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ON THE DERIVATION OF THERMOMECHANICAL
BALANCE EQUATIONS FOR CONTINUOUS SYSTEMS WITH
A NONMATERIAL INTERFACEf®

F. DELL’ISOLA and A. ROMANO

Dipartimento di Matematica e sue Applicazioni dell’Universita’ di Napoli, Via Mezzocannone,
8-80134, Napoli, Italy

(Communicated by E. S. SUHUBI)

Abstract—The integral balance laws of continuous systems with an interface are obtained as a
limit of balance law relative to suitable three-dimensional continuum. This approach supplies a
physical interpretation of the quantities appearing in the balance laws and dodges around the
not invariance under Galilean transformations of angular momentum balance.

1. INTRODUCTION
In the papers on continuous systems with an interface two different approaches are
developed according to whether a well-established integral balance law is valid for the
whole system (see for instance (1, 2]) or for every material volume [3-6].

The local balance equation deduced using the first of these approaches differs from
that obtained in the second one because of the presence of some terms called
localization residuals which are usually interpreted as describing non-local interactions.
In any case the balance laws of mass, linear and angular momentum, energy and
entropy are deduced from the aforesaid equation specifying everytime the quantities to
be substituted in it.

The aim of this paper is to overcome one problem arising because of the not general
validity of these specifications: in fact we observe that, when the interface is
nonmaterial, the usual identifications of the quantities appearing in the general balance
law in order to obtain the angular momentum balance lead to a relation which is not
invariant under Galliean transformations.

In order to obtain (Section 4) an identification of the quantities appearing in the
thermomechanical laws as well as of their transport velocities valid in the more general
case in Section 3 we regard the integral balance law of a system with an interface
exhibited in Section 2 as a limit of a balance law relative to a suitable three-
dimensional continuum.

The assumptions made in Section 2 which allow us to perform quoted limiting
process find a firm physical justification in experimental evidence (see for instance [7]).

Local thermomechanical balance equations we finally obtain are suitable to describe
also those systems in which the interface is nonmaterial. In fact they are always
independent of the coordinates adopted on it.

We conclude noting that:

(i) the limiting process we propose allows us to give a more clear physical
interpretation to all those surface fields whose introduction was necessary in order to
describe nonmaterial interfaces (see [5]).

(ii) our reasonings never used to concept of “material” volume. In fact it turns out
to be ambiguous when a part of the interface is included in it and mass transfer occurs
between the interface and the surrounding bulk material (for a detailed discussion
about this question see {8]).

T Work supported by G.N.F.M. of the Italian C.N.R.

$1If the interface is p-material, according to [5] p. 95, the local equations for angular momentum derived in
[1, 5, 6] are correct.
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2. GLOBAL BALANCE EQUATION FOR A CONTINUUM WITH AN
INTERFACE AND ITS LOCAL FORMULATION

Let us consider a threedimensional continuum with an interface, occupying at the
time ¢ the subset C(f) = R® whose boundary 8C(7) is a regular surface. The interface,
carrying own fields, is represented by a family of regular surfaces § (f) = C(¢), sharing
C(r) into two regions C,(r), i =1, 2. In this section f, R, ® will denote volume fields
and f,, R,, ®, surface fields regular on C® and on S respectively. Moreover f, R, and
® are supposed to possess together with their derivatives, limits f*, R*, @&* at both
sides of the surface S, which are continuous functions on S itself.

The property represented by the field f is carried by the velocity field X, while the
one represented by f, is carried along the surface by a tangential velocity v.. If we
define the u®(r) parameters as coordinates on S(z), f,, ®, and R, will become
functions of u® and .

We recall the following global integral balance equation (see, for instance (1,2, 8]):

d
—(f fdc+ fodo>= Rdc+| @®-Nds+| R,do+| @, vd
dr cw) S@)

C(r) aC(t) S(r) aS(e)

(2.1)

where N is the outward, unitary normal vector to 3C(z), and v is the outward unitary
normal vector to 85(t) in the tangent plane to S(¢).

As it is well-known, under the aforementioned hypotheses, the previous integral
equation is equivalent to the following local ones:t

g{+ div(fi ~®)—R=r in CY(r) U CY(r)
(2.2)

%fo—2Hc,,f0—Ra—divs(d)o—fov,)+[[f(>k—c)—(l)]}-n=s on S

where the scalar fields r and s, called volume and surface localization residuals
respectively, satisfy the conditions:

f rde =0, fsdc;:o. (2.3)
C(r) S(1)

The fields r and s are not univocally defined by conditions (2.3), and express
non-local interactions. Their introduction can lead to more elaborate theories. In the
following they will be assumed vanishing.

In formula (2.2) 6,/6t denotes Thomas® derivative, H and c, are, respectively, the
mean curvature and the geometrical normal velocity at any point of S, n is an unitary
vector normal to S, and the symbol [g] represents the jump of the volume function g
across S, whose sign is determined by n.

Formula (2.2),, in the generic u® coordinates, reads:

Lo et = 2He,f, ~ Ry = 0, + (v +[f G-~ @l n=s onS (2.4)
where

L )y=£f,@we 0,1, c=

=c"a, +(c,n)n

u®=const.

/Y

r(uq, 1) is the parametric equation of S(t), a, =r , and finally ®¢ , represents divg ® in
the chosen system of coordinates.

* See for instance {1. 2, S, 6].
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3. SURFACE QUANTITIES APPEARING IN FORMULA (2.2)
REGARDED AS LIMITS OF SUITABLE VOLUME ONES

To suggest a coherent identification of the quantities to be substituted in (2.2), when
applied in order to obtain all thermomechanical balance laws, we regard it as the result
of a suitable limiting process, which starts from the corresponding balance law for
threedimensional continua.

More precisely we will consider our system as constituted by just one material,
described by fields suffering always continuous but sharp changes in a narrow
threedimensional volume AV(¢) (whose thickness is I(r)). If, for simplicity, we
renounce to describe in detail all the phenomena occurring in AV (¢) we can model the
same AV with a family of surfaces S(¢) and then define the surfacial distributions on
S(t) as averages on AV of the corresponding volume densities. Let us consider,
therefore, a threedimensional continuum C, occupying, at the time ¢, the region C(¢),
and suppose that the following balance equation holds:

d fdc= Rdc+ @ - NdS. (3.1)
dt Jeq c() aC(0)
where R is the volume production of the quantity f, and @ - N is equal to an external
given flux of the same property.

The previous considerations lead us to divide the volume C(¢) into the regions C,(t),
Cy(¢) and AV (¢). For the sake of simplicity, we will make some physically reasonable
assumptions about the motion of the considered system:

(a) the volume AV(t) is bounded by two parallel surfaces S;(¢), both moving with
the same normal velocity c,, and by the surface Q. belonging to 5C. The distance /
between the surfaces §;(¢) is independent of the time .

(b) The surface Q is perpendicular to both S,.

We can write each term in (3.1) as the sum of the integrals over the three regions C,
and AV (or part of their boundaries), and apply Fubini’s theorem to the ones performed
over AV, where AV is expressed as:

AV()= U I(r).
resS(t)

Here S(¢) is a surface equidistant from S;(t) whose unitary normal is n, while
Ir)={r+&n, -1/2=<&=<1/2}.

If we introduce the notation:

for,0)=| fId§

I(r)
where
J(&)do(r) =do(r + &n).
the first member of eqn (3.1) becomes:
d J’ d
— dc +— i do. 3.2
dr a(r)ucz(r)f dr s<r>f1 G2
In the same way, the first term in the second member of (3.1) becomes:
f R dc + R, do. (3.3)
CHOUC() S()
With regard to the flux term, let us partition 5C(¢) into its intersections 8'C(r) and
Q, with C(¢) and AV (¢), respectively.
It results in

Q= U I(r).

redS(t)
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Moreover let us defined at every point r € S(z) and for every tangent vector v to S the
surface field:

D, (r,v)= f/( ) D(r+En)J' (& r,v)dE

where J'(§, r,v) di(r,v) = dI(r + &n,v) dI(r,v) being the line element of the curve
included in S, passing through r, which is normal to v. A further application of Fubini’s
theorem leads us to:

f @ Nds=| &, vdl. (3.4)
Q, as

We remark that the just defined vector field ®,, depends on the normal v when [ # 0,
so that Gauss theorem is appliable to the second member of eqn (3.4) only in the limit
I—0 (in fact when /—0J'— 1 so that the limit ®, results independent of v).

We have now to substitute formulas (3.2), (3.3), (3.4) in formula (3.1) so that it
reads now:

d d
—f fdc+— fordo = <I>o,-vdl+f ¢ -Ndo
dr Ci(NUC(r) dt S() as(r) ac'(1)

+f Rdc+| R, do (3.5)
Ci()UC() S(n)

It has to be remarked that in the previous formula both C; and 8C’ are regions
depending on the parameter /. In order to calculate the limit of formula (3.5) we use a
well-known derivation formula (see for instance [8, 9]) and a simple application of
change-of -variable theorem in integration theory. In this way we derive:

SLor= (Zravm)+ [ (- edh—fn-enbde (o)
dt Jc,ue, cuc, \ot s i .
where f; is the value assumed by the function f on the surface S, c,, is the normal speed
of the same surface, J; = do;/do being do; and do the surface elements on the surfaces
S; and § respectively, x,, =X, - N; where N; is the normal to S, and x; is the value of the
field x on the same surface.

In order to calculate the second term of the first member in formula (3.5) we have to
define [see (2.2),] the velocity v,; which “carries” f,, along S in terms of carrying f. To
this aim we will assume that:

fxJ d&
vi(r) == (3.7)
JIdg
10
This hypothesis assures that when f is identified with p (mass density) v,(r) becomes
the velocity of the centre of mass of the material particle laying in AV (¢) (see Section 3
t0o). Using the definition of Thomas’ derivative (see for instance [8]), we obtain:

d 0,
_f fo.’: —'fal_zchfaI'}' falvtl'le (38)
dt Js say 61 as()
where Gauss’ divergence Theorem was applied.

Substituting formulas (3.6) and (3.8) in (3.5), calculating the limit for /—0,% and
recalling again Gauss’ divergence Theorem we obtain an integral balance equation in

T We obviously suppose that for all the families of functions f,,, R,,, ®.,, v, there exists the limit (in a
norm which allows the inversion of the limit with the integrals appearing in formula (3.5)) when /— 0.
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Table 1
Quantity appearing in N
formuia (2.2), As determined in function of /imit quantities
fo fo = lim £ .
¢c7 q’a = }l_r_% oal
R é‘If—lim is—"f +1lim R
v 8¢/ s \ot’ot) T ina et

the form:

O | . 4 .
J’C(r) <a+d1vfx) dc + S(l)[[f(x ¢)-n]do

d
+lim | —f,do+ J' (—2Hc, f, + divs(f,v.)] do
=0 S(1) 5t NG
= & -Ndo+ ®, -vdl+ Rdc+jl?odc (3.9)
3C(r) EMNG) C@) S

where

lim R, = R,,.

=0

Formula (3.9) leads us to the following local formula:

lim (% fa,> + divg(f,v,) — 2Hc, f, —dive ®, + [f(x —¢) — D] -n— R,=0

{—0

which can be written as follows:
S, . . .
gﬁ, + divg(f,v,) — 2Hc, f, — divg®, + [f(X —¢) - D] n+

. o, O
R, + {E% 5 fot 5 fo} =0. (3.10)
By comparing (3.10) and (2.2), we are led to the identifications listed in Table 1.

Table 1 will be used in the following section.

Obviously, the previous derivation has just an heuristic value, as it is clear that both
the assumptions that a threedimensional scheme can describe the physical situation in
consideration, and the assumptions about the motion of the region AV could not be
generally valid.

4. LOCAL BALANCE EQUATIONS FOR THERMOMECHANICAL
SYSTEMS WITH INTERFACES
In this section in addition to the hypotheses (a), (b) of Section 3, we suppose that:
(c) the tangential velocity field v, (carrying mass density) is constant along the
interval I(r) for every re S, and independent of /.
This implies that:

X7 =X =v,.

Condition c) can be regarded as a consequence of the viscosity of the considered
threedimensional continuum in the neighbourhood of the interface.

In order to obtain the local form of balance relations for a thermomechanical system
with interfaces, we assign the quantities appearing in formula (2.2), according to
Table 1.
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Table 2
f Jor fo
Mass density o Lot = f pJ d& Po
1
Linear mom. density px' P,= J px'J A& pov
7
Angular mom. density 7 pi” M"”EJ e it dE pelre”
1
. 1. 1. . 12 )
Energy density p(ixz + e) Eg, Ejlp(Exz + E)J dg Po (Ev + En)
Entropy density ] H,= f pnJ d§ Pollo
7

We begin by evaluating the limits:
hm fal Efo
=0

when f and correspondently f,, are given by Table 2, where the integration interval / is
in all cases a function of the point r on the surface S.
In Table 2 we have defined the surface mass density p, as the limit

lim Pot = Po- (41)
=0

With regard to the surface linear momentum density P,,, we remark that, by virtue
of mean value theorem it can be represented in the form P, = p,,v,, where according
to (3.7):

f pxJ d&
I(r)

| g
I(r)

i1s the velocity of the center of mass of the particles instantaneously laying in do X I(r).
Owing to (4.2) we have:

vV, =

(4.2)

P,=limP, = p,v.
=0

It is worthwhile to observe that hypothesis c) implies the tangential component v,, of v,
to be independent of / and p:

V.=V, VYVI>0. (4.3)
Let us now use definition (4.2) in order to represent
lim E,
-0
in the usual form:
1
'2_ poV2 + Poks.

where we have defined

1
lim < £+= )2’?')] dE=p,e,.

=0 Jiy P 2 p : p
This is easily done when we observe that

X=v+x',




Derivation of thermomechanical balance equations 1465

being x’ the velocity of the particle in AV with respect to the mass center frame and
recall that linear momentum in this frame vanishes.
Concerning last row of Table 2, it is obvious that we can assume that:

llm Ho[ = Polo-
=0

We have already seen that surface fields defined with our limiting process are not
completely independent. This fact becomes even more evident when we finally look for
the limit:

lim M,,.

-0

To this aim let us express angular momentum surface density M,, in the following way:
M, = j (rxx'm) X pxdx’'.
I

Here r is the position of the point on §, while x'n=x—r.
With simple algebra, we deduce:

Mal=rXPo,+anx'perx'.
I

Recalling again hypothesis c) we obtain:
M, =rXP, +p,dnXv, (4.4)

where d; represents the distance between § and the center of mass of the particle

instantaneously laying in do X [(r) along the normal to S. From this equation, we have:
IimM,, =rXp,v=M,, (4.5)
I—0

In order to perform the substitutions listed in Table 1 we have to calculate the
difference:

6n . 6}1
gfa - ggg o for (4.6)

when f,,, f, are identified everytime with p,;, po; Pl Pb; My, MY; Eyy, E,; H,y, H,.

It is obvious that differences (4.6) will be greatly influenced by the modalities with
which the limits when /— 0 are attained. When it is possible to assume:

(d) V! suitably small f,, = f,, it clearly results that this difference vanishes.

We observe now that it is possible to assume hypothesis d) valid when the quantity f
in Table 1 is taken equal respectively to mass, linear momentum, energy and entropy.

This statement can be justified from a physical viewpoint when we remark that is
possiblet to assume that the phenomenon our theory is modelling (the formation of the
interface) cannot take place without involving a finite quantity of matter (or linear
momentum, or energy, or entropy) quantity which will always fill (or be carried by) the
volume AV, independently of its thickness / (experimental evidences supporting this
assumption can be found for instance in [7]). It is obvious that hypothesis d) implies
the difference (4.6) is vanishing for all quoted quantities, whereas for the angular
momentum, owing to (4.4) and (4.5), we obtain:

Sune (B N s,
Mo =i (M) = pon vl 5. @

The limit appearing in second member of eqn (4.7) can be easily calculated when we
recall that d, represents the distance (along the normal to S) between S and the center

t We do not want to imply that more sophisticated theories cannot be developed where quoted hypotheses
are completely or partially given up. What we need to underline now is that we can coherently assume them.

ES 25:11/12-1
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Table 3
Balance of — Mass Lin. mom. Angular mom. Energy Entropy
- p px’ pe),Xi" p(;—vz + 6) pn
i i 1.2
f- Po Pov poturv" po(3v1+ fo> Ponly
o 0 T £ T %x:T—h ~h/6
®, — 0 T, e,/ Th” veT, —h, ~h,/6,
R— 0 pb' pejb” or pr/8
; Paf,‘h’JbZ
R,— 0 Pb, + Y Poly PoTel B,
(= C)ppotlyn'y

of mass of the particles instantaneously laying in do X I(r).

l‘m 6nd/
11—>0 ot

=vU, —C,.

We note that this limit is equal to zero when and only when v, = ¢, so that it plays a
relevant role in the theory we are developing where this equality is not satisfied. On
the other hand when we describe surface phenomena occurring during phase transition
(see also [10]), it could be necessary to suppose ¢, #uv,, as it has been already
remarked in Kosinski [5].

We resume the previous results in Table 3, where: p 1s volume mass density, p, is
surface mass density, x is the velocity field in threedimensional continua C;, v is the
surface velocity field, T is the Cauchy stress tensor in C;, T, is the surface stress tensor.
whose tangential components are T.%, (vectorial notation T/, obviously denoting the
vector T"“a, where a, is a set of vectors constituting a tangent base on S(t)) pb and
Psb, are given volume and surface force density, ¢ is mass internal energy density in
Ci, & is surface mass internal energy density, h and h, are volume and surface heat
fiuxes, n and 7o are volume and surface mass entropy densities, and finally » and r, are
mass heat production density in C; and on S.

From Table 3 we derive the following local balance equations and jump conditions:

8p .. .
— +div px =0; %X =divT + pb; T=T7
ar VP p P (4.8)
pé=T:gradx —divh + pr; pn = —div(h/6) + pr/6
in CYU C3, whereas on S it results:

apo @ o @ v
ot +(poV )|a+Pcna+(an ),a+[[p(x-c)]]-n=0

3
3 (Po¥) +Po¥N5+ (VY + povu® = T) , + [px ® (k—¢)— T] - n =0

2
Y (o X V) + (Pok X VV ), + pon°r X v + (por X VO % —rX T), o

+po(v,,—c,,)n><v,+[[px><5(®()k-c)—-x><T]]°n=0
R L P
at<pa<2v +& | +1ips 2V2+£a Vv Ia"'parl« 2V2+80 -("To )Ia/

1
+ <po<§v2+ eo>v“) + (b5 + ﬂp(ix— c)<%i{2+ e) -%x-T+ hﬂ ‘n=0
|l

(4.9)

o h, .
> (0aMo) + (Pone (V¥ +0%) 0+ ponn, + ((7) +lpn(x—~)+h/6]-n=0
o’ a
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In the preceding formulas arbitrary surface coordinates u* have been used, 7%= Clo—

2Hc,, and V%= —c% is Thomas’ derivative of u® After collecting in (4.9), the terms
containing v and substituting in the so obtained expression (4.9),, it results:

d
p(,cs—:v+poV5v~vr —divs T, +[p(x~v)® (x—¢)—T]-n=0. (4.10)

Slmllarly, we can collect in (4.9), the terms where appear the quantities: v and
3V’ +¢,) and substitute the expressions obtained from eqns (4.9);, (4.10). This
leads to:

8
pos—: & + P, Vsé, * v, — Ty : Vv + divg h,

+[[p<%()k—v)2+(8—Eo)>(i(—c)—(}k—v)-T+hﬂ-n=0. (@.11)

Finally, we can collect in (4.9)s the terms containing 6,7, and 6,, substitute eqn (4.9),,
express divg h, by means of (4.11) and define y, = ¢, — 8,7,, thus obtaining:

h, )
-pa(w’a + '709:7) + Tar : VSv '—9_ * VSQO + u}oﬂp(x - C)H ‘n+

g

-Hp(%(i—v)z—% £ - 60n>(i—c) - (X—v)-TH ‘n+ ﬂ(%— 1>hﬂ-n.>.0 (4.12)

where

S,
wo (’St T,Uo+vsw:7 Y.

In an arbitrary system of coordinates u® on the surface S previous formulas reads:

v
mE*Pa(v =W T+ [p(x~V)® (k—¢)—T]-n=0 (4.13)
)
Po ast J-pa(U —c%) a,a‘Tga)'v,a'{"hgla

+[[p(%(i(——v)ﬁ-(&-80)>(i{—c)—(x—v)-T+hH-n=0 (4.14)

hzx
_po(w; + 7’09:7) + T(oa) Vo™ —8_2 ea,a + U}dﬂp(x - C)]] *n

g

,—[[pg(i«v)z-k £ — 80n>()k—c) —-(X—v) -TH ‘n+ H(%— 1)h]] ‘n=0 (4.15)
In particular, when 6" = 6~ = 6, eqn (4.15) becomes:

hs .
“Pa(W& + 7709:7) + TE;X) Vo~ '8_ ea,a + WUﬂp(x - C)E ‘n+

~Hp{<% (k—vP+ w)(x— )= (k—v)- T/pH] ‘n=0 (4.16)

Let’s now consider eqn (4.9),.

Collectmg once more the terms containing r, remembering that, on S(t), is
x~ =x"=r, and taking into account balance equation for linear momentum, it is easily
seen that balance equation for angular momentum is equivalent to the following
relation:

X T =0 (4.17)
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This equation reduces to the following scalar ones:
Trxﬁ —_ Tﬁa

4.1
T =0 (4.18)

The first of them expresses the symmetry of the tangential component of the surface
stress tensor, which is a well-known result of the classical theories. The second imposes
that the interface cannot exert normal stresses.

We conclude emphasizing that the angular momentum balance law assumes a form
which is not Galilean invariant if we do not take into account the following source
terms appearing in Table 3 and singled out by means of quoted limiting process:

s=(v,—¢c,)p.nXv.
In fact it is easily seen that in this case eqn (4.18), becomes:
TM - SO’

which obviously is not Galilean invariant because of the presence of the quantity v in
the cross product.
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