1 =

n∑

α=0

aαdq
2
α

∣∣∣
Sn

& g2 =
1

B

n∑

α=0

dq2α

∣∣∣
Sn

(2.7)

where

B =
n∑

α=0

q2α
aα
. (2.8)

The corresponding Lagrangians on TSn are respectively

L1 =
1

2
A & L2 =

1

2B

n∑

α=0

v2α (2.9)

where

A =
n∑

α=0

aαv
2
α. (2.10)

The associated Cartan 1-forms then read in this case

λ1 =
n∑

α=0

aαvαdqα & λ2 =
1

B

n∑

α=0

vαdqα. (2.11)

Proposition 2.3. (i) The geodesic sprays for the metrics gN are given by the Hamil-

tonian vector fields XN = XLN
, for N = 1, 2, namely

X1 =

n∑

α=0

vα
∂

∂qα
− v2

B

n∑

α=0

qα
aα

∂

∂vα
(2.12)

and

X2 =
n∑

α=0

vα
∂

∂qα
− 1

B

n∑

α=0

(
2vα

n∑

β=0

vβqβ
aβ

− v2
qα
aα

) ∂

∂vα
(2.13)

respectively.

(ii) Condition (2.3) holds true, implying g1 ∼ g2.

Proof. Using (2.1) together with the constraints (2.6), we thus have to solve for X1,

resp. X2, the equation ωN(XN) + dLN + λ d(q2 − 1) + µ d(v · q) = 0 where λ and µ

are Lagrange multipliers. The latter are, in fine, completely determined and readily

yield (2.12), resp. (2.13).

Now, the diffeomorphism φ : (q, v) 7→ (q, ṽ) introduced in Section 2.1 is given

by ṽ = v
√
AB/v2; routine calculation yields φ∗(∂qα) = ∂qα + qα/(aαB) E with

E =
∑
vα∂vα the Euler vector field; also φ∗(∂vα) =

√
AB/v2(∂vα−vα(v−2−aα/A) E).

This, along with the constraint
∑
vαqα = 0, helps us prove Equation (2.3).

4We will, later on, deal with the choice 0 < a0 < a1 < · · · < an.
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2.3 The Jacobi-Moser system

Let us review here, and in some detail, the main result obtained by Tabachnikov [28]

via the general procedure of Section 2.1, starting with the geodesic flow on (Sn, g1).

The diffeomorphism φ of TSn, namely φ(q, v) = (q, ṽ = v
√
L1/L2), is such that

ṽ = v
√
AB/v2 where v2 =

∑
v2α; whence φ

∗λ2 = C
√
A
∑
vαdqα, where

C =
1√
Bv2

. (2.14)

Now, since φ∗ω′
2 = d(L

− 1

2

1 φ∗λ2), easy computation then leads to

φ∗ω′
2 = C

√
2Ω1 where Ω1 =

n∑

α=0

dvα ∧ dqα +
dC

C
∧

n∑

α=0

vαdqα. (2.15)

The function C defined by (2.14) is a first integral of the system, namely

X1C = 0. (2.16)

This function C is the Joachimsthal first-integral of the geodesic flow of (Sn, g1).

The next step consists in lifting the 1-parameter family of first-integrals (2.5)

to TRn+1 by taking advantage of the constraints (2.6), and to put

ft =
(t−1ω1 + Ω1)

n ∧ d(v.q) ∧ q · dq
ωn
1 ∧ d(v.q) ∧ q · dq (2.17)

with a slight abuse of notation using the constancy of C (see (2.16)) in (2.15).

Elementary calculation yields

ft =

(
ωn
∗ − (n/v2)ωn−1

∗ ∧ v · dv ∧ v · dq
)
∧ q · dv ∧ q · dq

ωn
1 ∧ (dv.q + v · dq) ∧ q · dq (2.18)

where ω∗ =
∑
bαdvα ∧ dqα − (1/v2) v · dv ∧ v · dq, together with bα = t−1aα + 1, for

all α = 0, . . . , n. The following lemma [28] will be used to complete the calculation.

Lemma 2.4. Let ω =
∑
cαdvα ∧ dqα and ω0 =

∑
dvα ∧ dqα, then

ωn ∧ q · dv ∧ q · dq
ωn+1
0

= n!

n∏

α=0

cα

n∑

α=0

q2α
cα

ωn−1 ∧ v · dv ∧ v · dq ∧ q · dv ∧ q · dq
ωn+1
0

= (n− 1)!

n∏

α=0

cα
∑

α<β

(vαqβ − vβqα)
2

cαcβ
.
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Using the two above formulæ, we find ft = N/D where

N = n!
∏

bα
∑ q2α

bα
− n(n− 1)!

v2

∏
bα
∑

α<β

(vαqβ − vβqα)
2

bαbβ

D = n!
∏

aα
∑

q2α/aα.

This entails ft = gt/C (up to a constant overall factor), where C is the Joachimsthal

first-integral, and

gt = v2
n∑

α=0

q2α
bα

− 1

2

∑

α6=β

(vαqβ − vβqα)
2

bαbβ
.

Taking into account the expression bα = t−1aα+1, and the constraints (2.6), we end

up with

gt =

n∑

α=0

aαv
2
α

aα + t
−

n∑

α=0

aαv
2
α

aα + t

n∑

α=0

aαq
2
α

aα + t
+

(
n∑

α=0

aαvαqα
aα + t

)2

. (2.19)

At last, the first-integrals Fα defined by

gt =

n∑

α=0

Fα

aα + t
(2.20)

are easily found to be

Fα = aαv
2
α +

∑

β 6=α

aαaβ(vαqβ − vβqα)
2

aα − aβ
. (2.21)

These are the Jacobi-Moser first-integrals. In terms of the momenta pα = aαvα
(see (2.11)), they read

Fα =
p2α
aα

+
∑

β 6=α

(pαaβqβ − pβaαqα)
2

aαaβ(aα − aβ)
. (2.22)

Remark 2.5. We indeed recover the Moser first integrals

Fα = P 2
α +

∑

β 6=α

(PαQβ − PβQα)
2

aα − aβ
(2.23)

by means of the canonical transformation (p, q) 7→ (P,Q) where Pα = pα/
√
aα, and

Qα = qα
√
aα.

2.4 The dual Moser system

Let us now adopt a “dual” standpoint by exchanging the rôle of the two projectively

equivalent metrics on the n-sphere, i.e., by letting g1 ↔ g2 in the above derivation. In

doing so, we will work out a complete set of commuting first-integrals of the geodesic

flow on the conformally flat manifold (Sn, g2). This will turn out to provide a new

integrable system on the n-sphere.
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2.4.1 The general construction

Let us now apply the general procedure outlined in Section 2.1 starting with the

geodesic flow on (Sn, g2), and replacing mutatis mutandis all reference to g1 by that

of g2.

We first need to work out the expression of the 2-form φ∗ω′
1 in Proposition 2.1.

The diffeomorphism φ of TSn, viz., φ(q, v) = (q, ṽ = v
√
L2/L1), is ṽ = v

√
v2/(AB)

where, again, v2 =
∑
v2α. We hence get φ∗λ1 =

√
v2/(AB)

∑
aαvαdqα. Now, since

φ∗ω′
1 = d(L

− 1

2

2 φ∗λ1), thanks to φ
∗L1 = L2, we are led to

φ∗ω′
1 =

√
2

A
Ω̂2 where Ω̂2 =

n∑

α=0

aαdvα ∧ dqα − dA

2A
∧ λ1, (2.24)

with λ1 =
∑
aαvαdqα (see (2.11)).

We then find the new Joachimsthal first-integral, J , of the geodesic flow of

(Sn, g2) with the help of the expression (2.13) of the geodesic spray X2. In fact,

easy calculation yields X2A = (2A/B)X2(B), hence X2J = 0 where

J =
A

B2
. (2.25)

Utilizing this constant of the motion, and Equation (2.4), we obtain, see (2.24),

LX2
Ω2 = 0 where Ω2 =

Ω̂2

B
. (2.26)

Again, and to ease the calculation, we will lift the 1-parameter family of first-

integrals (2.5) to TRn+1, using the constraints (2.6), and put this time

ft =
(t ω2 + Ω2)

n ∧ d(v · q) ∧ q · dq
ωn
2 ∧ d(v · q) ∧ q · dq . (2.27)

We trivially get

ft =
(t ω̂2 + Ω̂2)

n ∧ q · dv ∧ q · dq
ω̂n
2 ∧ q · dv ∧ q · dq (2.28)

where ω̂2 = Bω2, i.e., ω̂2 =
∑
dvα ∧ dqα − d logB ∧∑ vαdqα and Ω̂2 is as in (2.24).

Let us mention the following somewhat technical lemma.

Lemma 2.6. Upon defining ω̂∗ =
∑
bαdvα ∧ dqα, where bα = aα + t, for every

α = 0, 1, . . . , n, we have

(t ω̂2 + Ω̂2)
k = ω̂k

∗ − k ω̂k−1
∗ ∧

(
t d logB ∧ v · dq + 1

2
d logA ∧ λ1

)

−k(k − 1) ω̂k−2
∗ ∧ (t d logB ∧ v · dq ∧ 1

2
d logA ∧ λ1

11



for all k = 1, . . . , n, and

ω̃n−1
∗ = (n− 1)!

∑

α<β

∏

γ 6=α,β

bγdvγ ∧ dqγ

A somewhat demanding computation yields

ft =

(
ω̂n
∗ − n ω̂n−1

∗ ∧ dA/(2A) ∧ λ1
)
∧ q · dv ∧ q · dq

ω̂n
2 ∧ q · dv ∧ q · dq . (2.29)

Resorting to Lemmas 2.4 and 2.6 in order to evaluate ft, we obtain the partial result

ω̂n
∗ ∧ q · dv ∧ q · dq = n!

n∏

β=0

bβ

(
n∑

α=0

q2α
bα

)
ωn+1
0 (2.30)

where ω0 =
∑
dvα ∧ dqα. Likewise, some more effort is needed to find

ω̂n−1
∗ ∧1

2
d logA∧λ1∧q·dv∧q·dq = n(n−1)!

n∏

γ=0

bγ
∑

α<β

(aαvαqβ − aβvβqα)
2

bαbβ

ωn
0

A
. (2.31)

We just have to plug Equations (2.30) and (2.31) into the expression (2.28) to find5

ft =

n∏

γ=0

bγ

(
n∑

α=0

q2α
bα

− 1

A

∑

α<β

(aαvαqβ − aβvβqα)
2

bαbβ

)
. (2.32)

We will, again, deal with the rescaled first-integral

gt =
J∏
bα
ft (2.33)

where J is an (2.25), as a generating function of the sought conservative system

F0, F1, . . . , Fn. Using the definition bα = aα+t, and Equation (2.20), we readily prove

that the geodesic flow on TSn above (Sn, g2) admits the following first integrals, viz.,

Fα =
1

B2

(
Aq2α +

∑

β 6=α

(aαvαqβ − aβvβqα)
2

aα − aβ

)
(2.34)

with α = 0, 1, . . . , n, where A and B are given by Equations (2.10) and (2.8),

respectively.

With the help of the bundle isomorphism g−1
2 : T ∗Sn → TSn provided by the

metric g2, we can pull-back the previous first integrals to the cotangent bundle of Sn.

Whence the following result.

5We have ω̂n
2 ∧ q · dv ∧ q · dq = n!ωn+1

0 .
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Proposition 2.7. The geodesic flow on the cotangent bundle of (Sn, g2) admits the

following set of first integrals, viz.,

Fα = q2α

n∑

β=0

aβp
2
β +

∑

β 6=α

(aαpαqβ − aβpβqα)
2

aα − aβ
(2.35)

with α = 0, . . . , n.

In the next section we will prove that these first integrals are actually indepen-

dent and are mutually Poisson commuting.

2.4.2 Liouville integrability of the unconstrained system

From now on, we choose to work in a purely Hamiltonian framework which will turn

out to be well-suited to the quantization procedure that we will examine in the next

section.

Let us recall that the Hamiltonian of the system is given by

H =
1

2

n∑

α,β=0

gαβ2 pαpβ =
1

2
B

n∑

α=0

p2α (2.36)

where B =
∑n

α=0 q
2
α/aα (see (2.8)).

We will show that the new set (2.35) of first-integrals of motion indeed turns

the geodesic flow on the sphere (Sn, g2) into an integrable system dual to the Jacobi-

Moser geodesic flow on the ellipsoid.

Proposition 2.8. The functions F0, . . . , Fn of (T ∗Rn+1,
∑n

α=0 dpα ∧ dqα) given by

(2.35) are in involution, namely

{Fα, Fβ} = 0 (2.37)

for all α, β = 0, . . . , n. Moreover the following holds true

{H,Fα} = 2
(
B aαp

2
α − q2α

∑

β

p2β

)∑

γ

pγqγ . (2.38)

Proof. Write Fα = Aα + Bα with

Aα = q2αJ, J =

n∑

β=0

aβp
2
β , (2.39)

where J is the Joachimsthal first integral (2.25), and

Bα =
∑

β 6=α

M2
αβ

aα − aβ
, Mαβ = aαpαqβ − aβpβqα. (2.40)
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One can check the following relationships

{Aα,Aβ} = −4JqαqβMαβ, {Aα,Bβ} = 4Jaαqαqβ
Mαβ

aα − aβ
, {Bα,Bβ} = 0,

for all α, β = 0, . . . , n, which readily imply Equation (2.37).

Let us furthermore observe that we have the following Poisson brackets, viz.,

{H,Aα} = 2JBqαpα − 4q2α
H

B

n∑

β=0

pβqβ

and

{H,Bα} = −2JBqαpα + 2Baαp
2
α

n∑

β=0

pβqβ ,

which proves Equation (2.38). The proof is complete.

Remark 2.9. Notice in contradistinction to the Jacobi-Moser case, that (i) the

metric g given by (1.5) on the ambient space Rn+1\{0} is no longer flat, and (ii) the

conservation relations {H,Fα} = 0 for α = 0, . . . , n are only valid for the constrained

system, see (2.38), where p · q = 0.

Let us also mention the interesting relations

n∑

α=0

Fα =
n∑

α=0

q2α

n∑

β=0

aβp
2
β (2.41)

n∑

α=0

Fα

aα
=

(
n∑

α=0

pαqα

)2

(2.42)

n∑

α=0

Fα

a2α
= −2H + 2

n∑

α=0

pαqα

n∑

β=0

pβqβ
aβ

, (2.43)

of which the last one leads to another proof of (2.38).

2.4.3 The Dirac brackets

Our goal is now to deduce from the knowledge of (2.35) independent quantities

in involution I1, . . . , In on (T ∗Sn,
∑n

i=1 dξi ∧ dxi) from the symplectic embedding

ι : T ∗Sn →֒ T ∗Rn+1 defined by the constraints

Z1(p, q) =

n∑

α=0

q2α − 1 = 0, Z2(p, q) =

n∑

α=0

pαqα = 0. (2.44)
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Proposition 2.10. The restrictions Fα|T ∗Sn = Fα ◦ ι of the functions (2.35) do

Poisson-commute on T ∗Sn.

Proof. We get, using the Dirac brackets [1, 23],

{Fα|T ∗Sn, Fβ|T ∗Sn} = {Fα, Fβ}|T ∗Sn

− 1

{Z1, Z2}
[{Z1, Fα}{Z2, Fβ} − {Z1, Fβ}{Z2, Fα}] |T ∗Sn

(2.45)

for second-class constraints. The denominator {Z1, Z2} = −2
∑n

α=0 q
2
α does not

vanish; one can also check that {Z1, Fα} = −4 aαpαqα(1+Z1) and that {Z2, Fα} = 0

for all α = 0, . . . , n. The fact that {Fα, Fβ} = 0 completes the proof.

2.4.4 The constrained integrable system as a Stäckel system

In order to provide explicit expressions for the sought functions in involution I1, . . . , In,

we resort to Jacobi ellipsoidal coordinates x1, . . . , xn on Sn. Those are defined by

Qλ(q, q) =
n∑

α=0

q2α
aα − λ

= −Ux(λ)

V (λ)
(2.46)

where

Ux(λ) =
n∏

i=1

(λ− xi) and V (λ) =
n∏

α=0

(λ− aα) (2.47)

and are such that

a0 < x1 < a1 < x2 < . . . < xn < an. (2.48)

Notice that Equation (2.46) yields the local expressions

q2α(x) =

n∏

i=1

(aα − xi)

∏

β 6=α

(aα − aβ)
(2.49)

for all α = 0, 1, . . . , n.

Let us mention the following identity, deduced from (2.49), viz.,

∂qα
∂xi

= −1

2

qα
aα − xi

(2.50)

for all i = 1, . . . , n and α = 0, 1, . . . , n

It is easy to show that the induced metric g2 = (1/B)
∑n

α=0 dq
2
α|Sn , see (2.7), is

indeed given by g2 =
∑n

i,j=1 gij(x)dx
idxj with

gij(x) =
1

4B

n∑

α=0

q2α
(aα − xi)(aα − xj)

= gi(x) δij (2.51)
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where, using a result taken from [21], we have

gi(x) = − 1

4B

U ′
x(x

i)

V (xi)
= − 1

4B

∏
j 6=i(x

i − xj)∏
α (x

i − aα)
. (2.52)

This metric is actually positive-definite because of the inequalities (2.48). In these

ellipsoidal coordinates, we obtain

B =
n∑

α=0

q2α
aα

=
1

a0

x1 · · ·xn
a1 · · · an

.

Upon defining the constrained “momenta” ξi (for i = 1, . . . , n), via the induced

canonical 1-form λ|T ∗Sn =
∑n

i=1 ξi dx
i = ι∗

∑n

α=0 pαdq
α, we find

pα(ξ, x) = −qα(x)
2B

n∑

i=1

gi(x)ξi
aα − xi

. (2.53)

We express, for convenience, the Hamiltonian (2.36) on (T ∗Sn,
∑n

i=1 dξi ∧ dxi),
which is then found to be

H =
1

2

n∑

i=1

gi(x)ξ2i (2.54)

where gi(x) = 1/gi(x).

Let us now compute the expression of the conserved quantities (2.35) on T ∗Sn.

Proposition 2.11. The dual Moser conserved quantities (Fα|T ∗Sn)α=0,...,n retain the

form

Fα|T ∗Sn =
aαq

2
α(x)

B

n∑

i=1

xigi(x)ξ2i
aα − xi

. (2.55)

Proof. On the one hand, in view of Equations (2.49) and (2.53), one gets, see (2.39),

Aα|T ∗Sn =
q2α(x)

B

n∑

i=1

xigi(x)ξ2i ,

using the identities
n∑

α=0

q2α
aα − xi

= 0

for all i = 1, . . . , n.

On the other hand, a similar computation gives

Mαβ|T ∗Sn =
aα − aβ
2B

qα(x)qβ(x)
n∑

i=1

xigi(x)ξi
(aα − xi)(aβ − xi)

,
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so that

Bα|T ∗Sn =
q2α(x)

B

n∑

i=1

(xi)2gi(x)ξ2i
aα − xi

,

proving that Fα|T ∗Sn (where Fα = Aα + Bα) is, indeed, as in (2.55).

Proposition 2.12. The following holds on T ∗Sn, viz

n∑

α=0

Fα|T ∗Sn =
1

B

n∑

i=1

xigi(x)ξ2i = J |T ∗Sn (2.56)

n∑

α=0

Fα|T ∗Sn

aα
= 0 (2.57)

n∑

α=0

Fα|T ∗Sn

a2α
= −2H. (2.58)

Proof. The proof is a direct consequence of Equations (2.41), (2.42), and (2.43),

together with the constraints (2.44).

As a preparation to the proof that our system is, indeed Stäckel, let us introduce,

for convenience, the symmetric functions, σk(x) and σi
k(x) with x = (x1, . . . , xn),

that will be useful in the sequel, namely,

Ux(λ) ≡
n∏

j=1

(λ− xj) =
n∑

k=0

(−1)kλn−kσk(x) (2.59)

Ux(λ)

λ− xi
≡
∏

j 6=i

(λ− xj) =

n∑

k=1

(−1)k−1λn−kσi
k−1(x). (2.60)

We will also use σk(a) and σ
α
k (a) with a = (a0, a1, . . . an), which are defined similarly.

Let us notice that the previous conserved quantities (2.55) can be written as

Fα|T ∗Sn =
aαGaα(ξ, x)∏

β 6=α

(aα − aβ)

where

Gλ(ξ, x) =
1

B

n∑

i=1

xigi(x)
∏

j 6=i

(λ− xj) ξ2i . (2.61)
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Proposition 2.13. Let the functions I1, . . . , In of T ∗Sn be defined by

Gλ(ξ, x) =

n∑

k=1

(−1)k−1λn−kIk(ξ, x). (2.62)

Then

Ik(ξ, x) =
n∑

i=1

Ai
k(x)ξ

2
i with Ai

k(x) =
1

B
xigi(x)σi

k−1(x). (2.63)

Proof. By plugging the definition (2.60) of the symmetric functions σi
k(x) of order

k = 0, 1, . . . , n − 1 (in the variables (x1, . . . , xn), with the exclusion of index i)

into (2.61), one gets the desired result.

Theorem 2.14. The dual Moser system I1, . . . , In on T ∗Sn, given by (2.63), defines

a Stäckel system, with Stäckel matrix B = A−1 of the form

Bi
k(x

k) = (−1)i
(xk)n−i−1

4V (xk)
(2.64)

for i, k = 1, . . . , n. This implies [24] that the functions I1, . . . , In are independent

and in involution, which entails that the Stäckel coordinates x1, . . . , xn are separating

for the Hamilton-Jacobi equation.

Proof. It is obvious from its expression (2.64) that B is a Stäckel matrix [24]. We

just need to prove that A is the inverse matrix of B. To this aim we first prove a

useful identity. Let us consider the integral in the complex plane

1

2iπ

∫

|z|=R

zn−i

(z − λ)

Ux(λ)

Ux(z)
dz.

When R → ∞ the previous integral vanishes because the integrand decreases as

1/R2 for large R (let us recall that i ≥ 1). We then compute this integral using the

theorem of residues and get the identity

n∑

k=1

(xk)n−i

U ′
x(x

k)

∏

j 6=k

(λ− xj) = λn−i. (2.65)

Equipped with this identity let us now prove that
∑n

k=1B
i
k A

k
j = δij. Multiplying

this relation by (−1)j−1λn−j and summing over j from 1 to n, we get the equivalent

relation
n∑

k=1

Bi
k

n∑

j=1

(−1)j−1λn−jAk
j = (−1)i−1λn−i,
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which becomes, using (2.63) and (2.60):

n∑

k=1

Bi
k g

k(x)
∏

j 6=k

(λ− xj) = (−1)i−1λn−i.

Using the explicit form of gk(x) given via (2.52) and of the matrix B, this last

relation reduces to the identity (2.65), which completes the derivation of (2.64).

Remark 2.15. A few remarks are in order.

1. The first integral defined by (2.56) is precisely the Joachimsthal invariant

(2.25) of the dual Moser system.

2. It should be emphasized that the bihamiltonian character of our system is

obvious with our choice of ellipsoidal coordinates since, from their very defini-

tion, the xi are the eigenvalues of the Benenti (1, 1)-tensor field (Lj
i ) associated

with a special conformal Killing tensor.

3. One can give some simple potentials for dual Moser. Denoting by Jk the new

first integrals, we have

Jk = Ik − vk, vk = µσk(x) + ν(σ1(x) σk(x)− σk+1(x)) (2.66)

with k = 1, . . . , n. Those will pairwise Poisson commute (see [24], p. 101) if the

potential terms can be written in the form vk =
∑n

i=1 A
i
k(x) fi(x

i), implying

fi(x
i) =

∑n
k=1 B

k
i vk. A short computation, using the explicit form (2.64) of

the matrix B and the relation (2.59), indeed gives

fi(x
i) =

(xi)n−1

4V (xi)
(µ+ ν xi).

2.5 Three Stäckel systems

2.5.1 The Neumann-Uhlenbeck system

In addition to the two previously studied integrable systems, it may be useful to

consider the well-known Neumann-Uhlenbeck system on the cotangent bundle of

the round sphere Sn. It is initially defined on (T ∗Rn+1,
∑n

α=0 dpα ∧ dqα) by the

Hamiltonian

H =
1

2

n∑

α=0

(
p2α + aαq

2
α

)
(2.67)

with the parameters 0 < a0 < a1 < . . . < an. This system is classically integrable,

with the following commuting first integrals of the Hamiltonian flow in T ∗Rn+1:

Fα(p, q) = q2α +
∑

β 6=α

(pαqβ − pβqα)
2

aα − aβ
with α = 0, 1, . . . , n. (2.68)
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Under symplectic reduction, with the second class constraints (2.44), it becomes

an integrable system on (T ∗Sn,
∑n

i=1 dξi ∧ dxi). Writing g̃ =
∑n

i=1 g̃i(x)(dx
i)2 the

induced Euclidean metric on Sn with g̃i(x) = −1
4
U ′
x(x

i)/V (xi), the independent

Poisson-commuting functions Ik (k = 1, . . . , n) are

Ik(ξ, x) =
n∑

i=1

g̃i(x)σi
k−1(x)ξ

2
i − σk(x) with H =

1

2
I1, (2.69)

where g̃i = 1/g̃i.

2.5.2 A synthetic presentation

Let us observe that the previous calculation enables us to have a synthetic viewpoint

unifying the Jacobi-Moser, Neumann-Uhlenbeck, and dual Moser systems. This

highlights the novelty of the dual Moser system spelled out in this article.

In Table 1, we display in each row, and for each system, the metric, the first

integrals in involution, the Hamiltonian, and the Stäckel matrix. (See, e.g., [9] for a

derivation of the formulæ in the first two columns of this table.). Let us emphasize

that in all three cases, the metric in the first row is indeed the Stäckel metric coming

from I1, and which will be, later on, involved in the quantization procedures.

Jacobi-Moser Neumann-Uhlenbeck dual Moser

gi = xi g̃i g̃i = −U ′

x(x
i)

4V (xi)
gi =

1
xi g̃i

Ik =
∑

i
g̃i

xi σ
i
k−1ξ

2
i Ik =

∑
i g̃

i σi
k−1ξ

2
i − σk(x) Ik =

∑
i x

i g̃i σi
k−1ξ

2
i

H = 1
2
I1 H = 1

2
I1 H = 1

2σn+1(a)
In

xk B̃i
k(x

k) B̃i
k(x

k) = (−1)i (x
k)n−i

4V (xk)
1
xk B̃

i
k(x

k)

Table 1: Three Stäckel systems

3 Quantum integrability

Start with a configuration manifold M of dimension n, and consider the space,

S(M), of Hamiltonians on T ∗M that are fiberwise polynomial. A quantization

prescription is a linear isomorphism Q between this space of symbols, S(M), and
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the space, D(M), of linear differential operators on M ; this identification is, in

addition, assumed to preserve the principal symbol.

It is well-known that there is, in general, no uniquely defined quantization.

However, no matter how the quantization is chosen, we will adhere to the following,

usual, definition of quantum integrability; see, e.g., [31, 20, 4, 5].

Definition 3.1. A classically integrable system with independent, and mutually

Poisson-commuting observables I1, . . . In, is integrable at the quantum level iff

[Q(Ik),Q(Iℓ)] = 0 (3.1)

for all k, ℓ = 1, . . . , n

As a consequence, for a given integrable classical system, depending on the

quantization procedure used, quantum integrability may be achieved or not. In what

follows we will consider and use two quantization schemes for quadratic Hamiltoni-

ans: (i) the theory of conformally equivariant quantization, and (ii) Carter’s minimal

prescription.

3.1 Conformally equivariant quantization

Let us recall that there exists no quantization mapping that intertwines the action

of Diff(M). To bypass this obstruction, equivariant quantization [16, 11] proposes to

further endow M with a G-structure, and to look under which conditions the exis-

tence and uniqueness of a G-equivariant quantization can be guaranteed (the proper

subgroup G ⊂ Diff(M) only is assumed to intertwine the quantization mapping Q).

We recall that the space Fλ(M) of λ-densities on M , where λ is some complex-

valued weight, is the space of sections of the complex line bundle |ΛnT ∗M |λ ⊗ C.

If M is orientable, (M, vol), such a λ-density can be, locally, cast into the form

φ = f |vol|λ with f ∈ C∞(M); this entails that φ transforms under the action of

a ∈ Diff(M) according to f 7→ a∗f |(a∗vol)/vol|λ, or infinitesimally as

Lλ
X(f) = X(f) + λDiv(X) f (3.2)

for all X ∈ Vect(M).

Remark 3.2. Note that the completion H(M) of the space of compactly supported

half-densities, F c
1

2

(M), is a Hilbert space canonically attached to M that will be

used in the sequel. The scalar product of two half-densities reads

〈φ, ψ〉 =
∫

M

φψ

where the bar stands for complex conjugation.
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We will denote by Sδ(M) = S(M) ⊗ Fδ(M) the graded space of symbols of

weight δ. This space is turned into a Vect(M)-module using the definition (3.2) of

the Lie derivative extended to the canonical lift of Vect(M) to T ∗M .

Likewise, we will introduce the filtered space Dλ,µ(M) of differential operators

sending Fλ(M) to Fµ(M). A differential operator of order k is, locally, written as

A = Ai1...ik
k (x)∂i1 . . . ∂ik + · · ·+ Ai

1(x)∂i + A0(x) (3.3)

where Ai1...iℓ
ℓ ∈ C∞(M) for ℓ = 0, 1, . . . , k. It is clear that this space of weighted dif-

ferential operators, Dλ,µ(M), becomes a Vect(M)-module via the following definition

of the Lie derivative, namely,

Lλ,µ
X (A) = Lµ

X ◦ A− A ◦ Lλ
X (3.4)

for all X ∈ Vect(M).

From now on, we will be dealing with the case of a conformal (Riemannian)

structure, G = SO(n + 1, 1), with n > 2, dictated by the conformal flatness of our

main example: the dual Moser system.

Theorem 3.3 ([11]). Given a conformally flat Riemannian manifold (M, g), there

exists (except for a discrete set of values of δ = µ − λ called resonances) a unique

conformally-equivariant quantization, i.e., a linear isomorphism

Qλ,µ : Sδ(M) → Dλ,µ(M) (3.5)

that (i) preserves the principal symbol, and (ii) intertwines the actions of the Lie

algebra o(n+ 1, 1) ⊂ Vect(M).

In the particular and pivotal case of symbols of degree two, at the core of the

present study, explicit formulæ are given by the following theorem.

Theorem 3.4 ([10]). (i) Let (M, g) be a conformally flat Riemannian manifold of

dimension n ≥ 3. The conformally equivariant quantization mapping (3.5) restricted

to symbols P = P ij
2 (x)ξiξj +P

i
1(x)ξi+P0(x) of degree two is given, for non-resonant

values of δ, by

Qλ,µ(P ) = −P ij
2 ◦ ∇i ◦ ∇j

+i
(
β1∇iP

ij
2 + β2 g

ijgkℓ∇iP
kℓ
2 + P j

1

)
◦ ∇j

+β3∇i∇j(P
ij
2 ) + β4 g

ijgkℓ∇i∇j(P
kℓ
2 ) + β5RijP

ij
2 + β6R gijP

ij
2

+α∇i(P
i
1) + P0
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where ∇ denotes the levi-Civita connection,6 Rij (resp. R) the components of the

Ricci tensor in the chosen chart (resp. the scalar curvature) of the metric g; the

coefficients α, β1, . . . , β6 depend on λ, µ, and n in an explicit fashion.7

(ii) The quantization mapping Qλ,µ depends only on the conformal class of g.

The above formula can be specialized to the case of half-density quantization

of quadratic symbols P = P ij(x)ξiξj ; one finds8

Q 1

2
, 1
2

(P ) = P̂ + β3∇i∇j(P
ij) + β4 g

ijgkℓ∇i∇j(P
kℓ) + β5RijP

ij + β6R gijP
ij (3.6)

where

P̂ = −∇i ◦ P ij ◦ ∇j . (3.7)

Remark 3.5. The quantization prescription (3.7), called “minimal” in [9], has been

put forward by Carter [7], who dealt with polynomial symbols of degree at most

two. A great many studies of the quantum spectrum for various integrable models

use naturally Carter’s quantization [26, 31, 20, 2]. Along with Equation (3.7), the

formulæ for the minimal quantization of lower degree monomials are respectively

P̂0 = P0 (3.8)

P̂1 =
i

2

(
P i
1 ◦ ∇i +∇i ◦ P i

1

)
(3.9)

so that

P̂k = Q 1

2
, 1
2

(Pk), ∀k = 0, 1. (3.10)

Accordingly, a generalization to cubic monomials has been proposed in [9]:

P̂3 = − i

2

(
∇i ◦ P ijk

3 ◦ ∇j ◦ ∇k +∇i ◦ ∇j ◦ P ijk
3 ◦ ∇k

)
. (3.11)

All previously defined operators are formally self-adjoint on F c
1

2

(M); see Remark 3.2.

In the case where the quadratic observable P = P ij(x)ξiξj stems from a Killing

tensor,9 i.e., if ∇(iPjk) = 0 for all i, j, k = 1 . . . , n, we can rewrite Equation (3.6) as

Q 1

2
, 1
2

(P ) = P̂ + f(P ) (3.12)

where P̂ is as in (3.7), and the scalar term is given by

f(P ) = c1∆gTr(P ) + c2RijP
ij + c3R · Tr(P ) (3.13)

6The covariant derivative of λ-densities φ = f |volg|λ, locally defined in terms of the Riemannian
density, |volg|, reads ∇φ = df |volg|λ.

7See Equations (3.3), (3.4), and (4.4) in [10].
8The value δ = 0 is non-resonant [11].
9This is the case for the integrable systems of Stäckel type we are studying.
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where ∆g is the Laplace operator of (M, g), and Tr(P ) = P ijgij; the coefficients

in (3.13) are respectively

c1 =
n2

8(n+ 1)(n+ 2)
, c2 =

n2

4(n+ 1)(n− 2)
, c3 =

−n2

2(n2 − 1)(n2 − 4)
. (3.14)

3.2 Quantum commutators

In order to implement Definition 3.1 of quantum integrability, we will need some

preparation regarding the quantum commutators of Poisson-commuting symbols. In

doing so, we will opt for the conformally equivariant quantization Q ≡ Q 1

2
, 1
2

.

Proposition 3.6. Let P and Q be two, Poisson-commuting, quadratic symbols on

(T ∗M,ω =
∑n

i=1 dξi ∧ dxi). The commutator of the two operators Q(P ) and Q(Q),

given by (3.12), retains the form

[Q(P ),Q(Q)] = iQ(AP,Q + VP,Q), (3.15)

where

AP,Q = −2

3

(
∇jB

jk
P,Q

)
ξk (3.16)

with10

Bjk
P,Q = P ℓ[j∇ℓ∇mQ

k]m + P ℓ[jR
k]
m,nℓQ

mn − (P ↔ Q)

−∇ℓP
m[j∇mQ

k]ℓ − P ℓ[jRℓmQ
k]m (3.17)

and

VP,Q = 2
(
P jk ∂jf(Q)−Qjk ∂jf(P )

)
ξk. (3.18)

Proof. Start with two quadratic observables P and Q. As shown in [9], we have

−i[P̂ , Q̂] = {̂P,Q}+ÂP,Q, where the monomial AP,Q, and the skew-symmetric tensor

BP,Q are as in (3.16), and (3.17), respectively. If it is then assumed that {P,Q} = 0,

Equation (3.15) follows directly from the explicit expression (3.12) of the conformally

equivariant quantization mapping, Q, and from Equation (3.10).

Now, for the Liouville-integrable systems considered below, all Poisson-com-

muting fiberwise polynomial symbols have the form P = P2+P0, where the indices 0

and 2 refer to the homogeneity degree. In view of Equation (3.15), and of results

obtained in [9], we find [Q(P2+P0),Q(Q2+Q0)] = iQ(AP2,Q2
+VP2,Q2

), which means

that the zero degree terms P0 and Q0 produce no quantum corrections.

10We use the following convention for the Riemann and Ricci tensors, namely, Rℓ
i,jk = ∂jΓ

ℓ
ik +

Γℓ
sjΓ

s
ik − (j ↔ k), and Rij = Rs

i,sj .
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The structure of the quantum corrections (the right hand side of Equation (3.15))

is rather involved, because of the complexity of the tensor BP,Q; see (3.17). Never-

theless, for Stäckel systems major simplifications occur. Indeed, the observables

Ik = I2,k+ I0,k with I2,k =
∑

i g
i(x)σi

k−1(x)ξ
2
i generate diagonal Killing tensors. Us-

ing the separating coordinates xi and considering H = 1
2
I2,1 =

1
2

∑
i g

i(x)ξ2i for the

Hamiltonian fixes up the diagonal metric to be g =
∑

i gi(x)(dx
i)2, with gi = 1/gi

for all i = 1, . . . , n. Under these assumptions, Proposition 3.9 in [9] gives

Bkℓ
I2,i,I2,j

= −2 I
s[k
2,i Rst I

ℓ]t
2,j (3.19)

for all i, j, k, ℓ = 1, . . . n, which entails:

Proposition 3.7. A sufficient condition for a Stäckel system to be integrable at the

quantum level is

Rij = 0, ∀i 6= j (3.20)

where i, j = 1, . . . , n, in the special separating coordinate system (xi).

Proof. The Killing tensors I2,i are diagonal, for i = 1, . . . , n, in the Stäckel coordinate

system, and the result follows from (3.19).

Remark 3.8. 1. Condition (3.20) is the well-known Robertson condition [25],

which has to hold in the separating coordinates system. The relation (3.19) was

also obtained in [5] by a direct computation of the commutator in separating

coordinates; however the explicit form of the tensor BP,Q (3.17) was not given

there.

2. In Corollary 3.10 of [9] the Robertson condition was misleadingly claimed to

be also necessary.

3. It has been shown by Benenti et al. [4] that the Robertson condition (3.20)

is necessary and sufficient for the separability of the Schrödinger equation,

comforting the above definition of quantum integrability.

In the next subsections we will examine, successively, quantum integrability

for the following Stäckel systems: the Neumann-Uhlenbeck, the dual Moser and the

Jacobi-Moser systems. As previously explained, the potential, i.e., zero degree terms

in the classical observables never induce quantum corrections; they will therefore be

systematically omitted.
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3.3 The quantum Neumann-Uhlenbeck system

Let us recall that, for the Neumann-Uhlenbeck system (see Table 1), the Stäckel

metric g̃ =
∑

i g̃i(x)(dx
i)2, is

g̃i(x) = −1

4

U ′
x(x

i)

V (xi)
= −1

4

∏
j 6=i(x

i − xj)∏
α (x

i − aα)
(3.21)

for i = 1, . . . , n. If we put g̃i = 1/g̃i, the independent and Poisson-commuting

observables are given by

Ik =

n∑

i=1

g̃i(x)σi
k−1(x) ξ

2
i

for k = 1, 2, . . . , n, and the Stäckel Hamiltonian is H = 1
2
I1 =

1
2

∑
i g̃

i(x) ξ2i .

Proposition 3.9. The conformally equivariant quantization does preserve quantum

integrability of the Neumann-Uhlenbeck system.

Proof. From the fact that (Sn, g̃) is the round sphere, we have

R̃ij = (n− 1) g̃i δij & R̃ = n(n− 1). (3.22)

Straightforward computation then leads to

f(Ik) = (n− k + 1)[c4 σk−1(x) + 2(n− k + 2)c1 σk−1(a)] (3.23)

for all k = 1, . . . , n, where

c4 = −2(n+ 1)c1 + (n− 1)c2 + n(n− 1)c3. (3.24)

Relations (3.14) readily imply the vanishing of c4. As a consequence, the f(Ik) are

just constant, ensuring that VIk,Iℓ = 0 (see (3.18)). Equation (3.15) and the fact

that BIk,Iℓ = 0 (since the Ricci tensor is diagonal in this coordinate system) entail

that the conformally equivariant quantization (which coincides, up to a constant

term, with Carter’s) preserves integrability of the system at the quantum level.

3.4 The quantum dual Moser system

In the basic geometrical construction of the Poisson-commuting conserved quantities

Ik, we have been considering the conformally flat metric g2 given by (2.51) and (2.52).

Now, in the quantum approach to integrability, we choose to use, again, the Stäckel

metric, g, associated with I1. One has

g =
n∑

i=1

gi(x)(dx
i)2, with gi(x) =

1

xi
g̃i(x), (3.25)
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where the Neumann-Uhlenbeck metric g̃ is given by (3.21), while the first integrals

for k = 1, . . . , n are

Ik =

n∑

i=1

gi(x) σi
k−1(x)ξ

2
i , gi(x) =

1

gi(x)
. (3.26)

Lemma 3.10. The metric (3.25) has Ricci tensor

Rij =
(
(n− 2)xi + n

n∑

k=1

xk − (n− 1)

n∑

α=0

aα

)
gi δij (3.27)

and scalar curvature

R = (n− 1)
(
(n+ 2)

n∑

k=1

xk − n
n∑

α=0

aα

)
. (3.28)

It is conformally flat for n = dim(M) ≥ 3.

Proof. The Ricci tensor can be computed with the help of classical formulæ for a

diagonal metric (see for instance [12], p. 119). The only possibly non-vanishing

components of the Riemann tensor are Rik,kj, for i 6= j 6= k, and Rij,ji, for i 6= j.

Using the relations

∂i(ln gj) =
1

xi − xj
(i 6= j), ∂ij(ln gk) = 0 (i 6= j 6= k)

one easily gets Rik,kj = 0, implying

Rij = −
n∑

k=1

gkRik,kj = 0, ∀i 6= j.

The computation of the remaining components involves a sum which is conveniently

computed using the theorem of residues, giving

Rik,ik = (xi + xk +

n∑

s=1

xs −
n∑

α=0

aα) gigk

from which one deduces easily the diagonal part of the Ricci tensor, given by (3.27),

and the scalar curvature (3.28). Some extra computation shows that the conformal

Weyl tensor vanishes in dimension n ≥ 4, and that the Cotton-York tensor vanishes

as well for n = 3.

Remark 3.11. Although the metric g2 given by (2.51) is clearly conformally flat,

it is by no means trivial that the same is true for the Stäckel metric, g, given by

(3.25) on Sn.
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We are now in position to prove the following proposition.

Proposition 3.12. The conformally equivariant quantization procedure (3.12) does

preserve quantum integrability of the dual Moser system.

Proof. Using the definition (3.13) of the scalar term in the formula (3.12) for the

conformally equivariant quantization of the Ik, we find

f(Ik) = [(n− 2)c2 + k(c6 − c4)]σ1(x) σk(x) + [kc5 − (n− 2)c2]σk+1(x)

−kc4σ1(a) σk(x)− 2k(n− k + 1)c1 σk+1(a)

where c4 was already defined in (3.24) and shown to vanish in the proof of Proposi-

tion 3.9; we also have

c5 = 2(n+ 2)c1 − (n− 2)c2, c6 = −2c1 + c2 + 2(n− 1)c3.

Taking into account the relations (3.14) one gets c5 = c6 = 0, and we are left, for

k = 1, . . . , n, with

f(Ik) = 2c1

[
(n+ 2) [σk(x)σ1(x)− σk+1(x)]− k(n− k + 1) σk+1(a)

]
(3.29)

where we posit σn+1(x) = 0.

Let us now compute VIk,Iℓ defined by (3.18) needed to check quantum integra-

bility via the commutator (3.15).

In view of (3.26), one finds

VIk,Iℓ = 2
n∑

i=1

gi
(
σi
k−1∂if(Iℓ)− σi

ℓ−1∂if(Ik)
)
ξi.

Now, using the relations [3]

∂iσk(x) = σi
k−1(x), ∀i, k = 1, . . . , n,

and

σk(x) = σi
k(x) + xiσi

k−1(x), ∀k = 1, . . . , n− 1,

as well as

σn(x) = xi σi
n−1(x),

one gets ∂if(Ik) = 2(n + 2)c1[x
i + σ1(x)]σ

i
k−1(x) which obviously yields VIk,Iℓ = 0,

implying, at last

[Q(Ik),Q(Iℓ)] = 0 (3.30)

for all k, ℓ = 1, . . . , n.
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Remark 3.13. Carter’s (minimal) prescription (3.7) also leads to quantum integra-

bility of the system because of the diagonal form (3.27) of the Ricci tensor in the

separating coordinates. Now, in contradistinction with the Neumann-Uhlenbeck

quantum system, the scalar terms f(Ik) given by (3.29) are no longer constant,

yielding quite different quantum observablesQ(Ik) and Îk. So, the fact that quantum

integrability is not only preserved by Carter’s quantum prescription, but also by

conformally equivariant quantization is a new and noteworthy phenomenon.

3.5 The quantum Jacobi-Moser system

The Stäckel metric, associated to I1 is now (see Table 1):

g =

n∑

i=1

gi(x)(dx
i)2, with gi(x) = xi g̃i(x), (3.31)

where the Neumann-Uhlenbeck metric g̃i(x) is given by (3.21), and the first integrals

by

Ik =
n∑

i=1

gi(x)σi
k−1(x)ξ

2
i , gi(x) =

1

gi(x)
. (3.32)

Lemma 3.14. The Ricci tensor and the scalar curvature of the metric (3.31) are

given by

Rij =
σn+1(a)

σ2
n(x)

σi
n−2(x) gi δij , R = 2

σn+1(a)

σ2
n(x)

σn−2(x). (3.33)

Proof. It is completely similar to the proof of Lemma 3.10.

This allows us to prove:

Proposition 3.15. Carter’s prescription preserves (3.7) quantum integrability of

the Jacobi-Moser system, while the conformally equivariant quantization does not.

Proof. Since the Ricci tensor is diagonal, quantum integrability is established for

the prescription (3.7). For the conformally equivariant quantization (3.12), we will

just give a counter-example. One has

f(I1) = 2(c2 + nc3) σn+1(a)
σn−2(x)

σ2
n(x)

and

f(I2) = (n− 1)c3
σn+1(a)

σ2
n(x)

[
2(n− 1) σn−1(x)− nσ1(x) σn−2(x)

]
− 2n(n− 1) c1.
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A simple computation gives V i
I1,I2

= ∂VI1,I2/∂ξi = ∂if(I2) − (σ1(x) − xi)∂if(I1),

hence the non-vanishing result

V i
I1,I2

= (−c3)
σn+1(a)

xi σ2
n(x)

[
− 2(σi

1(x)σn−2(x) + σ1(x)σ
i
n−2(x))

+(n2 − 3n+ 4)σn−1(x) + n(3n− 5)σi
n−1(x)

]
,

showing that the system looses its quantum integrability via conformally equivariant

quantization.

Remark 3.16. Let us mention that quantum integrability of the Neumann-Uhlen-

beck and Jacobi-Moser systems has first been established, in terms of Carter’s quan-

tum prescription (3.7), by Toth [31].

4 Conclusion and outlook

To sum up the main results of the article, let us mention that we have disclosed a

new integrable system on Sn, in duality with the well-known Jacobi-Moser system

in terms of projective equivalence. As opposed to that of the generic ellipsoid, the

“dual” metric is conformally flat. This remarkable fact enables us to have naturally

recourse to conformally equivariant quantization. The latter turns out to preserve

integrability at the quantum level. It is, to our knowledge, the first instance of

conformally driven quantum integrability.

This opens new perspectives related, e.g., to the determination of the conditions

under which a classically integrable system, stemming from second-order Killing

tensors on a conformally flat configuration manifold, remains quantum-integrable

via the conformally equivariant quantization. Also, possible generalizations of the

Jacobi-Moser system and its dual counterpart might conceivably be put to light in

a similar manner.
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