
HAL Id: hal-00502504
https://hal.science/hal-00502504v1

Submitted on 15 Jul 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Agile Computer Control of a Complex Experiment
Gaël Varoquaux

To cite this version:
Gaël Varoquaux. Agile Computer Control of a Complex Experiment. Computing in Science and
Engineering, 2008, 10 (2), pp.55-59. �10.1109/MCSE.2008.47�. �hal-00502504�

https://hal.science/hal-00502504v1
https://hal.archives-ouvertes.fr


Computing in SCienCe & engineering  This arTicle has been peer-reviewed. 55

U s i n g  P y t h o n

Agile Computer Control  
of a Complex Experiment
This article introduces techniques and tools useful for writing an experiment’s control framework. 
In particular, the author discusses how to use the Python language to control hardware.

T oday’s experiments can involve doz-
ens of devices that must work togeth-
er. An experimentalist is often taught 
the arts of electronics, optics, and 

mechanics required to build and run an experi-
ment, but software engineering is frequently left 
out,1 so when the task grows in complexity, it’s the 
software that becomes a weak point.

Scientists are skilled with computers, and many 
of them understand the intricacy of numerical 
computing. Yet, designing the sophisticated soft-
ware architecture that controls an experiment re-
quires different skills, and small- and mid-sized 
experimental labs often lack a software engineer-
ing culture. Bad design choices plague experi-
mental labs even though the real experimental 
difficulty seldom lies in the software itself.

In this article, I give some guidelines for design-
ing an experiment’s control software based on my 
experience in various Bose-Einstein condensation 
labs.2 I explore the tools and patterns that lead to 
successful projects—in particular, a flexible and 
reliable code base that lets scientists cope with a 
research lab’s ever-changing goals and resources.

Avoiding timing Problems
Scientists use computers for both instrument con-
trol and data acquisition. The ability to put elabo-
rate logic in a computer program helps realize the 
dream of replacing the electronic boxes commonly 
found lying around a lab with computers. Modern 
computers are clocked at several gigahertz, so many 
people believe that they can simply replace servo-
locks and electronic timers for on-the-fly data pro-
cessing. The bad news is that computer systems, 

both hardware and software, are optimized for 
throughput, not for short response times. Laten-
cies of several milliseconds forbid any control loops 
with frequencies higher than 100 Hz, apart from 
those on dedicated systems (such as real-time oper-
ating systems or embedded devices).

You can move timing issues off the computer 
and into well-clocked electronic devices by relying 
on an external clock to trigger hardware-related 
actions. If necessary, input and output buffers can 
freeze the experimental time base while the com-
puter retains some flexibility. This pattern is very 
efficient for solving most real-time experimental 
problems—as long as the frequency doesn’t ex-
ceed a few kHz, and the computer is fast enough to 
perform the work during a clock cycle. Comput-
er-programmed embedded systems often provide 
good solutions, and some commercial systems are 
often easier to implement and more reliable than 
home-brewed complex software solutions.

Using the Right tools
If speed is paramount, you’ll have to write the con-
trol software in C or C++, possibly with the help of 
a framework such as LabWindows or Root (http://
root.cern.ch). However, try to avoid low-level lan-
guages as much as possible.3 Not all scientists are 
familiar with memory management or linking and 
compiling, so the use of a low-level language in-

Gaël Varoquaux

LENS, University of Florence

1521-9615/08/$25.00 © 2008 ieee
Copublished by the IEEE CS and the AIP

Authorized licensed use limited to: CR Saclay. Downloaded on June 12,2010 at 09:26:42 UTC from IEEE Xplore.  Restrictions apply. 



56� Computing in SCienCe & engineering

creases development time, makes it harder for new-
comers to contribute, and increases the chances of 
bugs and design errors.

The solution for building experiment-control 
software must be accessible to beginners and suit-
able for large projects as well as small ones to allow 
for rapid development. It must have a rich standard 
library, so that developers don’t lose time imple-
menting visualization or disk operations. We’ll see 
later that the solution must also have good support 
for multiple threads. Not many languages or frame-
works meet these criteria—Labview, for example, 
isn’t scalable because it’s based on graphical com-
puting and is suited only for small projects, and al-
though Matlab is math-aware, it’s single-threaded.

With the recent rise of powerful numerical 
modules,4 Python offers a good alternative. This 
agile language is focused on ease of use and de-
velopment speed, yet it retains advanced features. 
In the rest of this article, I focus on the use of 
Python, although many of the considerations de-
scribed here don’t necessarily depend on language 
choice. Regardless of platform, you can achieve a 
huge gain in productivity and reliability by using 
existing libraries. Python provides great modules 
for visualization (Matplotlib5 or Chaco for 2D 
plots and TVTK6 for 3D plots), but every major 
language has libraries for plotting, so implement-
ing such tools is both a waste of time and a threat 
to your project’s reliability and maintainability.

Controlling the hardware
All the instruments being controlled by the soft-
ware must have an internal representation. Instru-
ments are connected to the computer through 
various technologies and use different sets of low-
level instructions to receive and send information, 
none of which is relevant to the general goal of con-
trol software—for example, taking a picture with 
a camera connected to a firewire port shouldn’t 
appear to be any different than taking a picture 
through a frame-grabber card. You should pro-
gram to an interface, not an implementation—that 
is, you should address your hardware through a 
universal set of instructions that don’t depend on 
the implementation. A separate layer will trans-
late everything to instrument-related gibberish. 
This is important because it makes the main code 
base more readable and allows modularity, both of 
which help you diagnose bugs and let you easily re-
place the hardware. Object-oriented programming 
is well adapted to such modularity and abstraction. 
The details of the implementation are hidden in the 
objects’ internals, and only the meaningful meth-
ods and attributes are exposed in the calling code.

The task of writing methods to talk to the hard-
ware itself often implies getting your hands dirty. 
Python has modules to control instruments con-
trolled by the VISA (Virtual Instrument Software 
Architecture) standard or some vendor-specific li-
braries, but you’ll most likely have to build your 
own interface to the hardware. If the instrument 
is connected to a standard bus, you’ll have to use 
the appropriate Python module to send the prop-
er instructions over the bus, as described in the 
device’s manual.

If the instrument is controlled by its own pro-
prietary library, it will come with a software 
development kit intended for linking with C 
programs. You’ll have to interface this with your 
high-level language (in this case, Python), and 
the best way to do this is to write a small set of 
C routines that acts as a wrapper to the instru-
ments library. Linking these routines to Python is 
quite simple using the “ctype” module. You can 
even pass arrays created in Python to C and back 
(http://scipy.org/Cookbook/Ctypes2), pushing all 
the memory-management problems out of C. I 
have indeed found that improper uses of “mal-
loc” and “free” are the source of countless bugs 
in programs written by inexperienced users.

At this point, you might ask, “Why use Python 
at all if I have to work in C?” First, not everyone 
on the team has to learn C: once an instrument is 
linked, the work doesn’t need to be redone. Sec-
ond, using two languages enforces good coding 
discipline:7 the low-level, device-dependent code 
is pushed out in the C code, but the Python code 
stays clear and readable. Finally, the general con-
trol-software code is likely to be reworked many 
times over the life of the experiment, so it must be 
as agile as possible. The time you gain by using 
Python is well worth the effort.

Unit testing the Experiment
As a code base grows, it becomes necessary to test the 
elementary operations on which it relies. Unit test-
ing examines a program’s internals, to see if they’re 
working to specification.8 If unit tests fail, they give 
valuable information about where the bug lies.

Systematic testing is a well-established software 
engineering technique.9 A common testing trick is 
to replace a complex object with a simpler one that 
the test can use to explore the program’s behav-
ior—for instance, a replacement for a camera could 
return a well-controlled image to test the process-
ing. Having “mock objects” replace the experi-
ment’s hardware lets you test the software without 
relying on or affecting the experiment itself. In a 
lab environment, hardware isn’t always reliable, so 

Authorized licensed use limited to: CR Saclay. Downloaded on June 12,2010 at 09:26:42 UTC from IEEE Xplore.  Restrictions apply. 



marCh/april 2008  57

in case of a failure, running tests replacing or in-
specting instruments narrows down the problem 
quickly. By spending time implementing an object 
that behaves like an instrument, the developer is 
also forced to understand the instrument more ful-
ly. Finally, unit testing allows the control software 
to run without instruments, which means you can 
modify and test without shutting down the experi-
ment or the team. This, in itself, is a huge gain.

Performing operations in Parallel
An experimental run involves sending instruc-
tions to—and waiting for answers from—differ-
ent instruments, which often means waiting for 
signals on different buses. You might be able to 
evaluate before hand in which order you should 
receive these signals and then wait for one after 
the other, switching the bus you listen to each time 
you receive one, but this is awkward. Not only will 
a failed transmission bring down the whole exper-
iment, but a change in the experimental sequence 
will also force a major software rewrite. Similarly, 
data analysis must be fast enough to finish in the 
time lapse between two incoming hardware sig-
nals or else you’ll miss the second one.

Performing operations in parallel allows for 
much more flexibility and robustness. A portion 
of a program that can run concurrently with other 
portions while sharing objects is called a thread. In 
experimental-control software, it’s wise to use one 
thread to run the interface, one to perform nu-
merical-intensive data analysis, and one for each 
bus that needs monitoring. This makes it so com-
putations don’t block the interface, either for the 
user or the hardware. If a call to a certain piece of 
equipment is long, you can make it nonblocking 
by using a separate thread.

A threading module in Python makes it easy 
to set up threads (see Figure 1). However, you 
must be careful when programming with differ-
ent threads: an object accessed by more than one 
thread is likely to cause race conditions, in which 
the program’s behavior becomes critically sensi-
tive to the relative timings between events. These 
situations can cause erratic crashes: two threads 
modifying an object at the same time leave it in 
an inconsistent state. A good rule of thumb is to 
have only one thread modify an object; any other 
threads should just read the object’s attributes. 
Of course, more complex schemes with locks that 
prevent concurrent modifications of objects are 
possible, but they require more experience.

Event-Driven Programming
In most typical programs, the developer lays down 

instructions in the order in which they’ll be exe-
cuted. Having the computer react to experimental 
events requires a paradigm shift.

Event-driven programming solves this by lis-
tening for events and accumulating callbacks on 
an event queue. A worker thread empties the event 
queue, executing callbacks one after the other (see 
Figure 2). This pattern ensures both that events 
aren’t lost and that they’re processed in the order 
in which they’re received. It also limits the number 
of threads: all callbacks are executed sequentially, 
which makes implementation much easier than 
starting a new thread per event. In an experiment 
with a large number of instruments talking to the 
computer on different buses, you can implement 
this with a listener thread that loops over the dif-
ferent buses and polls each instrument. The lis-
tener thread can feed events to the worker thread.

Building gUis
Software control means providing information to 
the experimentalist about the experiment and let-
ting that person interact with it. The software must 
therefore have an interactive GUI, but building 
one is hard because it requires graphical entities 
and developers don’t choose the program’s flow. 
Instead, the developer builds objects and specifies 
how they react to user actions. The toolkit used to 
provide basic objects also provides an event loop 
that catches user-generated events and calls the 
corresponding actions. Non-GUI-related work, 
such as polling for experimental data or process-
ing it, should happen in different threads.

Out of the various toolkits available to build 
GUIs, wxPython is a versatile and powerful choice. 
As with all GUI frameworks, a wxPython program 
is made first by creating a graphical object, start-
ing with a window, and then populating it. The 

from threading import Thread

from time import sleep

def delayed_print(message):

    sleep(1)

    print message

Thread(target=delayed_print,  

      args=(‘My thread done’,)).start()

print ‘Main thread done’

Figure 1. Using threads in Python. The delayed_print is called in 
a separate thread so that it doesn’t block the program’s execution. 
Main thread done is displayed before My thread done.

Authorized licensed use limited to: CR Saclay. Downloaded on June 12,2010 at 09:26:42 UTC from IEEE Xplore.  Restrictions apply. 



58� Computing in SCienCe & engineering

program then calls “MainLoop”, which starts the 
event loop. The code looks very different from pro-
cedural batch programming, which is what most 
scientists are used to, so it can be baffling at first, 
but it’s very expressive once you get used to it.

Building graphical objects and their callbacks 
can be a time-consuming and repetitive task. The 
code is cluttered with references to GUI elements, 
and important data-processing tasks can be hid-
den and hard to read, which leads to both bugs 
and frustration in the long run. Most of the time, 
a scientific application only requires displaying 
and editing some variables, the modification of 
which triggers the code to update the experiment’s 
logics. The traitsUI10 module can generate wxPy-
thon dialog panels from objects, which lets you 
modify their attributes and removes a lot of the 
boilerplate work, making the GUI a visual rep-
resentation of objects in the code. GUI elements 
vanish from the code: traitsUI completely takes 
care of the correspondence between the object 
and its representation (see Figure 3).

Data-Driven Programming
Data retrieved from the experiment must be stored 
and displayed to the user. Similarly, the user must 
enter parameters that act on the experiment’s con-
trol logics so that data can be exchanged between 
objects and across execution threads. Rather than 
explicitly propagating data changes, the sharing of 
data between objects by storing references instead 
of values helps make the code light and flexible.

A complex experiment-control program has 
anything but a linear flow. Control over the pro-
gram comes from the program’s own logic, the 
user, and the hardware to which the computer 
is connected. Event-driven programming tech-
niques let the software respond to hardware and 
user interaction by letting external events trigger 
callbacks. However, this can also lead to strong 
coupling in the code: each procedure that pro-
cesses the data retrieved from an instrument—or 
input by a user—must be listed as a callback.

The traitsUI package automatically updates 
the representation of object attributes when their 
value changes—it can even fire a procedure. This 
is somewhat akin to the idea of “don’t call us, 
we’ll call you”: data processing is triggered by the 
change in the data itself (see Figure 4).

This pattern is very efficient at reducing the 
explicit coupling between objects. You can store 
the data and parameters that describe the experi-
ment and its results in well-chosen classes, with 
methods to process the data and propagate it to 
the experiment or the user interface.

from enthought.traits.api import *
from enthought.traits.ui.api import View
from enthought.pyface.api import GUI

class Dialog(HasTraits):
  index = Int()
  button = Button()

  def _button_fired(self):
    self.index += 1

  view = View('index', 'button', buttons=['OK'])

d = Dialog()
d.edit_traits()
GUI().start_event_loop()
print d.index

(a) (b)

Figure 3. Interactive dialog created with traitsUI. (a) The edit_
traits method creates a dialog representing the object. (b) Pressing 
the button fires the _button_fired callback that adds 1 to the 
index attribute. This modification reflects immediately in the dialog 
and later when the attribute of the object is printed: the last line 
prints “3” if the button is pressed three times.

from collections import deque

class Dispatcher(deque):

  working = False

  def dispatch(self, function, *args):

    self.append((function, args))

    if not self.working:

      self.working = True

      Thread(target=self.__consume).start()

  def __consume(self):

    while self.__len__():

      fun, args = self.popleft()

      fun(*args)

    self.working = False

d = Dispatcher()

d.dispatch(delayed_print, ‘1’)

print ‘2’

d.dispatch(delayed_print, ‘3’)

print ‘4’

Figure 2. Event-loop dispatcher. The dispatch method of the 
EventQueue adds functions on the event stack and starts the event 
loop if it isn’t running yet. In this example, numbers are displayed in 
the order 2, 4, 1, and 3.

Authorized licensed use limited to: CR Saclay. Downloaded on June 12,2010 at 09:26:42 UTC from IEEE Xplore.  Restrictions apply. 



marCh/april 2008  59

The techniques of loose coupling by sharing 
data across threads and objects and event-driven 
programming fall under the general design prin-
ciple of control inversion. The program is built 
as an ensemble of objects and procedures linked 
together by data (see Figure 5).

T hey say that judgment comes from 
experience and that experience comes 
from poor judgment. I hope this isn’t 
completely true and that judgment can 

also be acquired through advice. I took the long 
way and got stuck in the software development tar 
pit. I was told that you don’t study programming; 
rather, you learn it on the spot. Luckily, I’m not 
only an experimentalist but also the brother of a 
computer scientist, and my difficulties in the lab 
raised numerous discussions. Since then, I’ve found 
myself recoding some legacy applications written 
by a postdoc in which the poor fellow always chose 
the painfully hard solution. Thinking ahead and 
choosing the right tools have helped me be more 
productive and rebuild months of work in just a few 
weeks. Unfortunately, once we’ve learned our les-
sons in experimental labs, we move along to other 
tasks without passing that knowledge along. 

Acknowledgments
I thank Prabhu Ramachandran and David Morill for 
the help they gave me with threads and user interfaces. 
I also thank Thomas Pornin for teaching me the limits 
of real-time computing and steering me away from it, 
and Joseph Thywissen for the risk he took by letting 
me apply unusual ideas to the software controlling his 
experiment. Finally, all authors and contributors to the 
software mentioned here deserve a big thanks.

References
G.V. Wilson, “Where’s the Real Bottleneck in Scientific Com-
puting?” Am. Scientist, vol. 94, no. 1, 2006, p. 5.

C. Townsend, W. Ketterle, and S. Stringari, “Bose-Einstein 
Condensation,” Physics World, vol. 10, no. 3, 1997, p. 29; 
http://physicsweb.org/articles/world/10/3/3/2.

J.K. Ousterhout, “Scripting: Higher-Level Programming for 
the 21st Century,” Computer, vol. 31, no. 3, 1998, p. 23.

E. Jones et al., “SciPy: Open Source Scientific Tools for 
Python,” 2001; www.scipy.org.

J.D. Hunter, “Matplotlib: A 2D Graphics Environment,” Com-
puting in Science & Eng., vol. 9, no. 3, 2007, pp. 90–95.

P. Ramachandran, “TVTK, A Pythonic VTK,” EuroPython 
Conf. Proc., 2005; https://svn.enthought.com/enthought/ 
attachment/wiki/TVTK/tvtk-paper-epc2005.pdf.

P.F. Dubois, “Ten Good Practices in Scientific Programming,” 
Computing in Science & Eng., vol. 1, no. 1, 1999, pp. 7–11.

G.V. Wilson, “Software Carpentry,” 2006; http://swc.scipy.org.

G.K. Thiruvathukal, K. Läufer, and B. Gonzalez, “Unit Test-

1.

2.

3.

4.

5.

6.

7.

8.

9.

ing Considered Useful,” Computing in Science & Eng., vol. 8, 
no. 6, 2006, pp. 76–87.

G. Varoquaux, “Writing a Graphical Application for 
Scientific Programming Using TraitsUI,” 2006; http://gael-
varoquaux.info/computers/traitstutorial/.

Gaël varoquaux is a research fellow at LENS, Uni-
versity of Florence. His research activities include the 
experimental study of quantum-degenerate atomic 
gases for long-interrogation-time inertial-sensing 
atom interferometry. Varoquaux has a PhD in quan-
tum physics from Institut d’Optique, Palaiseau. Con-
tact him at gael.varoquaux@normalesup.org.

10.

class SquareFilter(HasTraits):

  input   = CFloat(0)

  output  = Float()

  def _input_changed(self):

    self.output = self.input**2

f = SquareFilter()

f.input = 2

print f.output

f.input = 10

print f.output

Figure 4. Dataflow programming with traits. Changing the 
SquareFilter object’s input attribute automatically changes its 
output attribute. This example outputs “4.” and “100.” successively.

Instruments

edit_traits

Control loop

Procedural, linear, 
numerical 
programming, à la 
Matlab using scipy.

Lengthy jobs

EventQueue

Dispatch

Consume

Poll
for

data

Update
parameters

GUI
• Dialogs (traitsUI)
• Visualization
  (matplotlib,TVTK)

Update
visualization

Update visualization

Dispatch

Read
parameters

Update attributes Update attributes

Dataflow programming using traits 
and attribute-modification callbacks.
All the data and parameters of the 
experiment are stored in the objects.

Objects

Centralizing the 
software–hardware
interaction in a sequential
way (with nonblocking
calls for long operations) 
to control relative
timing issues.

Figure 5. Schematic diagram. The full experimental program depicted 
here uses the building blocks presented in this article.

Authorized licensed use limited to: CR Saclay. Downloaded on June 12,2010 at 09:26:42 UTC from IEEE Xplore.  Restrictions apply. 


