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Deduction of a generalized Stefan-problem and its solution
by means of an iterative method

A. CAPUANO and F. DELI’ISOLA (NAPOLI)

A GENERALIZED Stefan-problem arises when the thermomechanical theory for continua with
interface, proposed by A. Romano and others (10, 11], is used for modelling a ,,one-dimensional”
system where a phase transition is taking place and the difference in density between the phases
cannot be neglected. This problem is solved by means of an iterative method which allows for the
construction of a solution in a suitable time interval. An integral representation of the moving
boundary s is then shown, which immediately proves the uniqueness of the solution in its exis-
tence time interval. The repeated application of the iterative method allows us to construct the
solution up to the instant T* oaly, that is up to that instant when (eventually) of the phases
disappears. Proof techniques we have used sum to be convenient for numerical applications
and applicable to more general problems. Next we show a global continuous-dependence-on-
-coefficients- and data theorem. The existence andcontinuous dependence theorem thus proved
confirms the applicability of the proposed thermomechanical model. We finally discuss the
physical meaning of the failure of quoted proof-techniques when 7 > T*.

Uogolniony problem Stefana powstaje przy zastosowaniu teorii termomechanicznej dla o$rod-
kow z powierzchnia rozdziatu (A. Romano [10, 1)) do modelowania ukiadu ,,jednowymiaro-
wego”, w ktorym zachodzi przejscie fazowe, przy ktoérym nie mozna zaniedbaé roznic ggstosci
poszczegdlnych faz. Problem ten rozwiazuje sie sposobem iteracyjnym, ktory pozwala na kon-
strukcj¢ rozwiazania w odpowiednim przedziale czasu. Ruchomy brzeg przedstawia sie nastepnie
w postaci catkowej, co pozwala zarazem stwierdzi¢ jednoznaczno$¢ rozwiazania. Wielokrotne
zastosowanie metody iteracyjnej pozwala nam konstruowacé rozwiazanie wazne jedynie do
chwili T*, to jest do chwili gdy jedna z faz znika. Metoda dowodu okazuje si¢ szczegbinie przy-
datna do obliczen numerycznych i daje sie zastosowaé do bardziej ogdinych zagadnien. Nastep-
nie przedstawia sie twierdzenie o globalnej ciagtej zaleznosci rozwiazania do wspolczynnikow
i danych poczatkowych. Dowiedzione w ten sposob twierdzenie o istnieniu i ciaglej zaleznosei
potwierdza zasadnosé¢ zaproponowanego modelu termomechanicznego. Na koniec omawia sie
sens fizyczny nieprzydatnosci stosowanych metod dowodu w przypadku, gdy + > T*.

O6obmennasn 3agada CredaHa BO3HHKAET IPU NPUMEHEHUH TEPMOMEXAHUYECKOH TEOpHM AUIA
Cped C MOBEPXHOCTRIO paszena (A. Pomamo, [10, 11]) mna moZermpoBaHus ,,0XHOMEPHOIX’’
CHCTEMBI, B KOTOPO# IPOHCXOOUT $Ha30Bblii MePeXon, IPH KOTOPOM HeJbast npeHedpeyus pasHu-
el MIOTHOCTH OTACHBHBIX (ha3. OTa 3aJaua pelTaeTCA HTEPALMOHHBIM CIOco0OM, KOTOPBIX
[103BOJIAET TIOCTPOMTH DEIICHHUA B COOTBETCTBYIOILEM HHTEpBasie BpemeHu. [loaBmyKHAA rpa-
HHI2 IPEACTABIIAETCS 3aTeM B HHTErDAIBHOM BHAE, YTO HO3BOJISIET OMHOBPEMEHHO KOHCTATH-
POBaTh €AMHCTBEHHOCTh DELIeHMA. MHOIOKpaTRoe UpHMEHEHHE HTEPALMOHHOIO MeTona IIo-
3BOJISAET HaM IIOCTPOHTH DELISHWA CIPaBeATIMBbIE TOJIBKO K MOMEHTY 7%, T.e. K MOMEHTY,
Korga omHa u3 a3 ucuesaeT. MeTOMHMKAE JOKA3aTEILCTBA OKA3bIBAETCH OCOOEHHO IIPUTOSHOM
AT YUCJIEHHbIX PACYeTOB U J2eTC NPHUMEHNUTH K Gojiee oOImmm mIpodiemam. 3aTem Ipencras-
JIAETCA TeopeMa O II00anbHO#, HEMPEPBIBHOH 3aBHCHMOCTH DPEICHHA 0T KoadhdHLHEHTOB
M HaYaNbHBIX JaHHBLIX. [{oKa3aHHAA Takmum odpasom TeopeMma CYLIECTBOBAaHUSA I 0 HEIpephIB-
HOIH 3aBHCHMOCTH IIOATBEPXKA2eT O0O0OCHOBAHHOCTD NPEIIOMKEHHOH TepPMOMEXaHMUYECKOH Mo-
nmenn. Haxowen ocyrkagaeTcd QHIMIECKANH CMBICT HEHPUTOMHOCTH NPHUMEHSAEMBIX METOROB
I0Ka3aTeNbCTBA B Ciaydvae, Korga ¢» T*.
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Conventions

IN THIS PAPER we will use the following notations:

1) the symbol L'u[L*4] will mean v ., —k'u [ xx+Kk'u ), where v is a real-valued
function of the real variables x, ¢, v ,, u, represents the partial derivatives with respect
to x and 7 variables, and k' are real positive constants [i = 1, 2.

2)Ds,, v is the set of couples {x,1:0< 1< T, s(t) < x < r(t)}, where s(2),
r(t) € C°[[0, TIINC[(0, T)]. If s < r, we will use D! instead of D,_,.s.7 and D? instead
of Dg , r;

3) if f(¥) is a real-valued function defined in a compact region K, then |If]| indicates

Lub. [/();
xek

4) if x is a real function of the two variables x, 1, y* is defined as L*y;

5) £ is the quarter plane x > 0, 1 > 0;

6) let us consider the real-valued function s(r) defined in [0, 7] whose range S =
= ([0, T]) = [R* (set of positive real numbers) together with the function 7: S x
x [0, T]1— |R. We define:

) aT,s,7)= g.g.l;_.{min {s(), 7 (s(t), t)—s()}} ;
€[0, T)

) AT, s, 7) = Lub. [max (5(1)), 7 (s), D))
€10, 7

when it does not cause misunderstanding, we will use the notations as and As;

7) the symbol p will denote the nt-ple [Q, H, ®, b, X, R, M, k';

8) the symbol d will denote the mr-ple of functions [k', &', K, ¢/, 2 gt u Tl

9) the symbol 4(d,, d,) denotes the sum of 4 listed in [1] III p- 9, where the integrals
are calculated in the region R x [0, 77 instead of in [0, 1]x [0, T ], when double, and in R
instead of [0, 1], when simple, plus

AF = Lu.b. {max (=72l Iy =75 4, l;l.r_Fl.x.!}:;
(x.1)eRx[0,T]
10) 1, = [0,50)], 1, = [s(0), r(0)];
11) We mean by the symbol [J that Proofs are completed.

1. Introduction. Physical motivations of the proposed mathematical model for solid-liquid
phase transition; an outline of the following sections

1.1. Remarks on references

)

In the present paper a Stefan-problem (called G-problem in the following)is formula-
ted and analysed. It is a generalization of the one dealt with by Fasano-Primicerio [1,110]
since it takes into account the density difference between the two phases. The proposed
form of the problem is here deduced (as done in [7]) from a general thermomechanical
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theory (see [2,3,8,9, 10, 11]) (named in the whole paper ™T) when it is possible to
neglect:

i) the influence which mechanical phenomena have on thermal ones;

ii) the thermomechanical action exerted by the interface between the phases.

We will show the theorem existence, uniqueness and continuous dependence on the
data and coefficients for the solution of the G-problem, by means of an iterative process,
taking into account the mobility of the second boundary, analogous to the one used in [1].
When the function 7(s)/s(*) is one to one, the posed problem can be reduced to the one
solved in [12], when a suitable variable change is performed, which makes the second
boundary fixed. Nevertheless, the techniques used in [12], do not seem immediately appli-
cable for those more general problems in which the mobility of the second boundary
plays an essential role.

Such types of problems actually can arise, for instance in the framework of the quoted
TMT. In conclusion, the main features of the demonstrative techniques here developed
are the following:

a) they seem to be easily extensible to further generalization of the Stefan-problem,

b) by using them it is possible to show the continuous dependence on the coefficients
in the Stefan condition of the solution of the problem to be considered,

c) they allow, in numerical applications, to use that qualitative information about the
solution, which can be made available by considering the problem from a physical point
of view.

In fact, as the first term in the iterative sequence whose limit is the moving boundary
can be chosen in a large range of functions, it is possible to make this sequence converge
more quickly.

d) they are applicable under very general hypotheses for the function rs, t). With
regard to such techniques, we underline that they resemble those used by CaNNON-HILL
[4] and RUBISTEIN [6] in other situations. Finally, continuous dependence is explicitly
shown in the whole existence interval of the solution.

1.2. Physical deduction of the mathematical problem posed in Sect.2

Let us now deduce the G-problem by means of TMT when the hypotheses i) and
ii) are verified. The system of differential equations and jump conditions, whose solution
gives the evolution of a thermomechanical system with an interface not carrying thermo-
mechanical properties, becomes, in the unidimensional case, the following(?):

do d
(1.1 —2}—'("—8;(97)) =0,
v ov op
1.2 O T T T e

(*) The previously mentioned function 7 mathematically describes the physical circumstance that the
position of the second moving boundary is determined by that of the first.

(?) The more general system of equations governing the evolution of an arbitrary thermomechanical
system is deduced in Romano and others [3, 10, 11] and in KosiSskr {8, 9]

e
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o de ov ch

(1-3) Ca T T TPt
(1.4) Jow—c)] = 0
the interface does not absorb mass,
(1.5) [0]=o0
thermal resistivity of the interface is negligible,
(1.6) [evw—0)+p] =0
the interface does not exert stress,

i 1
(1.7) !‘g(s—f——é-vz) (v—c)+pv—-h!§=0

the interface does not absorb or produce energy,
(1.8) [on(@=—c)—h/6] = 0

there is no dissipation at the interface.

In the previous equations we used the following notations: o is the mass density of
bulk materials, v their velocity, p their pressure (in one-dimensional problems the stress
tensor is always determined by just one component), ¢ and 7, respectively, their internal
mass density energy and entropy, /1 heat flux, ¢ the speed of the interface between the
phases, 0 the temperature. Finally the symbol [ f] means f* — /=, where f* is the limit from
the + side of the arbitrary function f.

We observe that in order to assure the consistence of the assumption that entropy
inequality is valid as an equality for every process and the interface does not carry thermo-
mechanical properties, with the approach developed in [11], the coefficients appearing
in the constitutive equations there postulated have to assume some particular values.
Subtracting Eq. (1.7) from Eq. (1.6), multiplied by ¢, we obtain

(1.9) gég(%(v—c)z-i—s)(7)~c)+p('v—c)—h:;, = 0.

[
Treating in the same way (1.8), it results

(1.10) el Fe-orfe-arpw-0 =0,
iL i

where y = ¢—0.
Using Eq. (1.4). the formula (1.10) becomes

(1.11) [e] + fJ_% (z,_c)z_%ii ~0,

where the function g = y+p/g coincides, in the case of fluid phases with the limit at the
interface of Gibbs’ potential. In what follows we will suppose that the densities of both
phases are constant during the evolution of the system (incompressible materials). With
this hypothesis the previous system of bulk equations becomes
o
12 —_—=
(1.12) 5 = 0
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ov ap

113 A
(1.13) Sy ox
3 5
(1.14) 008 b 2 O

ot "% ex T ax

Equation (1.12) obviously implies that in both phases v = v(r). We remark here that the
system of equations (1.12), (1.13), (1.14) suitably describes, for example, solid-liquid
phase transition. In what follows we will refer only to this physical case.

If we impose as a boundary condition for the solid phase that its free boundary is
fixed, we obtain v, = 0. Formula (1.4) then becomes

(1.15) v, = c—%(f)~. where 4o = 0, —0,.
e
Moreover, p, = ps(t).
Formulae (1.13), (1.15) allow us to express p, in terms of ¢ and the externally applied

pressure p,. We obtain
(1.16) p = edo(r()=x)pe,
where r(¢) is the position of the free boundary of the liquid phase and is a given function
of the position of the solid-liquid interface s(t). We finally have:
in the solid phase
Ps = ps(t)’ US = 0’

oh a*0
0 =K
in the liquid phase
de
U = c,

O
pr = &do(r(t)—x)+pe,
20 a0 a6
0, Cy T +C13957€ = K‘”a?"
at the interface

= —do 2 e,
{[p]] QQlc

_ 1_43. 0s+ 01 2
[[gl]-——gl< i )c,
[6] =

6

o

’

| <@
|

1
Qo

.

. . 00
In the previous equations we have assumed ¢ = C0 and /1 = K -;—-. Moreover, as to
X

the previous evolution equations we remark, in the first place, that it is experimentally
known that the quantity [»] is largely independent of temperature. In the second place,
at least for metals, the ratio do/o < 1. When it can be neglected, the melting temperature
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1s constant and the evolution of the system is determined if the solution of the classical
Stefan-problem with external boundary fixed (v, = 0) is known. On the other hand, if we
want to take into account this difference, what is sometimes appropriate in dealing with
metallurgy (see, for instance, [7]), we still can suppose that melting temperature is given.
In fact, in order to obtain both in the liquid and at the interface pressure differences com-
parable with respect to the external one, the melting velocity should be much larger than
1s usually found (¢ ~ 10 m/s in order to have 4p ~ 1 atm). So the jump conditions found
in the previous approximation can still be assumed to be valid, although the velocity in
the liquid phase is not neglected. These physical considerations justify the position of
the G-problem (Sect. 3), where the further approximation is made by neglecting, in the
energy equation for the liquid phase, the term

a6
ox

cAdoC,
Dealing with the more general case in which this last term is retained leads only to formal
complications. In fact, the iterative method used in the following still applies with the
only difference that the source function, occurring in the integral representations, con-
cerns a more general parabolic equation, having the same kind of singularity than that
actually treated.

1.3. An outline of the following sections

In Sect. 3 the problem is formulated from the mathematical point of view. Moreover,
a list of the assumptions necessary for the proof is shown. Some of them have an obvious
physical interpretation (for example, in the case of phase transition, hypothesis G5 expresses
the finiteness of total mass involved in the process), while others have just a mathematical
character. The last ones could be weakened as done in Fasano-Primicerio [1] II. In
Sect. 4 some properties of solutions of heat equation in moving boundary regions are
shown and the equivalence between the Stefan condition 5) and an integral relation is

proved.
’ In Sect. 5 the iterative process which generates a solution of the G-Problem is defined.
The convergence of the sequence thus obtained is then proved in a suitably small time
interval. The integral relation obtained in Sect. 4 is used for showing that the uniform
limit of the approximating sequence actually is a solution of the G-Problem.

In Sect. 6 an inequality is exhibited, which immediately implies the uniqueness of the
solution in its definition interval. Next, it is shown that the repeated application of
the iterative process defined in Sect. 5 actually allows the construction of the solution to the
G-Problem up to the eventual time when one of the phases completely disappears or the
upper limit of the time-derivative of the function giving the interface position is not
finite. ‘

In Sect. 7 a continuous dependence theorem for the solution of the G-Problem is
shown, using the inequality in Sect. 6 and the properties of the sequence defined in Sect. 5.

In the section “Conclusions” physically relevant observations are made about the
obtained mathematical results.
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2. Formulation of the problem

Let us consider the following generalization of the Stefan-problem (G-problem):
a triple of real-valued functions {s(z), u'(x, t), u?*(x, t)} will be called a solution of
he G-Problem in the [0, T] interval if:

D s e{CH(O, D)nco([o, T,
s0)=5>0,
s(1)>0 Viel0, 1),
2)  ui(x,t) is defined and continuous in D;
u'L(x, 1) € C°(Dy),
W, and 4, eC°D), where i=1,2and
r(t) = F(s(1), 1) > s(2)
with 7(x, ¢) a given real-valued function defined in Q;
3) Lt =gq'(x,t) in Dy,
(0, 1) = (1), uwr(r(t),t)=¢*(t) Viel0,T],
W(x,0) =Hh(x) Vxel,
where ¢', ¢', /' are given real-valued functions.
4 wr(s(t),t) =u*(s(t),t)=0 Vte(0,T],
5 (ul— 2w (), 1) = 3O +pu(s(t), 1) Vie(0, T,
where y'(x, t), u(x, t) are given real-valued functions. In order to show the existence,

uniqueness and continuous dependence theorem for the solutions of the G-problem, we
will need the assumptions listed in the following section.

3. List of assumptions

Gl) q‘ﬁx, t) are locally Holder-continuous in Q with respect to x and ¢ and 1g'(x, 1) <
$Q ki in 2.

G2) ¢'(¢) are continuous in |R* and |¢'|< PV e |R*.

G3)  A'(x) are continuous in [; and |A'| € H(b—X), |h*| < H(x—b) where Hb > @
and H(F(b, 0)—b) > ©.

G4 1 i Xl 21 € CO(R2) and

DS X, DS X Y(x,)ef.

G5) F(x, t) € C2[Q]. Moreover we suppose that: 7(x, ) € GTIF < C?[Q], where

the set GTIF is defined in what follows. To this aim, let us consider Iy = {x:7(x, #) > x}

and I} the connected subset of I, containing b (eventually empty). The function 7 belongs
to GTIF if and only if the following conditions (*) are satisfied:

(®) The physical meaning of these assumptions is clear when we regard the function s(¢) as giving the
position of the interface between solid and liquid phases, the point 0 the fixed extreme of the solid phase and

r(z) the freely moving extreme of the liquid phase (We refer to the introduction and p. 265 [13]).

8 Arch. Mech. Stos. nr 3/87
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G5); r(b,0) > b so that it results I} # ¢,

G5), O0ell! <R iftel0,T], where Ris a given finite interval mdepcndent of 1.

GS5); T, and its derivatives, is bounded in R x [0, T] by the constant R,

G6)  p is a Lipschitz-continuous, bounded function in every bounded subset of £.
Its Lipschitz constant in R (def. in G5),) is M. M can be chosen so that it results
Lub. jul < M.

in R

4. Some useful results from heat-equation theory. An integral relation equivalent to 5),
Sect. 3

LEMMA 1. An integral relation equivalent to 5) Sect. 3.
Under the assumption G1) ... G6), the triple [s(z), u'(x, 1)] satisfying the conditions
1) ... 4) of the G-problem and a(s, T) > 0, verifies the condition 5) if and only if the
following integral relation is verified:
“.n s(t)=b = L,(s(t). 7, K, x', ', ¢', /', u, b, 1) Vtrel0,T),

where the L,-operator is given by the following integral expression:
Li..)= [[ dede(ug—u)- [ u(s). v)de
Q

x=0,r¢2),1

(1)

- G € nde+1ja f (a—&) (ki) &, 0)dy

~la [ (@=920 —w @~ ple~ 2+ (a= K )E, Ddidr

x...O X=a,1

_1/af (K (a= & yu' ) (&, Nds—1/a [ () ©, v)— (z'u") (a, 7)dr
0 o

—1l/a { PP (r(z), T)= () (r(1)—a, T)dr+ 1/a
0

x [ (@=r(D+8)1*q* ~ 12| (a=r(D) + &) K g2 + 1) + 207~ KP4 (1)] dE

r(r) a,r(7T),t
r(0) (1)
+la [ (a=r©)+&)k 12 (&, 0)dE—1/a [ (a=rt)+ &) (k2 2u?) (&, 1)d.
r(0)—a r(ty—a
The relation (4.1) coincides with Eq. (3.3) in [1] III when 7 = 1. We omit the proof of
Lemma 1 because it is conceptually analogous to that used in order to prove Eq. (3.3)
in [1] TII. Moreover, its formally involved details can be found in [7].

LEMMA 2. 4 priori bounds for functions ' verifying the conditions 1) — 4) Sect. 2.
Let us consider the functions s(z), «'(x, r) verifying the conditions 1)—4) Sect. 2. Let
the functions ¢'(x, 7) be defined as the (unique) solution of the following problem
42), L<=0 in D,
vi(x,0) = Hix—b] Vxel,
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v1(0,t) = Hb Vte(0,T7T],
v (r(t), 1) = H(r(0)—b) Ve (0, T].
vi(s(t), 1) =v*(s(t),t) = -0t V10, T].
Under the hypotheses G1) ... G5), the following relations hold:
(42), wi(x, 1) <V(x,0)+Qt VY (x,1)eD,
(4.2); i (s(r), 1) < v (s(2), 1) Vtel0,T].
Indeed, the two couples of functions defined as
. Wit = o'+ Qt+u'  in D,
are solutions of the following problems
a) LW = Lo+ L'+ L(Qt) = —k,Q+¢'< 0 in D,
Wit(x,0) = Hb—x|th'(x) 20 Vxel,
Wit(0, 1) = Hb+Qt+o*(t) =2 0 Vire[0, T,
W2 (r(). 1) = H(r(0)—b)+0tx¢*(t1) =0  Vte [0, T].
W= (s(r), 1) = W (s(1),t) =0 V:ie[0,T].
The maximum principle for the heat equation implies
b Wi (x,t) >0 in D,uD-,

from which (4.2), is deduced.
By virtue of a), b) and the continuity of v'; and ', up to the curve (s(¢), t) (see for
example [6]), we obtain '

WiE(s(n), 1) <0, W2(s(t), 1) =0
from which the problem (4.2); follows.

0

LEMMA 3. A priori bounds for solutions of the problem (4.2),.
Let o* be the solution of the problem (4.2);. The following inequalities hold:

(4.3), i (s(t), 1)) < W (4s, a5, 8, K, b,r(0), H, M, Q, D, X),
Env'zx (r(t)’ t)! < h’( .............................. ) vt e@’

where @ = {t:t < as(¢)/34,(¢) ¢} and /' is a regular function of the quoted arguments
which is defined during the proof. We limit ourselves to the treatment of v7,, as all the
considerations concerning the function v, are developed in [1].

Using an integral representation of 22(x, t) by means of suitable source functions,
the following inequalities are obtained:

@3); A (s(0), 1) < D+C [ (t=1)"210% (s(2), D}z
Q

+E [ (- D7 310%, (r(2),7)de V1€O,
0

8*
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where
kc2p1l2
D = 23 (it %T‘;") = atprir,
A
4y (k232
16k* | 34\ 7(b,0)—b+241
ea? a ) 41/;(1(2)3/2 :

C=2/3

E = 2/3 (
@3); (1), 1) < D+C [ (1= )2 % (r(0), 7)idr
0

+Ef(t—r)"%}v?,(s(r), T)dt ViteO.
0

Summing the inequalities (4.3), to (4.3)s, after simple algebra we obtain
(4.3)s W% (s(0), 1) +1v% (r(), 1) < 2D+2(C+E)

t
1
x f (1= 1) 2 (W (s(D), T)|+ L2 (r(2), T)jdr Vie6.
0
To the function g(r) = {v%(s(t), 1)i+|v2%(r(2), )| the following lemma, (due to T. H.

Gronwall) quoted both in [5] and in [14], can now be applied:

Lemma. If

PR 1
= [ (=) gy,
0

g)eC%[0,T]) and g(r) < y+ s

then

1 i1
g < yexp(i2n)(1+2122722)  vielo, 7).
In our case we have y = 2D and / = 2})/z[C+E]). It is now necessary to introduce the
following function G (the reasons which led us to define it in exactly this way will become

clearer in the following section):

P / 2
G(1.4,a,p) = M+(a+ﬂt”2)exp( ézz(Hz;i(HAy ) (1+ 2 IZ(ZZ?(HA) )

where
£ = ¢RC/A (¢ being defined as sup {3,32k% e, 3 (F(b, 0)—b)

= 30(b), (7(b, 0)—b)32K*/e)

and a is assumed to range in the interval (0, 8(5)) with 6(b) < 1. The last assumption
is physically not relevant as it can always be fulfilled with a scale change.
With simple algebra it is possible to show that

1 1
yexp(/“.zt)(1+2t27z 2 /'.) <h =(G-M)2X,
which completes the proof of the inequalities (4.3),. O
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It is possible to find an upper bound for v (s(t), ¢) appearingA in Lemma 3 which
depends only on the dimensions of D; and p.

In order to enunciate the following Lemma 4, we investigate the properties of the
function G(...) (for more details see [7]). It can easily be seen that it verifies the following:

PROPERTY G

V a and p, a unique T, > O exists such that the equation G(¢, 4, @, p) = 4 admits
a unique solution 4, > 0. The so-defined functions 4q(a, p) and Ty(a, p) are continuous
and, moreover, T, is increasing with respect to a.

Lemma 4
If s(t) is such that a,(z) > a > 0, [§(2)] < 4o(@, p) and [7(2)| < As(40(a, p)), then
the solutions of the problem (4.2), v* satisfy
. a,p—-M
4.9 0! (x, O < -fig(a—;?——d-i-l-[ = By > 0.
{ndeed, it is well known from the heat equation theory that the solutions of the problem
(4.2), ¢' € C? [Di}nC*[D;]. This implies that
Lvi, =0 in D, and 9,eC°D).
Under the hypotheses quoted in the next section, it is shown that
< AO(Ev ﬁ) - M
2X ’
Using the inequalities (4.3), and the maximum principle, we obtain the inequality (4.4),.03
LEMMA 5. 4 priori bounds for functions verifying the conditions 1) —4 ), Sect. 2
Let us consider the triple [s, #'] verifying the conditions 1) ... 4), Sect. 2. Under the

hypotheses G1)-GS) for data, and those established in Lemma 4 for the function s(¢),
the foilowing inequalities hold:

) wl(x, D) € Boix—s(t)l VY (x,1)e Dy,
() A, )= (r(t), 1)l < Bylx—r(t)l ¥ (x,t)eD,,
where B, and By are given functions of @ and p.

Proof

vi(x, 1) = 0 (s(1), 1)+ 0 (0) (x=s(1))V (x, ) e D, and B € [x, s(HlUs(r), x].
Using (4.2), we obtain:
i (x, t)l 9 ((t), 1)+t +10 (B (x— (1)), < Bolx = ()|

which is (4.5), if i =

In order to show the inequality (4.5),, we recall that, if u(x, ¢) is the unique solution
of the following problem,

L%u u=4g4- (x,t) V(xv t)EDS‘r.T’
u(x, 0) = h%(x) v x e [b, r(0)],
u(s(@®), 1) =0 u(r(t),t)=¢*1) Vte(,T],

(or, respectively, u(r(t),t) =0, u(s(t),?) = ¢*(t))
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then (if the hypotheses of Lemma 4 are satisfied by s(2)) the relation
lu(x, 1)| < Bo(a, p)ix—s(r)]  (respectively Ju(x, 1) < Bo(a, p)lx—r(1)])
holds. Let us define. in D;,, 7, the function & = u—¢2(¢). It results
L% = g*—¢2  u(x,0) = h2(x)—$2(0),
u(s(t), 1) = —¢2(1), u(r(r), 1) = 0.
Applying to u the previous result, we have

u(x, 1)] < Bo(@, p)x—r(1)]

where p’ is known in terms of p. The preceding expression is just (4.5),. 0

S. A local existence theorem for the solution of the G-problem

This theorem is proved by defining an approximating sequence of triples [s;(¢), ui(x, ),
with domains [0, 7], Dyco, sy 1, Dy, . .,.7,, Tespectively, in a completely similar way
as in [1], and by showing the convergence of this sequence to a solution. A number
of problems, of course, arise from the eventual variability of the 7 function.

DEFINITION 1. Let us consider a sequence by of positive real numbers converging to b. Let
us choose a positive T, (eventually infinite) and s,(t) = A(r) where i(t) is an arbitratry
real function defined in [0, T,] whose range is included in |R* and is such that J(0) = b,.

Once defined, by induction, s,(t) and T, u. are the unique functions satisfying the
conditions 2)-4) Sect. 2 in the regions Dx=0.sk-Tk and Dswk,na while Ty,, and Sit
are determined as follows:

Se+1(0) = by

Sesr(t) = (rlui, ) (sk(t)a [)‘(Zzulz:,x)(sk(f): ’)”/4(5;:(1)> t)

if Tk)={reR":5.,() =0 or s.,0) = ress ()}
T+ = min{min7(k), T} }.

We emphasize that it will result that both the function A(t) and the sequence &, have to
satysfy suitable conditions if the uniform convergence of the sequence s, must be assured.
These conditions are specified in the hypotheses to Theorem 1, Sect. 5, and in the Remark
preceding it. We anticipate that they are not very stringent. This means that the information
we eventually have about the motion of the free boundary can be employed in shaping
suitably the first term of the built sequence. If our choice of this first term is well-grounded,
this sequence will efficaciously approximate the searched function 5(1), in the sense that it
will quickly converge. We conclude by noting that this “qualified” freedom of choice we
happen to have is not at all something new. It is very strictly linked to the convergence of
the sequence defined in the Banach-Caccioppoli’s Theorem to the unique fixed point of
a contraction in a complete metric space independently of the choice of its first term. In fact
it seems to us that a more complete treatment of the problem under consideration will
make us recognize that the results we are going to obtain are in fact available by applying

I
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the quoted Theorem. In order to prove the uniform convergence of the sequence s, in
a suitable interval [0, T, we need the following:

LEmMA 6. Let us define

Ax(#) = max {18:(DiL (D}, alf) = min {5(7). rk(f)—~5'k(7j}-
re(0, ] re(0, 1]

Then
SO GG, 4y, a,p) B Vkhked,

where both G and © were defined in Sect. 4. In the course of the proof (not given here)
that it is analogous to that given in [1} [II concerning Lemma 6, Sect. 6, the function G
naturally arises when we take into account the definition of the sequence s.. For more
detail about the calculation see Appendix Gl, G2, G3 in {7].

Let us now reconsider the sequence [si, vi] and define
(3.1 a = min/b/2. (r(0)=5b)/2.1}, T = min{Ty(a, p), T,.a/34(a.p)},
A(a,p) = max{AQ(a,ﬁ)._ Az (4o(a, p))}.

Before proving by induction the following Theorem we remark that in what follows we
assume the terms of the sequence {b,} to be equal to b (defined in 1) Sect. 3. This is done
in order to make the presentation less formally involved. In fact it may be shown by simple
reasonings (*) that all the following statements equally hold if we assume that:

The series whose general term is

(3.2) b —b, converges and Vhb ele,r(b,0)—¢], where ¢ > 0.
THEOREM . Let us assume that the following condition is verified:

(5.3) 15,(1)! < Ao(a,p) Vtel0, T, (and, as a consequence, a,(T) > a),
then

e (D < Ao(a,p) VYhkeN and Vie[0,T)

(which implies  ac, (T) > a and Typy > T).
Indeed, if [5:(2)] < do(a@)V t € [0, T), then the following relations hold:

a < (F(0)—5)/2 < F(0)—b—24(a)r <at)

rom which, remembering the preceding Lemma 6,

51 (O < G, a4, 1,7) € G(Ao(a,B), ax, T, 5) € G(4o(a, 5), a, To(a, ), 5) =

3

= Ao(aa@
what completes the proof.

The inequalities /, 2 hold because G is an increasing function of 4, ¢, and a decreasing

one of a. The equality 3 is true by virtue of the definition of 4, and T,. d

(%) It will obviously be necessary to change slightly the definition (5.1).
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We are now ready to show:

THEOREM 2. If both conditions (5._2_), (5.3) are fulfilled, we have that the sequences s, and §,
are uniformly convergent in the [0, T*(a, p)] interval, where f*(a,p?) is a continuous func-
tion, defined in the course of the proof. (This theorem is a generalization of Theorem I, [11,
I, p. 704).

After simple algebra, using the recursive definition of sequence s;, we obtain
Gy s € Dimr 2 (sl 2 (1), DA+ 17 (5021 (D), 7) A 3+ Ay

Vrel0, T,
where
Grr1 = ISkp1—Suls 5k+1 = [$p1— Sk,
Ak‘u = /‘(Sk('f)a T)_,u(sk—J(T): T)>
Akxi Xi (Sk(T)s 7)"‘%‘(53-—1(7); T),
Akufx uli»',x(sk(r)3 T)-ull;—l.x(sk—l(T): T)-

If we define V k € N, v; as the solution of the problem (4.2), stated for the curve s,
with the same initial and boundary data V k € N, then we obtain the following inequali-
ties:

I

]

iu;.c,x(sk(l)’ t)i < lvli;,x(sk(t)’ l) < BO~

[th(x, 1)] € Bolsi(t)— x| if i=1Ds_0.5.7

(5.4), . ) °,"( ' V(x,0) el O e d
lug(x, t)] < Bolri(t)— x| ifi=2D; ,, 7,
ot L (r(1), 1) < By VkeN,tel0,T].

It 1s useful to remember that B, and B, are just functions of the variables 7, a and are,
therefore, independent of k. Using the inequalities (5.4), the inequality (5.4); becomes

(5.4)5 bxs1(7) < 2XBo 8,(7) + M8(0) + X[ Apuly | + X142,V T € [0, T,

Representing #' by means of the Green formula, it is possible to show that the following
inequalities hold (see [7]):
1

- 1
(5.4 i < L2 20 ) K 5, T8 e (0. T,

Here T* is chosen during the necessary calculations, depends just on a and p and is

bounded by 7'; L is a linear function whose coefficients are positive; K is a given function.

(The assertion is obtained using results in the potential theory for the heat equation).
Substituting for |4,u',| in the inequality (5.4),, we obtain

(5.4)s bes1(T) € QXBo+ M) S, +2LK||8,] VY Tel0, TH.
After integrating the inequality (5.4)s with respect to 7 in the [0, ¢] interval with 7z < T*
and calculating the Lu.b. of both members of the formula thus obtained, it results
1
(5496 18esall < ISIF(T#2, 7, 722, 73) im0, T,

where F is a linear function whose positive coefiicients can easily be defined in terms of
L, K, p,a.




DEDUCTION OF A GENERALIZED STEFAN-PROBLEM 241

Let us define
T* = min{T*, T}
where T is such that F(7;) < I. We emphasize that T* (a, p) is a continuous function of
its arguments and is greater than zero if a is positive. We can conclude that

(5.4, 18esull < F(THIIS in [0, T*).

This obviously implies that, in [0, T*), the series 28, is convergent. We remark that,
by virtue of the inequality (5.4)s and the uniform convergence of the sequence s, to a func-
tion s, it results that the sequence §; also is uniformly convergent to §, giving, moreover,
that ¢, > a and |§] € Ao in [0, T*]. This completes the proof. 0

THEOREM 3. Let s be the uniform limit of the sequence skGand u' the unique functions
satisfying the conditions 2), 3) 4) in Di. Let us define in Rx [0, T*] = Rz* the following
functions:

B up in D',

U, = . ;
¥~ 1¢*> in Ry.—UD/,
_fu in DY,

u =

\¢> in Ry.—UD~
The sequence T, is uniformly convergent to 1 in the region Ry.. Moreover, the triple [s(t),
u' (x, 1)) is a solution of the G-problem in [0, T*].
Let us set
W, = U—1u, 10 Ry,

o, = min{s, s}, or = minf{r, ry},

il

X, = max{s, s;}, R = maxir,rc}.
Lemma 5 of Sect. 4 can be applied to the function u so that
Hu(x, 1)} < Boix—s(1)l  in Ry,
W —¢2 < Bylx—r(t)l  in D2,
We first prove that w; is uniformly convergent to zero in R+ Indeed
we =0 in  {Re—Deoo g, 7 Iuix =0}u{l = 03},
W, OF < [+ < 2Bols(D) =) in Dy, x5
Wl S [U—¢2 4+ U —¢? < 2Boir—rd < 2BoRls—s in Dy, r,. T+
{n the last two relations we used the formulae (5.4),. The uniform convergence of the
sequence s, and the maximum principle for the heat equation, when applied to the regions
Di_o.,. 7 and Dg_, 7+ imply the claimed uniform convergence of wi. In order to
show the second statement of the theorem, remember, by virtue of its definition, that

the triple [s, #'] satisfies the conditions 1) ... 4). Condition 5) is then equivalent to the
integral relation (4.1),, which we write here for convenience

(5.5, s—b = L(s, u'...... ).
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Using the recursive definition of s; and the same reasonings leading to (5.5),, we can
easily verify that the following relation is satisfied:

(5.5), See1—b = La(s,, ul ...

As it has been shown that 5, and u} are uniformly convergent to s and ', the proof is
completed by calculating the limit for ¥ > oo of the formula (5.5), and remarking
that it becomes the formula (5.5),.

6. Existence and uniqueness theorem in the large for the solution of the G-problem

THEOREM 4. If [s,, ui] and [s,, ub] are solutions of the G-problem with the same initial,
boundary data and coefficients in the [0, T} interval, then they coincide.
. In fact, more generally, it is possible to obtain the following relation for any couple
of solutions of the G-problem with different data and coefficients:

(6.1),  sy(1)=s2(1)] < N(a, A, p*, p*) {A¢p + Ah+ Ak + Aq+ Ay + Au+ AF}  Vre [0, T]
with
O<a<a, A,<A<cx.

The formula (6.1); can be derived by: a) representing both s; by means of the formula
(4.1), : b) subtracting from each other the relations thus obtained. The result will be

(6.1), S1=82 = L(1)=L,(2);

c) equating the absolute value of both members of Eq. (6.1), and bounding the second
with an expression where suitable differences of data and coefficients appear, in addition
to |s; —s,/; to this aim we need to represent the u functions by means of suitable thermal
potentials whose properties are very well-known: d) applying T. H. Gronwall’s inequa-
lity to the obtained expression. [g() being in this case Is, —s,]}. Formula (6.1) obviously
proves Theorem 4. ]

DEFINITION 2. Ler T* be defined as l.u.b A, where A\ = {t:in the [0, 1] interval there
exists a solution to the G-problem}.

DEFINITION 3. Let us define recursively the sequence T,, &,

T, =T*a,p)—. & < THa,p)2.

Let us suppose that in the [0, T,} interval there exists the solution of the G-problem. We
have chosen {, = (T,— T,_,)/2". Let us consider the n-th G-problem with initial time T,,
boundary data and coefficients equal to those of the original G-problem and initial data
equal to the value of u' at the time T,.

Obviously, these new data satisfy the conditions Gl) ... G5) with appropriate coef-
ficients p,.

We define

Toiy = Ty—Lp+T*(a(T,).p,) and T** = Lub. T,.

neN

We note that this recursive definition is unambiguous because, for the n+ 1 th G-problem,
the hypotheses G1) ... G5) are satisfied.
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THEOREM 5. T** = T*,

By virtue of Definition 3, T7** ¢ /I and therefore T** < T*. The proof is obvious if
T** = 0. Let us show, under the hypothesis T** < co, that an “ad absurdo™ argumen-
tation implies T* < T**.

If T%* were less than T%, we would have a(T**) > 0 [because of the statement of the
G-problem and definition of 7%*] and hence

T*(a(T**),p**) = K > 0.
Moreover, because of the continuity of the T* function, we can find an N such that
Yn>NT*™ < T,+K/3 and
T*(a(T,). )+ K/3 > T*(a(T**),p**) = K
We should have finally
Thpr = ,,—5,,+T*(a(T,,),ﬁ,,) > T** 4+ 1/3K=4, 2 T**(1 - 120+ 1/3K
which is absurd. This completes the proof. [
ProposiTioN 1. If T* < <o, then either

1) lims(¢:) =0, or
t=T*

2) hmr(t)—s(t) =0, or
(—T*

3)  lim{lLub. {§(7)} = <.

t=T* [0, ¢] <

When both 1) and 2) are not true, then either lim s(z) exists or not. In the first case, if
tT*

3) were false, we could find a solution of the G-problem in an interval strictly including
[0, T*], which is absurd. In the second case the following property holds:

VET*, V03¢, 61 8T*  and  is{t,) —s(t)Dkit, —tal.
In our hypotheses this property obviously implies 3). [

7. Continuity theorem for the solution of the G-problem

We note that the formula (6.1), does not mean any sort of coatinuity for the solution
of the G-problem because of the dependence of the coefficient ; on the variables a and 4.
Notwithstanding this circumstance, it is possible to use it in order to show the following

THEOREM 6. Let us consider the unique solution of the G-problem with data

= (@Y, AL ).

VYT < THVe>0 it exists a (T, e,d,) such that if A(dy,d,) < 0, then the solution
of the G-problem relative to d, exists up to T and ||s,~s,i! < ¢ in [0, T].

We emphasize that for classical results of the heat equation theory this last inequality
implies that |[%, —i,|} < Ce in Ry (for definition of u;, see Sect. 5).

Indeed, it is possible to partition the [0, 7] interval into a finite number of sub-
intervals [T}, Ti,,], defined in the same way as in Definition 3 Sect. 6. Let us define
a; = CaL(T;),O < C < ]/2
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LemMMA 7. For every sequence of &; satisfying the first inequality in iv), it is possible
to determine a sequence 6; such that if T, < T3 and A(d,(T}), d»(T})) < 6,, then:
1) §, is defined up to T, ;

11) Is;—s2] < & in [T, Tisals
1i1) A(dx(Ti-«»x)s dz(TiH)) < &,
V) a, < @ (T - ei(l+R) < ax(Tisq).

i) is true by virtue of continuity of the 7* function and definition of the T; sequence. In
fact T;,, = Ti+T* (a,(T))2, p7)— & and a 6; can be chosen such that
T*(ax(T)/2.p5) > T*(ay(T)/2, 51 )-8 if  A(d(T), d>(TY) < 6.

In order to show ii), we note that if d; is such that a,(7;) > 2a,, the formula (6.1), is
valid even when in the function N, which appears in it, the g-variables assume the value
a;. The previous statement is true because N is decreasing with respect to the same g-vari-
ables and the properties of 7* function assure that both a;(t,) and a,(¢) remain greater
than a; in [7;, 7;,,]. The continuity of N and A, functions.trivially implies the claimed
statement. iii) can be deduced from ii) when recalling the well-known results of the heat
equation theory. iv) is an obvious consequence of ii).

Let us fix ¢ > 0. We choose 0 < & < min {e, 6;,,(¢)}. Let us consider the sequence
0; obtained in Lemma 2 using these ¢; and d(¢) = min ¢;. It is easily verified that with
this ¢ the statement of Theorem | is satisfied, which completes the proof.

8. Conclusions

In this section we want to observe what follows: i) Both the classical Stefan-problem
and our G-problem can be easily and rigorously deduced in the framework of the Thermo-
mechanical Theory proposed in [8~11] (TMT). This is done by applying the general theory
to the case of incompressible phases shared by an interface not carrying thermomech-
anical properties when some physically reasonable hypotheses about the evolution of the
considered system are satisfied. No such clear deduction (free from infinitesimal limits
and similar reasonings) seems to us to have been available before. (See, for example, [13]
p. 265 and [15] Chapt. 1, which is more updated and complete). ii) The circumstance that
the existence, uniqueness and continuous dependence theorem can be shown for both
ii), the classical Stefan-problem, ii), our G-problem (most likely even when the term con-
sidered in Remark 1, Subsect. 1.2 of the introduction, which we have neglected, is actually
taken into account), is an important check of the well-posedness even of the more general
theory. iii) Even if we proved a well-posedness theorem for a G-problem (%) only, it seems
to us reasonable that slight changes in the demonstrated proof techniques will lead us
to prove similar theorems for the following class of problems (°) iii), those which take

(°) We recall that the G-problem takes into account just the “minimum®” motion not necessarily con-
vective but necessary to produce phase transition when density difference beiween phases is appreciable
(recall the set of evolution equations in Subsect. 1.2 of the Introduction).

(°) which also can be deduced by means of TMT.
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into account those changes of melting temperature and/or pressure at the interface which
occur because of its motion (Subsect. 1.2 Introduction). We underline here that one
of the successes of TMT is that it forecasts (with a pretty good numerical agreement) the
experimentally verified circumstance that melting temperature changes when there is a
quick solidification (more details in [7)). iii), arising even when convective motions
are modelled (when, for instance, at least one of the phases cannot be regarded as incom-
pressible). As concerns the “well-posedness” theorem for Free-Moving Boundary (FMB-)
Problem arising in the maximum generality from the application of TMT, we remark
that the techniques developed in [14] seem suitably applicable to its proof. It has to be
pointed out that they generalize those we have used. iv) Proposition 1 Sect. 6 singles out
an important feature (see infra) shown not only by the treated particular G-problem but
also by the quoted general FMB-problem, as it is determined by the nature of the theory
which both of them stem from.

In fact an existence and uniqueness theorem is provable only in the [0, T*] interval
where T* is that time instant when one of the following physical circumstances occurs:
iv), one of the phases disappears; iv), phase transition tends to take place with an “in-
finite” speed. Moreover, we face the following apparently contradictory evidence: It is
mathematically possible that the function 0, solution of an arbitrary generalization of
the Stefan-problem deduced by means of TMT (7), could cross the “melting point”
(determined by the actual pressure) in a point belonging to one of the domains shared by
the moving boundary (®) because of, for example, suitable heat production terms. Both
of these circumstances are obvious consequences of the logical structure of TMT: in fact
in this theory there are no specifications of the modalities with which an interface between
two considered continua can be formed. (More details about this aspect of the question
can be found in the Introduction of [16]). This simple physical consideration leads us to
conclude that, when T > T* or the quoted mathematical circumstance occurs, T™T
(together with all the models deduced by means of it) is bound to fail as it cannot com-
pletely describe the behaviour of the specified systems (continua shared by an interface).
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