
HAL Id: hal-00502422
https://hal.science/hal-00502422v1

Submitted on 14 Jul 2010 (v1), last revised 28 Dec 2010 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Two-Level Strategy for Parsing Procedural Texts.
Estelle Delpech, Murguia Elizabeth, Patrick Saint Dizier

To cite this version:
Estelle Delpech, Murguia Elizabeth, Patrick Saint Dizier. A Two-Level Strategy for Parsing Procedural
Texts.. Veille Stratégique Scientifique & Technologique (VSST 2007), Oct 2007, Morocco. �hal-
00502422v1�

https://hal.science/hal-00502422v1
https://hal.archives-ouvertes.fr

A Two-Level Strategy for Parsing Procedural Texts

Estelle Delpech, Elixabete Murguia, Patrick Saint-Dizier
IRIT - CNRS,

118, route de Narbonne,
31062 Toulouse Cedex 9, France

delpech estelle@yahoo.fr, emurguia@yahoo.com, stdizier@irit.fr

Abstract

This paper presents ongoing work dedicated to parsing
the textual structure of procedural texts. This work is
based on a two level approach: first, basic structures in
texts are segmented using automata techniques and then
a text grammar is applied to assemble these fragments.
The grammar is based on X-bar syntax, transposed to
text structure.

1 Credits
We thank the ANR-RNTL program trough the TextCoop project for
supporting this research.

2 Introduction
The main goal of this work is to be able to answer procedural ques-
tions, which are questions whose induced response is typically a
fragment, more or less large, of a procedure, i.e., a set of coherent
instructions designed to reach a goal. Recent informal observations
from queries to Web search engines tend to show that procedural
questions is the second largest set of queries after factoid questions
(de Rijke, 2005). This is confirmed by another detailed study car-
ried out by (Yin, 2004). Procedural question-answering systems
are of much interest both to the large-public via the Web, and to
more technical staff, for example to query large textual databases
dedicated to various types of procedures, including economic and
commercial procedures (legal, know-how, etc.).

Answering procedural questions thus requires to be able to ex-
tract not simply a word in a text fragment, as for factoid questions,
but a well-formed text structure which may be quite large. Thus,
the techniques used for factoid questions do not seem adequate to
deal with the problem at hand. We propose that a different approach
should be adopted. We propose that the use of text grammars is a
more appropriate and precise manner for representing and recogniz-
ing procedural knowledge in a text.

Analysing a procedural text requires a dedicated discourse gram-
mar. Such grammars are not very common yet due to the complex
intertwinning of lexical, syntactic, semantic and pragmatic factors
they require (see e.g. functional discourse grammars and systemic
grammars) to get a correct analysis. Discourse grammars have basi-
cally a top-down organization, they take discourse acts as their basic
units, instead of just words, they account for the structure and the
interactions between these acts and they require a relatively elab-
orated conceptual representation as output. Such a grammar must
capture the discourse cohesion, including the communicative inten-
tions as well as the discourse organization, e.g. in terms of plans.

Procedural texts explain how to execute procedures. In our per-
spective, procedural texts range from apparently simple cooking
recipes to large maintenance manuals (whose paper versions are
measured in tons e.g. for aircraft maintenance). They also in-
clude documents as diverse as teaching texts, economic regulations
and know-how texts, medical notices, social behavior recommenda-
tions, directions for use, advice texts, savoir-faire guides etc. Even
if procedural texts adhere more or less to a number of structural
criteria, which may depend on the author’s writing abilities and on
traditions associated with a given domain, we observed a very large
variety of realisations, which makes parsing such texts quite chal-
lenging.

Procedural texts explain how to realize a certain goal by means of
actions which are at least partially temporally organized. Procedu-
ral texts can indeed be a simple, ordered list of instructions to reach
a goal, but they can also be less linear, outlining different ways to
realize something, with arguments, advices, conditions, hypothesis,
preferences. They also often contain a number of recommendations,
warnings, and comments of various sorts. The organization of a pro-
cedural text is in general made visible by means of linguistic and
typographic marks. Another feature is that procedural texts tend to
minimize the distance between language and action. Plans to realize
a goal are made as immediate and explicit as necessary, the objec-
tive being to reduce the inferences that the user will have to make
before acting. Texts are thus oriented towards action, they there-
fore combine instructions with icons, images, graphics, summaries,

preventions, advices, etc.
Research on procedural texts was initiated by works in psychol-

ogy, cognitive ergonomics, and didactics. Several facets, such as
temporal and argumentative structures have then been subject to
general purpose investigations in linguistics, but they need to be cus-
tomized to this type of text. There is however very little work done
in Computational Linguistics circles. The present work is based on
a preliminary experiment we carried out (Aouladomar and Saint-
Dizier 2005), where a preliminary structure was proposed.

From a methodological point of view, our approach is based on
(1) a conceptual and linguistic analysis of the notion of procedure
and (2) a mainly manual corpus-based analysis, whose aim is to
validate and enrich the former. The originality of our work lies at
the level of the objects parsed in discourse, and on the way linguistic
principles and norms are inserted to deal with the large variety of
forms procedural texts may have. The paper is structured as follows:
we first present our generative approach to text processing, we then
develop the two steps of the treatment: segmentation and grammar
application.

3 Text Grammars
The answer to a procedural question is a well-formed fragment of
a text, it might include a sequence of n instructions linked by var-
ious markers (e.g, coordinators, temporal marks) or typographical
cues (e.g., comma, dot, newline). Thus, the answer cannot be found
locally, like in the case of factoid questions.

3.1 The Structure of Procedural Texts
The structure of procedural texts can be more or less complex.
There are certain types of procedural texts (e.g. recipes) which are
not very structured, in other words, what we generally find is a goal
(e.g. How to cook a paella) followed by a sequence of steps to fol-
low in the form of instructions for the user. Nevertheless, this is not
always the case. In some other texts (e.g. do-it yourself, mainte-
nance manuals), the structure is not so flat, what we find is a more
hierarchized division of the text in subprocedures to reach the goal.
For example, a text about Maintainance of your swimming pool can

be divided in the following subsections: Emptying the swimming
pool, Cleaning the swimming pool, Mantainance after cleaning and
control of the pH level, Avoid the formation of fungus. All of these
subgoals are followed as well by a sequence of instructions. In gen-
eral, we can say that the longer or more complex the procedure is,
the more divisions the text is going to have.

In (Aouladomar and Saint-Dizier 2005) an analysis of procedural
texts is presented. This work identifies different elements, among
them: instructions, goals, warnings, prerequisites, and pictures. We
assume this classification for this work. Among these building el-
ements, the central unit is Instruction, together with Goal. They
both constitute the core of a procedural text. This work showed
that a constituent in a procedural text may occupy a large variety of
positions, and a number of them may be optional. Writing a text
grammar of this kind results in a set of rules with little constraints
and with a low predictive and explanatory power. To circumvent
these problems to a certain extend, we explored the possibility of
defining a set of principles, constraints and norms that would ac-
count for procedural text structure in a better way. We borrowed
some of these principles to Generative Grammar. This led to the
development of specific parsing strategies, presented hereafter.

3.2 A Grammar for Procedural Texts
In order to define our grammar, we borrow some notions from gen-
erative grammars and transpose them to the problem we have in
hand. For example, we adopt the notion of head which is the central
element in a syntactic phrase, and combines with other elements to
the right (a complement) and to the left (specifier) to project struc-
ture. We transfer X-bar syntax to text structure. We also borrow the
distinction between complements and adjuncts, or obligatory and
optional material. Depending on whether an element belongs to one
category or the other, it occupies a different position in the structure.
We also aim at a slight shift from ’classical’ grammar descriptions to
a principled-based approach, using principles, parameters, but also
norms that capture the different types of realizations observed over
genres and domains, used as heuristics (e.g. average length of titles
and instructions, most frequent verb classes used, etc.). A clear di-

vision between central and peripherial (or obligatory and optional)
elements is made and reflected in the final structure. Also, the re-
lations between the different building blocks in a text (e.g. scope
relations) are more clearly delimited, since the resulting structure is
not flat but rich in terms of hierarchical structure.

We conceive the structure of a procedural text as the projection
of a Goal (i.e. the title of the text) and its complement which can
either be a sequence of instructions or a sequence of tasks. Thus,
the root grammar rule is:

Procedure --> Goal seqInstr
Procedure --> Goal seqTasks

We continue defining our grammar from the lower level units up to
the root grammar rule. For the purpose of this work, we assume that
the basic unit is the Instruction. Instructions, however, do not come
in isolation, but as we already said combined with other instructions.
We call these combinations sequences of instructions (seqInstr), and
we analyze them as a coordination of instructions, where the head
of the phrase is a sequence marker. We include below the rules that
identify this type of structure:

seqInstr --> Instr seq’
seq’ --> seqmarker Instr
seq’ --> seqmarker seqInstr

If the first and the second rule apply, a structure like the following
could be recognized: Hold the bracket down on the tabletop, then
screw one of the screws through the hole in the bracket. The third
rule takes care of recursivity, and it will recognize any sequence
formed of more than two instructions, such as: Turn on the access
point, and activate the wireless connections for your devices. Verify
that they are all transmitting a wireless signal....
A sequence of instructions is the complement of a Goal. Thus,
it is obligatory (we cannot have a Goal without a seqInst associ-
ated, it will result in an ill-formed structure). Goals are the heads of
their phrase, they project up a Task. In the specifier position of this
phrase, we can optionally find some prerequisites (e.g. the ingredi-
ents in a recipe).

Task --> (spec) G’

G’ --> Goal seqInstr
G’ --> Goal seqTasks

With the first and second rule, we can recognize structures such as
(i) Fixing the top rails to the table top. Place the table top upside
down on an even floor, saw stools or workbench. Position the top
rails on the underside of the table top ... and (ii) To get dried oil
paint off a brush, soak it in nail-polish remover for a minute or two,
after that you wipe off what remains and clean your brushes with
soap and water as usual. In the first example the Goal is the first
sentence, which is a subtitle. This is followed by its complement,
a sequence of instructions, and together they project a Task. In the
second example, the Goal is the preposed purpose clause introduced
by To, which is also followed by a sequence of instructions. The
third rule describes the situation where the complement of a Goal
is a sequence of tasks rather than of instructions. An example of
this type of structure is the one provided in the previous section
of Maintainance of a swimming pool, where the main procedure is
divided in different subprocedures or subtasks, each followed by a
seqInstr, building a seqTasks. We analyze sequences of Tasks in the
same way as sequences of instructions. The first and second rule
represent basic cases, the third recursivity:

seqTasks --> Task seq’
seq’ --> seq Task
seq’ --> seq seqTasks

Optional elements are adjoined to different levels of the structure,
depending on their scope. For example, we can have a condition
linked to one instruction as in If it is not soft, boil it for ten more
minutes, but also adjoined to a sequence of instructions If you have
Windows 95 installed in your computer, turn on the computer and
follow the instructions on the screen. Other elements like warnings
or pictures can also be adjoined to those nodes, or to Tasks or se-
quences of tasks. The rules for adjuncts follow, adjuncts can either
appear to the right or the left, that is what the symbol + codes:

Instr --> Adjunct + Instr
seqInstr --> Adjunct + seqInstr
Task --> Adjunct + Task

seqTasks --> Adjunct + seqTasks

4 Parsing with Text Grammars
The grammar defined above identifies text structures relevant for an-
swering procedural questions. Obviously, we do not aim at making
a full parse of those texts. We need to identify ’terminal’ structures
(such as titles and instructions), and then to assemble them together.

The parsing of procedural texts is realized in two steps. First
a segmentor, comparable to a lexical tagging component for sen-
tence words, identifies basic structures and then the X-bar grammar
presented above assembles these basic structures. The segmentor
makes an initial proposal to the grammar. In case of a failure of the
grammar, backtracking is possible, but to a limited extend, so that
relatively optimal segmentations are kept.

The starting point of our system are web pages, these are cleaned
so that only relevant tags for the segmentor or the grammar are kept.
They are then tagged with the TreeTagger, in order to incorporate
category and relevant morphological information. A final step iden-
tifies the semantic class of the verbs, according to a classification we
carried out, largely inspired from WordNet classification. Our clas-
sification is composed of a hierarchy of 186 classes, among which:
verbs of change, verbs of cleaning, maintenance, etc.

4.1 The segmentor
The segmentor has several goals:

• First, to tag terminal discourse elements: instructions, titles
(viewed as the expression of goals), warnings stated outside
instructions, prerequisites, some forms of arguments and con-
nectors. This is useful to reduce the non-determinism in the
grammar.

• Via the tagging, to allow for the identification in a large text
of zones which are more procedural than others (large texts
may be verbose and contain non procedural elements such as
comments or historical considerations), allowing then to focus
the search of responses on a certain text area.

It is clear that the form of those terminal objects and the criteria
required to define them largely varies over application domains, tex-
tual genres and the targeted audiences. Our strategy was to define
several sets of criteria, valid for a group of domains that share com-
mon discourse forms for describing procedures. Our approach was
to proceed by ’domain aggregation’. For example we first consid-
ered samples from coocking recipes texts, and defined the segmen-
tation criteria. Then, we considered other domains which turn out
to have a close structure: ’do it yourself’ and video game solutions.
At a certain stage, we get a stable set of criteria which can be imple-
mented as an automaton. We plan to have in the end a small number
of automata, each encoding the discourse structure of a group of
domains.

Finally, each type of object we have to segment requires a differ-
ent approach of segmentation, because the identification criteria are
very different. We briefly present them below.

Dealing with Instructions
As far as instructions are concerned, the model is relatively straight-
forward finite state automaton, with some little tricks, since some
marks may be common to two adjacent instructions, such as punc-
tuation. The main marks for instructions are:

1. typographic and punctuation marks, and temporal marks, used
for delimiting instructions,

2. verbs, together with their morphology (basically infinitive and
imperative forms are quite frequent incoocking recipes, but
other tenses are found in other domains), and their semantic
class (action verbs and subclasses) since semantic class may
be used to identify different types of instructions; deverbals
and predicative nouns are also relevant,

3. various classes of marks, such as: modal marks (’you must
do’), reminders (’do not forget to’), performance marks (’care
about doing’), marks describing optionality or advices (’it is
preferable to’), injunctive forms, and adverbs of manner.

Besides these elements used to identify instructions, instructions
may contain a lot of elements such as: low level goals, pictures,
local warnings, hyperlinks, etc.

Recognizing Titles
Recognizing titles is much more challenging. They have in gen-
eral the form of an instruction (e.g. mounting your computer), but
with a different layout. Recognizing titles is crucial for answering
questions.

Titles are first identified by the typography: bold font, possibly
underlined, or via the use of dedicated html marks (h1, etc.). Fi-
nally, we can also rely on the level of generality of the verbs used
in titles, which are more generic than those found in instructions
(we use the Volem verb base for that purpose). In fact, titles can be
viewed as ’super-instructions’, this distinction being highly domain
dependent.

Prerequisites as well as warnings may also have titles. However,
these two latter objects have a different typology (although they may
also contain instructions), which allows us to make the distinction
among types of titles, and to isolate those effectively governing in-
structions, to be interpreted as denoting goals.

A second problem is to identify the hierarchy of titles, which is
important in most texts of a certain length. Identifying such a hierar-
chy allows us to associate more precisely sequences of instructions
to a goal. Since dedicated html tags are not so frequent to discrimi-
nate titles, we must rely on other factors, among which:

• presence of capital letters, or size in number of words (quite
frequently 4 to 5 words, with no pronominal references),

• level of the verbs in titles: higher titles contain more generic
verbs,

• identification of islands of instructions which share a quite
large number of common words (entailing a certain thematic
cohesion of instructions below a title, as in Centering Theory).

• identification of summaries or introductions below titles which
contain words present in subtitles.

This is however still a very tentative option.
Another kind of difficulty is that titles are often elliptic (e.g. the

verb is missing). In some situation they may be just absent, there-
fore, we may need, to answer questions, to be able to reconstruct
these.

Dealing with Warnings
Warnings as well as arguments are introduced by a range of specific
verbs often in the imperative form or by negative connectors, which
is quite easy to identify in French. Here are a few examples:

• negative connectors: sous peine de, sinon, car sinon, sans
quoi, etc. (otherwise, under the risk of),

• risk verbs: risquer, causer, nuire, commettre, etc.

• prevention verbs: éviter, prévenir, etc.

• negative expressions: de facon à ne pas, pour ne pas, pour que
... ne ...pas, etc. (in order not to).

Indentifying Discursive marks
Temporal marks are the most frequent marks, they include: prece-
dence, overlap, inclusion, parallelism, etc. They are mainly realized
by means of adverbs, prepositions, conjunctions, aspectual verbs
and propositions describing the realization of an event. Marks are
annotated by the TreeTagger and typed via a predefined list we have
elaborated.

Causal marks are particularly rich and diverse. They are used
to relate a goal to a set of instructions, or to specify within an in-
struction its aim; causal marks are also used to identify objectives,
warnings and various forms of preventions, consequences and some
forms of conclusions.

Besides these two main classes of marks, we noted a few con-
ditionals and alternative marks. These are often prepositions or
semantically closely related to the semantic typology specific of
prepositions. To identify and interpret them, we use the PrepNet
framework (www.irit.fr/recherches/ILPL/prepnet.html).

Global Architecture
The automaton first recognises instructions, then titles, warnings
and prerequisites. Segmentation is confronted to several difficulties,
among which:

• ambiguities of various sorts: coordination or punctuation in
instructions: for that purpose we must develop some very local
grammars that check the status of these elements and decide

whether they are inside an instruction or must be considered
as a delimitation mark.

• several partially overlapping structures candidates to be an
instruction, this is the case for instructions that contain e.g.
warnings or advices that may or may not be also considered
as separate instructions. At this stage, we can recognize them,
but keep them in a single instruction.

• shared items between adjacent instructions, entails some
forms of either partial parsing (making e.g. the hypothesis
that an instruction may lack a begining mark) or stacks to keep
track of elements which may be shared (e.g. shared arguments
in ellipsis).

• a few unexpected forms, e.g. using the future tense.

The result of the segmentor is a representation of the following
form (simplified for readability):

<procedure>
<title> poser une tringle rideaux </title>
<warning> attention a ne pas perdre des elements

</warning>
<prereq> les regles de base </prereq>
<seqinstr>
<warning> disposez de suffisemment d’espace

</warning>
<instr> 1. tracer la hauteur de la tringle,

</instr>
<instr> 2. couper la tringle a la bonne

longueur. </instr>
etc.
</seqinstr> </procedure>

4.2 The grammar implementation

The grammar is used to bind the elements identified by the segmen-
tor. It gives a global structure to the text, which is necessary and
sufficient to answer how-to questions. One of its goals is to give a
precise scope to each element. It also binds adjuncts at appropriate
places, giving these a priori a minimal attachment.

The grammar produces an XML output, usable for the search
of responses. In particular, titles, viewed as goals, are considered
for unification with the question body. Some instruction fragments
may also be considered to identify subtopics. XML tags therefore
identify indexes used by the question-answering system.

We have designed a prototype in Prolog, implementing a top-
down engine. In spite of its relative inefficiency, we have adopted
so far an interpreter mode so that every step of the system can be
evaluated. Another goal of this first implementation is to be able to
add heuristics quite easily and to test their impact. These heuristics
capture the notion of norm introduced above; they contribute to re-
solving ambiguities and to compensate for structures not recognized
by the segmentor. For example, we have:

• resolving ambiguous attachment of constructions: a typical
case is the attachment of pre-requisites, which can be bound to
a number of specifier positions: our norm is to have a maximal
attachment, i.e. to have prerequisites attached as high as pos-
sible in the tree. An opposite case are warnings, which need to
be as close as possible to instructions: they undergo a minimal
attachment, being adjoined at the lowest level possible.

• going over structures not recognized by the segmentor: a typ-
ical situation is when the segmentor does not have recognized
a title (it is incomplete, illformed w.r.t. the segmentor, or it
does not exist and needs to be infered for answering ques-
tions). Each domain being associated with a small number
of norms (average instruction size, average number of instruc-
tions per task, per sequence of instructions, etc.), when for ex-
ample, an unexpectedly large number of instructions is found
without any structure binding it (sequence of instruction tag
or title), our norms allow us to suggest that, based on specific
typographical marks, a title has possibly been skipped at a cer-
tain position.

Finally, the engine is flexible enough so that partial parses can be
carried out, especially on large texts, where there is a lot of useless
text or where there are some risks of failure.

5 Perspectives

This short paper relates ongoing work on parsing procedural texts
via the pairing of a segmentor, capable of recognizing, basically,
terminal text structures, and a grammar, inspired from generative
principles, that better captures the variability of procedural styles
over domains and authors.

The implementations proposed so far are preliminary and allow
us to explore the various types of problems one may encounter when
dealing with text grammars. The corpus considered is of a rather
modest size, but with quite diverse structures. It is a development
corpus, allowing us to better analyse the behavior of the different
components we have developed. Outputs are checked manually:
this is a quite challenging task, since most texts include more than
one hundred tags.

Since this project is designed to become an industrial project, it
is clear that we need to investigate other forms of implementations
once the linguistic quality of the segmentor and of the grammar is
satisfactory. A possible direction is to develop learning mechanisms
trained on the outputs of our parser. These would produce probably
slightly less good results, but would allow for the processing of large
amounts of texts over a limited period of time.

References

[1] Aouladomar, F., Saint-Dizier, P., An Exploration of the Diver-
sity of Natural Argumentation in Instructional Texts, 5th Inter-
national Workshop on Computational Models of Natural Argu-
ment, IJCAI, Edinburgh, 2005.

[2] Delin, J., Hartley, A., Paris, C., Scott, D., Vander Linden,
K., Expressing Procedural Relationships in Multilingual Instruc-
tions, Proceedings of the Seventh International Workshop on
Natural Language Generation, pp. 61-70, Maine, USA, 1994.

[3] Kosseim, L., Lapalme, G., Choosing Rhetorical Structures to
Plan Instructional Texts, Computational Intelligence, Blackwell,
Boston, 2000.

[4] De Rijke, M., Question Answering: What’s Next?, the Sixth
International Workshop on Computational Semantics, Tilburg,
2005.

[5] Hovy, E., Hermjakob, D., Ravichandran, D., A Ques-
tion/Answer Typology with Surface Text Patterns, Proceedings of
the DARPA Human Language Technology Conference (HLT),
San Diego, 2002a.

[6] Maybury, M., New Directions in Question Answering, The MIT
Press, Menlo Park, 2004.

[7] Moldovan, D., Harabagiu, S., Pasca, M., Milhacea, R.,
Goodrum, R., Grju, R., Rus, V., The Structure and Performance
of an Open-Domain Question Answering System, Proceedings of
the 38th Meeting of the Association for Computational Linguis-
tics (ACL), Hong Kong, 2000.

[8] Yin, L., Topic Analysis and Answering Procedural Questions,
Information Technology Research Institute Technical Report Se-
ries, ITRI-04-14, University of Brighton, UK, 2004.

