
HAL Id: hal-00502444
https://hal.science/hal-00502444

Submitted on 15 Jul 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Programming a multi-agent system with MASL
Dominique Duhaut, Yann Le Guyadec, Michel Dubois

To cite this version:
Dominique Duhaut, Yann Le Guyadec, Michel Dubois. Programming a multi-agent system with
MASL. IEEE/ASME International Conference on Advanced Intelligent Mechatronics, 2008. AIM
2008., Jul 2008, Xian, China. pp.1189 - 1194, �10.1109/AIM.2008.4601831�. �hal-00502444�

https://hal.science/hal-00502444
https://hal.archives-ouvertes.fr

Programming a multi-agent system with MASL

Dominique Duhaut, Yann Le Guyadec, Michel Dubois
Valoria

Université de Bretagne Sud
Lorient Vannes, Morbihan, France

dominique.duhaut@univ-ubs.fr

 Abstract - Expressing the general behaviour of a set of robots
working together is a difficult task. Self reconfigurable robots or
a team of robots playing football are examples of such problem.
To control a set of homogeneous or heterogeneous robotic
components, one needs to express synchronous and asynchronous
computation, from a local or a global point of view. In this paper
we propose a unique language to express the behaviour of a set of
heterogeneous robots.

 Index Terms - multi-agent systems, self-reconfigurable
robots, RoboCup, programming language.

I. INTRODUCTION

 Robot programming is a difficult sport that has been
studied for many years [13]. This particular field often covers
some very different concepts such as methods or algorithms
(planning, trajectory generation...), and typically, architectures
which are usually hierarchical, and for robot control:
centralized [1], reactive [8], hybrid [2, 9, 16]. Therefore,
languages are developed to implement these high-level
considerations [17, 21]. Different approaches have appeared
through functional [3, 4, 12] deliberative or declarative [5, 16,
18], synchronous characteristics [17]. Nonetheless, the
difficulties of robot programming can by schematically
summarized by two main characteristics:
• One is that the programming of elementary action

(primitive) on a robot is often (even always) a program
including many processes running in parallel with real-
time constraints and local synchronization.

• The other is that in its interaction with the environment
the program running the robot (sequence of primitives)
must be able to carry out traditional features: interruption
of event or exception and synchronization with another
element.

The recent introduction of teams of robot, where cooperation
and coordination are needed, introduces an additional
difficulty which is that the programming is no longer reduced
to a single physical system. The problem is then to program
the behaviour of a group of robots or even of a society of
robots [10, 11, 14]. In this case (except in the case of
centralized control) programming implies loading, in each
robot, a program which is not necessarily identical to the
others because of the characteristics of the robots: different
hardware, different behaviour and different programming
languages. These various codes must in general be
synchronized to carry out group missions (foraging, patrol

movement...) and to have capacities of reconfiguration
according to a map of communication cooperation.

From the human point of view it is then difficult to have
simultaneously an overall description of the group of robots.

We met this problem in two types of distinct applications:
RoboCup and the self reconfigurable robots [6, 7, 20]. In
Robocup the teams of robots play football [15, 19] and the
players/robots which are on the ground have different types of
behaviour according to the dynamics of the environment. It is
thus necessary to be able to express when and how a player
playing offence decides to play defence (and vice versa). Here
we look for the “re-evaluation” of the behaviour. For self
reconfigurable robots another problem is that the walking
motion implies “synchronisation” in the movement of the robot
components. Then, we need to express that all the robots
participating in the movement carry out their actions at the
same time. We have noted that the traditional languages,
which could be used, did not provide simple constructions to
address this double problem: the expression of an attempt at
“reevalutation” of its behaviour, the nature of the parallel
execution of the group of robots.

The main idea of our work is thus to give a formal definition
of a general language, MASL (multi-agent system language),
to express six properties:

- Heterogeneous agents,
- Parallelism synchronous asynchronous,
- Communication variables, events,
- Dynamic integration of agent
- Message passing synchronous asynchronous
- Permeability dynamic

In this paper, section II will give a quick definition of the six
properties. While section III will present some examples of the
MASL language to show how it solves these properties.

II. SIX PROPERTIES

To the six following properties we have to add that MASL also
respects scalability constraints. This means that the following
is independent of the number of agents instanced in the MASL
code. First, the six properties must be defined.

A. Heterogeneous agents

978-1-4244-2495-5/08/$25.00 © 2008 IEEE. 1189

Proceedings of the 2008 IEEE/ASME
International Conference on Advanced Intelligent Mechatronics

July 2 - 5, 2008, Xi'an, China

Authorized licensed use limited to: UNIVERSITE DE BRETAGNE SUD. Downloaded on July 14,2010 at 22:23:28 UTC from IEEE Xplore. Restrictions apply.

The program of an autonomous robot is an “agent” in the sense
of agent programming. Robots are different. They may be
identical at the beginning but become different due to their
dynamics or may be different by construction (leg, wheel,
manipulator …) and can be running different operating
systems with different local programming languages.

MASL addresses all these differences by introducing an
abstraction of the robot in which the capabilities of the robots
are described. This abstraction will define a “type” of the
MASL language. This type will be instanced to declare a
corresponding agent.

B. Parallelism synchronous asynchronous

A set of robots running their code is usually described as an
asynchronous model of execution. This means that all the
robots run their code at their own speed. But for specific tasks,
the team of robots can be asked to execute their code
synchronously. Then, after the execution of each instruction,
the robot will wait for the others to finish their instruction. An
example in human life would be dancing to music where
everyone is following his own sequence of movement but
everybody is doing it at the same rhythm.
MASL will integrate two descriptions of the execution of a
sequence of code: synchonous and asynchonous

C. Communication variables, events

This part is very classical but needed by the language. It
defines the possibility of a set of robots to share variables or
events. MASL offers three levels for sharing information: the
whole set of robots (global variable), restricted to an agent
(local level) and an intermediary level called “group” level in
which a specific set of robots can access a piece of
information. This set changes dynamically depending on the
section of the code running.

D. Dynamic integration of agent

By this property we mean that an agent running its code with a
group (for instance playing offence on a football team) will be
able to change its affiliation and become a member of another
group (for instance defence). MASL authorises an agent to
quit a group and to join another one

E. Message passing synchronous asynchronous

When an agent asks another one for a service, there are two
ways of managing the dynamics. First, the caller is blocked
until the service is delivered by the callee, or the caller
receives the result of the service later, but is free to work
during the execution of the service. The first call is
synchronous (caller blocked) the second one is asynchronous
(the result will be given in the future). MASL will define these
two types of message passing.

F. Permeability dynamic

This original notion is defined to express that an agent cannot
always execute its entire set of primitive capabilities. For
instance, if the communication is not working then it is not
possible to ask for a service. At another time, the agent can
communicate, but due to his position in the environment he
must be silent (children sleeping in the room). The
permeability will define a set of states of the agent and will
provide some instruction to manipulate it. These states define
the number of services available from the agent.

III. MASL EXAMPLES

In this section, agent will be used to indicate the program
running the primitives of the robot.

A. Heterogeneous agents

The objective is to program a set of heterogeneous agents
working together. Then the proposed approach is to import the
list of capabilities of agents from an XML description.

Example:

Figure 1: XML description of the robot primitves

An XML file describes the Khepera robot and MAAM robot.
A set of primitives is defined for each of them.

01| import Khepera.xml as Khepera;
02| import MAAM.xml as MAAM;

03| Khepera k1,k2 = newAgent(Khepera);
04| MAAM m1,m2,m3 = newAgent(MAAM);

Here lines 01, 02 define a MASL type defined by the
description of the XML file. Then, lines 03, 04 are the
instantiations of 5 agents k1 and k2 of the Khepera type and
m1, m2, m3 of the MAAM type.

05| asynchronous entry main (true) {

1190

Authorized licensed use limited to: UNIVERSITE DE BRETAGNE SUD. Downloaded on July 14,2010 at 22:23:28 UTC from IEEE Xplore. Restrictions apply.

06| .moveLeft(30);
07| .moveForward(10);
08| .moveRight(30);
09| .moveBackward(10);
10| }

The main is executed by the 5 agents. The semantic
of .moveLeft(30); is a self execution of the instruction
which is the same as the Java this.moveLeft(30);. Each
robot executes its own code independently in this first
example. From that point in time, it is not possible to predict
the order of execution of these instructions over the 5 agents.

B. Parallelism synchronous asynchronous

The previous example is an asynchronous execution in which
all the agents execute their code independently.

05| synchronous entry main (true) {
06| .moveLeft(30);
07| .moveForward(10);
08| .moveRight(30);
09| .moveBackward(10);
10| }

Here the difference is the synchronous specification of the
entry main. The synchronous specification means that
after the execution of each instruction, all the agents inside the
entry (here all agents because it is the main) will wait for the
end of the execution of all the others.

In this case the movement of all the robots are made together.
Once again, at that point in time, it is not possible to predict
exactly the schedule table of the execution because one agent
may be longer in carrying out its action and in which case all
the others will be waiting.

The notion of entry is also used to define a section of code to
be executed by a subset of agent. For instance

05|asynchronous entry example(.isMAAM()) {
06| .moveLeft(30);
07| .moveForward(10);
09| }

defines an instruction entry named example with a test
(.isMAAM()). The evaluation of this test (.isMAAM())
will select the agent authorized to execute the line sequence
6 ,7,8. The agent which does not satisfy the test will move to
the next instruction (line 10). The instruction is used to form
groups of agents. In this section it is possible to describe the
behaviour, the subset, here move left or move forward.

MASL also proposes a

01| scalar entry e1(test)

to define an entry in which only one agent is allowed to enter.
The first agent satisfying the test will enter in the entry
and lock this entry so the others will skip this entry.
The notion of entry can be compared to the entry/accept of
Ada language.

C. Communication variables, events

The visibility of variables or events depends on the place
where they are defined and the statue expressed.

01|asynchronous entry main (true) {
02| shared int sglobalvar=0;
03| synchronous entry e1 (.isMAAM()) {
04| shared int svar=0;
05| local int lvar=0;
06| lvar++;
07| svar++;
08| .log("lvar="+lvar+"\n");
09| .log("svar="+svar+"\n");
10| }
11|}

In this example, all the agents entering the main will share the
variable declared in line 2 sglobalvar . This means that
only one sglobalvar exists in the run-time and any
modification from any agent will change its value.
Line 03 is an entry where only a subset of robot are selected
(.isMAAM()). Thus, the variable svar defined in line 04
will be shared only for the 3 agents in this section of code. The
variable lvar defined in line 05 (so 3 different lvar will be
defined one per agent) instanced locally in each agent in this
section of code.
In line 06, each agent will increment its internal variable
lvar. Therefore, the final value written in line 08 will be 1 (3
times if there are 3 MAAM-type agents). But the svar final
value will be 3 because each of the 3 MAAM agents will
increment its value. Notice that this value will be written 3
times due to the synchronous scheduling of the entry e1.

On the same principle it is possible to define an event. This
event can be global to all the agents if defined in the main or
restricted to a group if defined in an entry or event local is
visible only by the agent itself. The only instruction with
events is emit (event). The principle is based on the
model of exception in Java.

01| asynchronous entry main (true) {
02| shared event sevent;
03| asynchronous entry e1 (.MAAM()) {
04| …
06| react (sevent) {
07| .log("Reaction to an event");
08| }

1191

Authorized licensed use limited to: UNIVERSITE DE BRETAGNE SUD. Downloaded on July 14,2010 at 22:23:28 UTC from IEEE Xplore. Restrictions apply.

Here, line 02 is the global declaration of the event named
sevent in the entry main. The agent entering the entry
e1 will execute the code (line 04). If during its execution, the
sevent is emitted by any agent in some other section of the
code, then the normal execution stops and jumps to the section
react. Here (like catch in java) the event sevent will be
searched in the list and the corresponding code will be
executed.
If the code (line 08) includes the MASL instruction resume
then the agent jumps back where it was in the code (line 04)
when the event was emitted. This construction allows an agent
to respond to an event and go back to the ongoing work.

D. Dynamic integration of agent

Here the problem is to allow an agent to quit a group to join
another. To quit the group we can finish the normal execution
of an entry using the instruction break or use the instruction
reelect that comes back to the last entry and checks the
test again. For instance, if in the previous example the line 08
is reelect then the agent will test the entry e1 in line
03 again. In fact, it will test if the agent is still a MAAM robot
or not. If yes, it will enter the entry e1 again, or it will
go to the next instruction (line 09).
This construction is useful to extract one agent from a group.
However, the problem is then the adding of the agent to
another group. We must thus imagine that it will find another
entry in which the test will be true.

Notice that we also defined some instructions to lock or unlock
an entry. This allows some agents to control the number of
agents entering an entry section.

E. Message passing synchronous asynchronous

In the XML definition of the Khepera, the primitive moveLeft
is defined. This can be used in two ways.
First, an agent k1 wants to move left, its code will then
include:

01 : .moveleft(30);

expressing that the instruction is applied to agent k1 itself.

Or the code of agent k1 contains:

01 : k2.moveleft(30);

then k1 is asks agent k2 to move left. In this case we can
imagine two scenarios.

- The execution of k1 is blocked until the move-left
execution of agent k2 is done.

- The execution of k1 can continue during the
execution of the move left of k2.

This depends on the definition of the primitive
action .moveleft().

The XML file defining the services of the robot can describe
two types of primitives depending on the value of the field
synchronous_call. When it is true, k1 is blocked and it
is called synchronous message passing.

The problems are with the other kind: asynchronous message
passing. The problem is that if you ask for a function
producing an integer like getBatteryVoltage() :
int in the XML file of Khepera. Then the code of k1 could be

02 : li= k2.getBatteryVoltage ();
expressing that a local variable li of k1 will receive the value
of the voltage of the battery of k2. In the case of an
asynchronous call, k1 will continue its work. If at some
location in the code, k1 wants to use the value li then it must
be sure that the assignment of li is accomplished.

To solve this problem we introduce in MASL the
synchronisation barrier inspired from Java named Label.

01 : Label llabel;
02 : llabel.li= k2.getBatteryVoltage ();
…
06 : if (isFinished(llabel)){…}

Here, line 01 declares a new label llabel. Line 02 attaches
an asynchonous message passing instruction to this label
llabel. It is then possible for line 06 to test the label
llabel to know if the instruction attached to it is completed
or not. Note that it is possible to attach more than one
instruction from an agent to a label, as well as different
instructions coming from different agents.

F. Permeability dynamic

The permeability notion is completely connected to the
previous message passing notion. It is used to express that
some agents might not be able to answer a primitive call at
some time during the execution.

The permeability is defined in the XML file of the robot. It
defines a set of states of the robot and the list of primitives that
can be executed in each of these states.

For instance, a permeability state: standard would
determine if it is possible for a MAAM agent to execute all the
4 primitives defined Figure 1. But in a second permeability
state: damage, only the moveForward(int) primitive
could be called. This state would correspond to a robot having
some problems.

Moreover, for all permeability states the allowed primitives are
protected from execution in respect with the level: global,
group, local. This means that dependending on the
permeability state a primitive can be executed: by all agents of

1192

Authorized licensed use limited to: UNIVERSITE DE BRETAGNE SUD. Downloaded on July 14,2010 at 22:23:28 UTC from IEEE Xplore. Restrictions apply.

the main, only by the members of the group (in the same
entry) or only by the agent itself.

The permeability state can dynamically be changed only by the
agent itself by the execution of a specific MASL instruction
setAcceptState(string), where string is the
name of the permeability state.

The MASL language also provides a wait(string)
instruction. This instruction is used to put an agent in a waiting
mode for its activation by a call on one of the primitives
visible in the permeability state defined by string.

IV. SIMPLE EXAMPLE

To show an example of the MASL language, we propose here
a small sample in which we will distinguish groups of robots:
one is an attacker and the second is a defender and one is the
coach

05| asynchronous entry main (true) {
06| shared event mvBack, mvForward, move;
07| scalar entry coach (true) {
08| local int lv, li=0;
09| loop
10| lv=.analyseSituation(); li++;
11| if (lv<0) emit mvBack;
 else emit mvForward;
12| if (li==100) {li=0; emit move;};
13| endloop
14| }
15| asynchronous entry attack(.isFast()) {
16| loop .playAttack(); endloop;
17| react(mvForward)

{.moveForward(20);resume;};
18| react(mvBack)

{.moveBackward(20);resume;};
19| }
20| asynchronous entry defense (true) {
21| loop .playDefense(); endloop;
22| react(mvForward)

{.moveForward(5);resume;};
23| react(mvBack)

{.moveBackward(5);resume;};
24| react(move)

{.setRandomFast();reelect(2);};
25| }

This example is built to show some features:
- definition of groups of robots,
- scalability,
- dynamic change of group,
- how to control a group from a supervisor.

The instantiation of the agents is not shown here. We assume
that it is a set of agents for identical robots. All these agents
will share 3 events (line 6).

During the execution the first agent to execute line 7 will
become the coach (because it is a scalar entry only one
can enter). The next agents will skip instruction line 7 and
move to execute line 15. If the test performed on themselves
(.isFast()) is true, then they will enter and go to line 16
to play in attack mode, the other ones will move to line 20
where they will enter (because the test is true) and run line
21 to play in defence mode.

We can see here that the initial group of agents is separated
into 3 groups: one (alone) in the entry coach, a set of
agents in the entry attack and the rest in the entry
defense. Notice that it is independent of the number of
robots.

Now the dynamic evolution will develop through the coach’s
behaviour. He analyses the situation (line 10) and decides what
the two groups of attackers and defenders will do. So, in line
11 he emits the event mvBack (resp. mvForward). This
event is global to all agents and they can react to it.
The attackers will react (line 17 (resp. 18) by a
moveForward(20) (resp. moveBackward(20)) and then go
back to their offence behaviour in line 16 when executing
resume.
The defenders will react (line 22 (resp. 23) by a
moveForward(5) (resp. moveBackward(5)) and then go
back to their attacking behavior line 21 when executing
resume.

We can see here how one group is asked to make big
amplitudes (20), while the other one is not (5).

The coach can also force defenders to become attackers. Every
100 loops (line 12) the coach emits an event move. In this
event only the defenders react (line 24). Their reaction is
to randomly decide if they are Fast or not. After which they
will reenter the program line 5 by the execution of the
reelect(2) instruction. They will enter again in the main.
Because the coach entry is locked they will move to line
15 to see is they become attackers (if yes, they enter line 16) or
not (they move to line 20) and become defenders again.

Here we can see all groups of agents reevaluating their
behaviour. It is, of course, possible in MASL to refine to a
specific agent.

V. SEQUENCE

In this section, we present the basic algorithm of the execution
of a MASL instruction. It is divided into 4 steps:

1- Execution of the instruction, it is the execution of the
primitive by the agent

1193

Authorized licensed use limited to: UNIVERSITE DE BRETAGNE SUD. Downloaded on July 14,2010 at 22:23:28 UTC from IEEE Xplore. Restrictions apply.

2- Ask MASL runtime for the list of events. At this level
the call to the basic primitive is finished and the agent
looks if there is some events emitted. If so, it will
jump to the react part of the code and search for
the first instruction to execute, then go back to step
one

3- Ask MASL runtime for the list of primitive calls.
Here, the agent according to the permeability state
will execute the primitive calls. The calls that are not
allowed due to the permeability will be neglected.

4- Wait for synchronization. If the agent is in a
synchronous entry then it will wait for the end of the
group before looping to step1.

VI. CONCLUSION

The MASL language proposed here allows for the description
of multi-agents, multi-robot behaviour at three different levels:
global, group, and local. The originality of MASL is the
definition of the instruction entry to create groups of robots.
This instruction can run dynamically in two modes:
asynchronous or synchronous. Another particularity of MASL
is the message passing construction which allows
asynchronous or synchronous calls to be defined under a
permeability state.
From MASL it is possible to define a rewriting algorithm to
produce a source code for a specific robot programming
language. This algorithm is under development.

The full description of the MASL language is available on:
http://www-valoria.univ-ubs.fr/Dominique.Duhaut/MASL

ACKNOWLEDGMENT

 This project is supported by the Robea project of the
CNRS. All references to people participating in this work can
be found in [22].

REFERENCES

[1] J. S. Albus & al. NASA/NBS Standard Reference Model for Telerobot
Control System Architecture (NASREM). NBS Technical Note 1235,
National Bureau of Standards, Gaithersburg, MD, 1987.

[2] R. Alur & al., "Hierarchical Hybrid Modeling of Embedded Systems."
Proceedings of EMSOFT'01: First Workshop on Embedded Software,
October 8-10, 2001

[3] J. Armstrong “The development in Erlang”, ACM sighpla international
conference on functional programming p 196-203. 1997

[4] M.S. Atkin & al. “HAC : a unified view of reactive and deliberative
activity. Notes of the European conf on artificial intelligence 1999

[5] M. Dastani & L. van der Torre “ Programming Boid-Plan agents
deliberating about conflicts along defeasible mental attitudes and plans”
AAMAS 2003

[6] C. Gueganno and D. Duhaut “A hardware/software architecture for the
control of self reconfigurable robots” DARS 04 7th symposium on
distributed autonomous robotics systems, June 23-25, Toulouse France.

[7] M. Jorgensen & all “Modular ATRON: modules for a self-reconfigurable
robot” IEEE/RSJ int conf on intelligent robots and systems IROS 2004
Sendai Japan

[8] P. Hudak & al. “ Arrows, robots, and functional reactive programming”
lecture note in computer scinece 159-187 Spinger Verlag 2002

[9] F. F. Ingrand & al. “PRS : a high level supervision and control language
for autonomous mobile robots”, IEE int cong on robotics and automation
Minneapolis, 1996

[10] E. Klavins “A formal model of a multi-robot control and communication
task” IEEE conf on decision and control, 2003

[11] E. Klavins “A language for modeling and programming cooperative
control systems” Int conf on robotics and automation ICRA 2004

[12] G. King “Tapir: the evolution of an agent control language” American
association of artificial intelligence 2002.

[13] T. Lozano-Perez & R. Brooks “An approach to automatic robot
programming” Proceedings of the 1986 ACM fourteenth annual conf on
computer sciences 1986, ACM Press

[14] D.C. Mackenzie & R. Arkin “Multiagent mission specification and
execution” Autonomous robot vol 1 num 25 1997

[15] F. Mondada & al. “Swarm–bot : for concept to implementation”,
IEEE/RSJ int conf on intelligent robots and systems IROS 2003

[16] D. Paul Benjamin & al. “ Integrating perception, language an problem
solving in a cognitive agent for mobile robot” AAMAS’04 July 19-23
2004, New York

[17] I. Pembeci & G. Hager “A comparative review of robot programming
languages” report CIRL – Johns Hopkins University August 14, 2001

[18] J. Peterson & al. “A language for declarative robotic programming” Int
conf on robotics and automation ICRA 1999

[19] T. Vu & al. “Monad: a flexible architecture for multi-agent control”
AAMAS’03

[20] E.Yoshida & al. “Planning behaviors of modular robots with coherent
structure issing randomized method” DARS 04 7th symposium on
distributed autonomous robotics systems, June 23-25, Toulouse France.

[21] C. Zielinski “Programming and control of multi-robot systems” Conf.
On control and automation robotics and vision ICRARCV’2000 Dec. 5-8
200à, Singapore

[22] http://www.univ-ubs.fr/valoria/duhaut/maam.

1194

Authorized licensed use limited to: UNIVERSITE DE BRETAGNE SUD. Downloaded on July 14,2010 at 22:23:28 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [595.276 841.890]
>> setpagedevice

