N
N

N

HAL

open science

Mayavi: Making 3D Data Visualization Reusable

Gaél Varoquaux, Prabhu Ramachandran

» To cite this version:

Gaél Varoquaux, Prabhu Ramachandran. Mayavi: Making 3D Data Visualization Reusable. SciPy
2008: 7th Python in Science Conference, Aug 2008, Pasadena, United States. pp.51. hal-00502548

HAL Id: hal-00502548
https://hal.science/hal-00502548
Submitted on 15 Jul 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00502548
https://hal.archives-ouvertes.fr

Proceedings of the 7" Python in Science Conference (SciPy 2008)

Mayavi: Making 3D Data Visualization Reusable

Prabhu Ramachandran (prabhu@aero.iitb.ac.in) — Indian Institute of Technology Bombay, Powai, Mumbai 400076

INDIA

Gaél Varoquaux (gael.varoquaux@normalesup.org) — MNeuroSpin, CEA Saclay, Bat 145, 91191 Gif-sur-Yvette

FRANCE

Mayavi is a general-purpose 3D scientific visualiza-
tion package. We believe 3D data visualization is
a difficult task and different users can benefit from
an easy-to-use tool for this purpose. In this arti-
cle, we focus on how Mayavi addresses the needs
of different users with a common code-base, rather
than describing the data visualization functionalities
of Mayavi, or the visualization model exposed to the
user.

Mayavi2 is the next generation of the Mayavi-1.x pack-
age which was first released in 2001. Data visualization
in 3D is a difficult task; as a scientific data visual-
ization package, Mayavi tries to address several chal-
lenges. The Visualization Toolkit [VTK] is by far the
best visualization library available and we believe that
the rendering and visualization algorithms developed
by VTK provide the right tools for data visualization.
Mayavi therefore uses VTK for its graphics. Unfor-
tunately, VTK is not entirely easy to understand and
many people are not interested in learning it since it
has a steep learning curve. Mayavi strives to provide
interfaces to VIK that make it easier to use, both by
relying on standard numerical objects (numpy arrays)
and by using the features of Python, a dynamical lan-
guage, to offer simple APIs.

There are several user requirements that Mayavi
strives to satisfy:

e A standalone application for visualization,

e Interactive 3D plots from IPython like those pro-
vided by pylab,

e A clean scripting layer,

e Graphical interfaces and dialogs with a focus on us-
ability,

e Visualization engine for embedding in user dialogs
box,

e An extensible application via an application frame-
work like Envisage,

e Easy customization of the library and application,

The goal of Mayavi is to provide flexible components
to satisfy all of these needs. We feel that there is value
in reusing the core code, not only for the developers,
from a software engineering point of view, but also for
the users, as they can get to understand better the un-
derlying model and concepts using the different facets
of Mayavi.

Mayavi has developed in very significant ways over the
last year. Specifically, every one of the above require-
ments have been satisfied. We first present a brief
overview of the major new functionality added over
the last year. The second part of the paper illustrates
how we achieved the amount of reuse we have with
Mayavi and what we have learned in the process of
implementing this. We believe that the general ideas
involved in making Mayavi reusable in these different
contexts are applicable to other projects as well.

Mayavi feature overview

Starting with the Mayavi 3.0.0 release!, there have

been several significant enhancements which open up
different ways of using Mayavi. We discuss each of
these with examples in the following.

The mayavi2 application

mayavi2 is a standalone application that provides an
interactive user interface to load data from files (or
other sources) and visualize them interactively. It fea-
tures the following:

e A powerful command line interface that lets a user
build a visualization pipeline right from the com-
mand line,

e An embedded Python shell that can be used to script
the application,

e The ability to drag and drop objects from the
mayavi tree view on to the interpreter and script
the dropped objects,

e Execution of arbitrary Python scripts in order to
rapidly script the application,

e Full customization at a user level and global level.
As a result, the application can be easily tailored for
specific data files or workflows. For instance, the Im-
perial College’s Applied Modeling and Computation
Group has been extending Mayavi2 for triangular-
mesh-specific visualizations.

IThe name “Mayavi2” refers to the fact that the current codebase is a complete rewrite of the first implementation of Mayavi.
We use it to oppose the two very different codebases and models. However the revision number of the Mayavi project is not fixed
to two. The current release number is 3.0.1, although the changes between 2 and 3 are evolutionary rather than revolutionary.

51 P. Ramachandran, G. Varoquaux: Proc. SciPy 2008, G. Varoquaux, T. Vaught, J. Millman (Eds), pp. 51-57

http://www.vtk.org
http://ipython.scipy.org
http://matplotlib.sf.net
http://code.enthought.com/projects/envisage/

Mayavi: Making 3D Data Visualization Reusable

e Integration into the Envisage application frame-
work. Users may load any other plugins of
their choice to extend the application. Envisage
is a plugin-based application framework, similar
to Eclipse, for assembling large applications from
loosely-coupled components. The wing-design group
at Airbus, in Bristol, designs wing meshes for simu-
lations with a large application built with Envisage
using Mayavi for the visualization.

Shown below is a visualization made on the mayavi
user interface.

800 e Moyl
My [Tikscener |
ET LY i N N AR

v 3 TVIK Scene 1
¥ VTKXML file (fire_ug.vtu)
v @ Modules
™ Qutline
v & Contour
v . PolyDataNormals
¥ 7 SetActiveAttribute
¥ @ Modules
™ Surface

et obiect editor |

| seatar LUT | vector LUT | ModuleManager

[LUT ook Up Table) Manager

Lut mode: —

‘ Python |
|[/[6CC 4.0.1 CApple Computer, Inc. build 5370)] on darwin ~
Type ‘help’, ‘copyright’, “credits” or “License” for (1)
more information.
2>

Number of colors: 256

Reverse lut: [|

Screenshot of the Mayavi application.

The mlab interface

Mayavi’s mlab interface provides an easy scripting in-
terface to visualize data. It can be used in scripts, or
interactively from an IPython session in a manner sim-
ilar to matplotlib’s pylab interface. mlab features the
following:

e As easy to use as possible.

Works in the mayavi2 application also.

Trivial to visualize numpy arrays.

Full power of mayavi from scripts and UL

Allows easy animation of data without having to
recreate the visualization.

A simple example of a visualization with mlab is shown
below:

from enthought.mayavi import mlab
from numpy import ogrid, sin

X, ¥y, z = ogrid[-10:10:100j,
-10:10:100j,
-10:10:1003]

ctr = mlab.contour3d(sin(x*y*z)/(x*y*z))
mlab.show()

Visualization created by the above code example.

mlab also allows users to change the data easily. In
the above example, if the scalars needs to be changed
it may be easily done as follows:

new_scalars = x*x + y*xy*0.5 + z*zx3.0
ctr.mlab_source.scalars = new_scalars

In the above, we use the mlab_source attribute to
change the scalars used in the visualization. After set-
ting the new scalars the visualization is immediately
updated. This allows for powerful and simple anima-
tions.

The core features of mlab are all well-documented in
a full reference chapter of the user-guide [M2], with
examples and images.

mlab also exposes the lower-level mayavi API in con-
venient functions via the mlab.pipeline module. For
example one could open a data file and visualize it
using the following code:

from enthought.mayavi import mlab

src = mlab.pipeline.open(’test.vtk’)

o = mlab.pipeline.outline(src)

cut = mlab.pipeline.scalar_cut_plane(src)
iso = mlab.pipeline.iso_surface(src)
mlab.show()

mlab thus allows users to very rapidly script Mayavi.

Object-oriented interface

Mayavi features a simple-to-use, object-oriented inter-
face for data visualization. The mlab API is built atop
this interface. The central object in Mayavi visualiza-
tions is the Engine, which connects the different ele-
ments of the rendering pipeline. The first mlab exam-
ple can be re-written using the Engine object directly
as follows:

http://conference.scipy.org/proceedings/SciPy2008/paper_12

52

http://ipython.scipy.org
http://conference.scipy.org/proceedings/SciPy2008/paper_12

Proceedings of the 7*® Python in Science Conference (SciPy 2008)

from numpy import ogrid, sin

from enthought.mayavi.core.engine import Engine
from enthought.mayavi.sources.api import ArraySource
from enthought.mayavi.modules.api import IsoSurface
from enthought.pyface.api import GUI

e = Engine()
e.start ()
scene = e.new_scene()

X, ¥, z = ogrid[-10:10:100j,
-10:10:100j,
-10:10:1003]

data = sin(x*y*z)/(x*y*z)

src = ArraySource(scalar_data=data)
e.add_source(src)

e.add_module (IsoSurface())
GUI().start_event_loop()

Clearly mlab is a lot simpler to use. However, the raw
object-oriented API of mayavi is useful in its own right,
for example when using mayavi in an object-oriented
context where one may desire much more explicit con-
trol of the objects and their states.

Embedding a 3D visualization

One of the most powerful features of Mayavi is the
ability to embed it in a user interface dialog. One may
do this either with native Traits user interfaces or in a
native toolkit interface.

Embedding in TraitsUI

The TraitsUI module, used heavily throughout Mayavi
to build dialogs, provides user-interfaces built on top of
objects, exposing their attributes. The graphical user-
interface is created in a fully descriptive way by asso-
ciating object attributes with graphical editors, corre-
sponding to views in the MVC pattern. The objects
inheriting from the HasTraits class, the workhorse of
Traits, have an embedded observer pattern, and mod-
ifying their attributes can fire callbacks, allowing the
object to be manipulated live, e.g.through a GUI.

TraitsUI is used by many other projects to build graph-
ical, interactive applications. Mayavi can easily be
embedded in a TraitsUI application to be used as a
visualization engine.

Mayavi provides an object, the MlabSceneModel, that
exposes the mlab interface as an attribute. This ob-
ject can be viewed with a SceneEditor in a TraitsUI
dialog. This lets one use Mayavi to create dynamic vi-
sualizations in dialogs. Since we are using Traits, the
core logic of the dialog is implemented in the under-
lying object. The modifying_mlab_source.py exam-
ple can be found in the Mayavi examples and shows
a 3D line plot parametrized by two integers. Let us
go over the key elements of this example, the reader
should refer to the full example for more details. The
resulting UT offers slider bars to change the values of
the integers, and the visualization is refreshed by the
callbacks.

800

DITEEIEZ@| 8 &E

N meridional: 0={ =30 6 N longitudinal: 0=={}===30 11

A Mayavi visualization embedded in a custom dialog.
The outline of the code in this example is:

from enthought.tvtk.pyface.scene_editor import \
SceneEditor

from enthought.mayavi.tools.mlab_scene_model \
import MlabSceneModel

from enthought.mayavi.core.pipeline_base \
import PipelineBase

class MyModel(HasTraits):
[...]

scene = Instance(MlabSceneModel, ())
plot = Instance(PipelineBase)

The view for this object.

view = View(Item(’scene’,
editor=SceneEditor(),
height=500, width=500,
show_label=False),

[...0

def _plot_default(self):
X, ¥, 2, t = curve(self.n_merid, self.n_long)
return self.scene.mlab.plot3d(x, y, z, t)

Qon_trait_change(’n_merid,n_long’)
def update_plot(self):
X, ¥, z, t = curve(self.n_merid, self.n_long)
self .plot.mlab_source.set(x=x, y=y,
z=z, scalars=t)

The method update_plot is called when the n_merid
or n_long attributes are modified, for instance through
the UL The mlab_source attribute of the plot object is
used to modify the existing 3D plot without rebuilding
it.

It is to be noted that the full power of the Mayavi li-
brary is available to the user in these dialogs. This is
an extremely powerful feature.

53

http://conference.scipy.org/proceedings/SciPy2008/paper_12

http://code.enthought.com/projects/traits
http://conference.scipy.org/proceedings/SciPy2008/paper_12

Mayavi: Making 3D Data Visualization Reusable

Embedding mayavi in a wxPython application

Since TraitsUI provides a wxPython backend, it is very
easy to embed Mayavi in a wxPython application. The
previous TraitsUI code example may be embedded in
a wxPython application:

import wx
from mlab_model import MyModel

class MainWindow(wx.Frame) :
def __init__(self, parent, id):
wx.Frame.__init__(self, parent, id,
’Mayavi in Wx’)

self.mayavi = MyModel()

self.control = self.mayavi.edit_traits(
parent=self,
kind=’subpanel’) .control

self.Show(True)

app = wx.PySimpleApp()
frame = MainWindow(None, wx.ID_ANY)
app.MainLoop()

Thus, mayavi is easy to embed in an existing appli-
cation not based on traits. Currently traits supports
both wxPython and Qt as backends. Since two toolk-
its are already supported, it is certainly possible to
support

more, although that will involve a fair amount of work.

Mayavi in envisage applications

Envisage is an application framework that allows de-
velopers to create extensible applications. These ap-
plications are created by putting together a set of plug-
ins. Mayavi2 provides plugins to offer data visualiza-
tion services in Envisage applications. The mayavi?2

application is itself an Envisage application demon-
strating the features of such an extensible application
framework by assembling the Mayavi visualization en-
gine with a Python interactive shell, logging and pref-
erence mechanisms, and a docked-window that man-
ages layout each provided as Envisage plugins.

Customization of mayavi

Mayavi provides a convenient mechanism for users to
contribute new sources, filters and modules. This may
be done:

e at a global, system-wide level via a site_mayavi.py
placed anywhere on Python’s sys.path,

e at a local, user level by placing a user_mayavi.py
in the users ~/.mayavi2/ directory.

In either of these, a user may register new sources, fil-
ters, or modules with Mayavi’s central registry. The
user may also define a get_plugins function that re-
turns any plugins that the mayavi2 application should
load. Thus, the Mayavi library and application are
easily customizable.

Headless usage

Mayavi also features a convenient way to create off-
screen animations, so long as the user has a recent
enough version of VIK (5.2 and above). This allows
users to create animations of their data. Consider the
following simple script:
n_step = 36
scene = mlab.gcf()
camera = scene.camera
da = 360.0/n_step
for i in range(n_step):
camera.azimuth(da)
scene.reset_zoom()

scene.render ()
mlab.savefig(’anim),02d.png’> % i, size=(600,600))

This script rotates the camera about its azimuth and
saves each such view to a new PNG file. Let this script
be saved as movie.py. If the user has another script
to create the visualization (for example consider the
standard streamline.py example) we may run these
to provide an offscreen rendering like so:

$ mayavi2 -x streamline.py -x movie.py -o

The -o option (or -—offscreen) turns on the offscreen
rendering. This renders the images without creating a
user interface for interaction but saves the PNG im-
ages. The PNG images can be combined to create a
movie using other tools.

We have reviewed the various usage patterns that
Mayavi provides. We believe that this variety of use
cases and entry points makes Mayavi a truly reusable
3D visualization tool. Mayavi is not domain specific
and may be used in any suitable context. In the
next section we discuss the secrets behind this level
of reusability and the lessons we learned.

Secrets and Lessons learned

The techniques and pattern used to achieve maximal
reusability in Mayavi are an application of general
software architecture good practices. We will not re-
view software architecture, although it is often under-
exposed to scientific developers, an introduction to the
field can be found in [Gar94]. An important pattern in
Mayavi’s design is the separation between model and
view, an introduction to which can be found in [Fow].
There are several contributing technical reasons which
make Mayavi reusable:

Layered functionality,

Large degree of separation of Ul from model,

e Object-oriented architecture and API,

Scriptable from ground up,

The use of Traits.

We look at these aspects in some detail in the follow-
ing.

http://conference.scipy.org/proceedings/SciPy2008/paper_12

54

http://conference.scipy.org/proceedings/SciPy2008/paper_12

Proceedings of the 7*® Python in Science Conference (SciPy 2008)

Layered functionality

Mayavi is built atop layers of functionality, and a va-
riety of different modules:

Vs

Tool stack employed by Mayavi.

At the lowest level of this hierarchy are VTK, numpy
and Traits. The TVTK package marries VTK, numpy
and Traits into one coherent package. This gives us
the power of VITK with a very Pythonic API. TVTK
is the backbone of Mayavi. Traits optionally depends
on either wxPython or Qt4 to provide a user interface.

The core Mayavi engine uses TVTK and Traits. The
mayavi2 application and the mlab API use the Mayavi
core engine to provide data visualization. The mayavi2
application additionally uses Envisage to provide a
plugin-based extensible application.

Using Traits in the object model

The use of Traits provides us with a very significant
number of advantages:

e A very powerful object model,

e Inversion of control and reactive/event-based pro-
gramming: Mayavi and TVTK objects come with
pre-wired callbacks which allow for easy creation of
interactive applications,

e Forces a separation of Ul/view from object model,
e Fasy and free Uls:

— Automatic user interfaces for wxPython and Qt4.

— UI and scripting are well connected. This means
that the UI automatically updates if the underly-
ing model changes and this is automatically wired
up with traits,

— No need to write toolkit-specific code.

Traits allows programmers to think in very different
ways and be much more efficient. It makes a signif-
icant difference to the library and allows us to com-
pletely focus on the object model.

On the downsides, we note that automatically gener-
ated Uls are not very pretty. Traits provides methods
to customize the Ul to look better but it still isn’t per-
fect. The layout of traits UI is also not perfect but is
being improved.

Object-oriented architecture

The object-oriented API of Mayavi and its architec-
ture helps significantly separate functionality while en-
abling a great deal of code reuse.

e The abstraction layers of Mayavi allows for a signifi-
cant amount of flexibility and reuse. This is because
the abstraction hides various details of the inter-
nals of TVTK or VTK. As an example, the Mayavi
Engine is the object central to a Mayavi visualiza-
tion that manages and encapsulates the entirety of
the Mayavi visualization pipeline.

Ability to create/extend many Mayavi engines is in-
valuable and is the key to much of its reusability.

e All of Mayavi’s menus (on the application as well
as right-click menus) are automatically generated.
Similarly, the bulk of the mlab.pipeline interface
is auto-generated. Python’s ability to generate code
dynamically is a big win here.

e Abstraction of menu generation based on simple
metadata allows for a large degree of simplification
and reuse.

e The use of Envisage for the mayavi2 application
forces us to concentrate on a reusable object model.
Using envisage makes our application extensible.

The Engine object is not just a core object for the pro-
gramming model, its functionality can also be exposed
via a Ul where required. This UI allows one to edit the
properties of any object in the visualization pipeline as
well as remove or add objects. Thus we can provide a
powerful and consistent Ul while minimizing duplica-
tion of efforts, both in code and design.

M O) Mayavi pipeline
@ &l
¥ & TVTK Scene 1
v ScalarField
v % Modules
™ IsoSurface

Dialog controlling the Engine: The different visual-
ization objects are represented in the tree view. The
objects can be edited by double-clicking nodes and
can be added using the toolbar or via a right-click.

In summary, we believe that Mayavi is reusable be-
cause we were able to concentrate on producing a
powerful object model that interfaces naturally with
numpy. This is largely due to the use of Traits, TVTK
and Envisage which force us to build a clean, scriptable
object model that is Pythonic. The use of traits allows
us to concentrate on building the object model with-
out worrying about the view (UI). Envisage allows us
to focus again on the object model without worrying
too much about the need to create the application it-
self. We feel that, when used as a visualization engine,

55

http://conference.scipy.org/proceedings/SciPy2008/paper_12

http://numpy.scipy.org
http://code.enthought.com/projects/traits
http://code.enthought.com/projects/mayavi/#TVTK
http://code.enthought.com/projects/envisage/
http://code.enthought.com/projects/traits
http://code.enthought.com/projects/mayavi/#TVTK
http://code.enthought.com/projects/envisage/
http://conference.scipy.org/proceedings/SciPy2008/paper_12

Mayavi: Making 3D Data Visualization Reusable

Mayavi provides more than a conventional library, as
it provides an extensible set of reusable dialogs that
allow users to configure the visualization.
Mayavi still has room for improvement.
we are looking to improve the following:

Specifically

e More separation of view-related code from the ob-
ject model,

e Better and more testing,

More documentation,

Improved persistence mechanisms,

More polished UI.

Conclusions

Mayavi is a general-purpose, highly-reusable, 3D vi-
sualization tool. In this paper we demonstrated its
reusable nature with specific examples. We also elab-
orated the reasons that we think make it so reusable.
We believe that these general principles are capable

of being applied to any project that requires the use
of a user interface. There are only a few key lessons:
focus on the object model, make it clean, scriptable
and reusable; in addition, use test-driven development.
Our technological choices (Traits, Envisage) allow us
to carry out this methodology.

References
[VITK] W. Schroeder, K. Martin, W. Lorensen, “The Vi-
sualization Toolkit”, Kitware, 4th edition, 2006.
P. Ramachandran, G. Varoquaux, “Mayavi2
User Guide”, http://code.enthought.com/
projects/mayavi/docs/development/mayavi/
html/
D. Garlan, M. Shaw, “An Introduction to Soft-
ware Architecture”, in “Advances in Software En-
gineering and Knowledge Engineering”, Volume
I, eds V.Ambriola, G.Tortora, World Scientific
Publishing Company, New Jersey, 1993, http:
//www.cs.cmu.edu/afs/cs/project/able/ftp/
intro_softarch/intro_softarch.pdf
[Fow] M. Fowler http://www.martinfowler.com/
eaaDev/uiArchs.html

[M2]

[Gar94]

http://conference.scipy.org/proceedings/SciPy2008/paper_12

56

http://code.enthought.com/projects/mayavi/docs/development/mayavi/html/
http://code.enthought.com/projects/mayavi/docs/development/mayavi/html/
http://code.enthought.com/projects/mayavi/docs/development/mayavi/html/
http://code.enthought.com/projects/mayavi/docs/development/mayavi/html/
http://www.cs.cmu.edu/afs/cs/project/able/ftp/intro_softarch/intro_softarch.pdf
http://www.cs.cmu.edu/afs/cs/project/able/ftp/intro_softarch/intro_softarch.pdf
http://www.cs.cmu.edu/afs/cs/project/able/ftp/intro_softarch/intro_softarch.pdf
http://www.cs.cmu.edu/afs/cs/project/able/ftp/intro_softarch/intro_softarch.pdf
http://www.martinfowler.com/eaaDev/uiArchs.html
http://www.martinfowler.com/eaaDev/uiArchs.html
http://www.martinfowler.com/eaaDev/uiArchs.html
http://conference.scipy.org/proceedings/SciPy2008/paper_12

	Mayavi: Making 3D Data Visualization Reusable
	Mayavi feature overview
	The mayavi2 application
	The mlab interface
	Object-oriented interface
	Embedding a 3D visualization
	Embedding in TraitsUI
	Embedding mayavi in a wxPython application

	Mayavi in envisage applications
	Customization of mayavi
	Headless usage

	Secrets and Lessons learned
	Layered functionality
	Using Traits in the object model
	Object-oriented architecture

	Conclusions
	References

