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We use Signorini's expansion to analyse deformations of a straight, prismatic, isotropic, stress free, homogeneous body made of a second-order elastic material and loaded as follows. It is first twisted by an infinitesimal amount and then loaded by applying surface tractions, with nonzero resultant forces and/or moments, only at its end faces. The centroid of one end face is taken to be rigidly clamped. By using a semi-inverse method, the problem is reduced to that of solving two plane elliptic problems involving six arbitrary constants that characterize flexure, bending, extension, and torsion superimposed upon the infinitesimal twist. It is shown that the Clebsch hypothesis is not valid for this problem. A second-order Poisson's effect, not of the Saint-Venant type, and generalized Poynting effects may also occur in these problems.

Introduction

Since Saint-Venant [START_REF] Saint-Venant | Mémoire sur la torsion des prismes[END_REF][START_REF] Saint-Venant | Mémoire sur la flexion des prismes[END_REF] solved the problem of extension, bending, torsion and flexure of a prismatic body made of a linear elastic, isotropic and homogeneous material, and loaded at its end faces only, Clebsch [START_REF] Clebsch | Theorie der Elasticität fester Körper[END_REF] and Voigt [START_REF] Voigt | Theoretische Studien über die Elasticitätverhältnisse der Krystalle[END_REF][START_REF] Voigt | Lehrbuch der Krystallphysik (mit Anschluss der Krystalloptik)[END_REF] have characterized these solutions. Clebsch noted that in Saint-Venant's solutions the surface tractions on a plane passing through the axis of the prismatic body are parallel to the axis, and Voigt observed that the stress tensor is at most an affine function of the axial coordinate. Iesan [START_REF] Iesan | Saint-Venant's problem for inhomogeneous and anisotropic elastic bodies[END_REF][START_REF] Iesan | On Saint-Venant's problem for elastic dielectrics[END_REF][START_REF] Iesan | Saint-Venant's Problem[END_REF][START_REF] Iesan | Saint-Venant's problem for microstretch elastic solids[END_REF] has analysed the Saint-Venant problem for inhomogeneous and anisotropic linear elastic bodies, elastic dielectrics, and microstretch elastic solids. Dell'Isola and Rosa [START_REF] Dell'isola | Saint-Venant problem in linear piezoelectricity in Mathematics and Control in Smart Structures[END_REF][START_REF] Dell'isola | Almansi-type boundary conditions for electric potential inducing flexure in linear piezoelectric beams[END_REF] and Davì [START_REF] Davì | Saint-Venant's problem for linear piezoelectric bodies[END_REF] have studied the problem for linear piezoelectric bodies and dell'Isola and Batra [START_REF] Dell'isola | Saint-Venant's problem for porous linear elastic materials[END_REF] for linear elastic porous solids.

Rivlin [START_REF] Rivlin | The solution of problems in second order elasticity theory[END_REF] studied the problem of extension superimposed upon an infinitesimal twist for isotropic, homogeneous prismatic bodies made of a second-order elastic material. The work has been extended to general nonlinear elastic solids by Green and Shield [START_REF] Green | Finite extension and torsion of cylinder[END_REF]. Green and Adkins [START_REF] Green | Large Elastic Deformations and Nonlinear Continuum Mechanics[END_REF] noted that when the centroid of one end-face is rigidly clamped (in the sense that its displacements and infinitesimal rotations vanish), then the compatibility conditions for the loads in Signorini's expansion method [START_REF] Signorini | Sulle deformazioni termoelastiche finite[END_REF] are automatically satisfied. We recall that Signorini's method reduces the solution of a nonlinear elastic problem to that of a series of linear elastic problems with loads determined at each step by the solution of the previous linear problems. Truesdell and Noll [18] have discussed Signorini's expansion and summarized other works based on this method.

Here we use Signorini's expansion to analyse the Saint-Venant problem for a straight, isotropic, stress-free and homogeneous prismatic body made of a secondorder elastic material with the assumption that the first term in the expansion for the displacement field corresponds to an infinitesimal twist of the body. We use a semiinverse method to reduce the problem of the determination of the second term in the expansion to two plane elliptic problems -one for the warping function and the other for the in-plane displacements. The loads (body forces and surface tractions) in these two problems are proportional to the square of the initial twist per unit length. As pointed out by Truesdell and Noll [START_REF] Truesdell | The Nonlinear Field Theories of Mechanics[END_REF] Signorini's method delivers only those solutions that are in the neighborhood of solutions of a linear elastic problem with the same loads as for the nonlinear problem. Generalized Poynting effects are shown to arise in the coupling not only of second-order extension but also of second-order torsion, bending and flexure with first-order torsion. For a cylindrical rod loaded to obtain an extension superimposed upon an initial infinitesimal twist, the two plane problems are solved and the Poynting effect [START_REF] Poynting | On pressure perpendicular to the shear-planes in finite pure shears, and on the lengthening of loaded wires when twisted[END_REF] is delineated. When the resultant axial force vanishes, the elongation of the rod equals that found earlier by Wang and Truesdell [20].

Formulation of the Problem

Equations governing quasistatic deformations of a second-order elastic, isotropic and homogeneous body in the absence of body forces are

Div T = 0, (1) 
where

T = µ α 1 I E + 2E + α 1 2 (I HH T + 2I 2 E ) + α 3 I 2 E + α 4 II E 1 +(α 5 + 2)I E E -α 1 I E H T -(H T ) 2 + α 6 E 2 . ( 2 
)
Here T is the first Piola-Kirchhoff stress tensor, Div is the three-dimensional divergence operator with respect to coordinates in the reference configuration, µ is the shear modulus,

H = Grad u (3) 
is the displacement gradient, u = x -X is the displacement, x and X denote respectively the position vectors of a material point with respect to a fixed rectangular Cartesian coordinate system in the present and reference configurations, and Grad is the gradient operator with respect to referential co-ordinates. Furthermore,

E = 1 2 (H + H T ) (4) 
is the infinitesimal strain tensor, λ = µα 1 is a Lamé constant of linear elasticity, and α 3 ,α 4 ,α 5 and α 6 are nondimensional material constants for a second-order elastic material. In (2) I E denotes the trace of E, I HH T the trace of HH T ,

II E = 1 2 (I 2 E -I E 2 ) (5) 
is the second-invariant of E,and1 is the identity tensor. The reader is referred to Wang and Truesdell [START_REF] Wang | Introduction to Rational Elasticity[END_REF] for details of deriving the constitutive relation [START_REF] Saint-Venant | Mémoire sur la flexion des prismes[END_REF] and for references to other authors who have derived it.

In order to study the Saint-Venant problem, we consider a prismatic body A ×[ 0,ℓ] with cross-section A and axial length ℓ, and assume that its mantle ∂A ×[0,ℓ] is traction free. At the centroid of the end face A ×{0}= :A 0 ,w e assume that

u = 0, H -H T = 0. (6) 
That is, the centroid of A 0 is fixed and the infinitesimal rotation there vanishes. Henceforth, we place the origin of the rectangular Cartesian coordinate system at the centroid of A 0 . Green and Adkins [START_REF] Green | Large Elastic Deformations and Nonlinear Continuum Mechanics[END_REF] have pointed out that under conditions [START_REF] Iesan | Saint-Venant's problem for inhomogeneous and anisotropic elastic bodies[END_REF], there is no compatibility condition required by the first-order loads in the Signorini's series expansion of the solution. Further, the mantle ∂A ×[0,ℓ] is taken to be traction free but surface tractions are applied on the end faces A 0 and A ℓ := A ×{ℓ}; these surface tractions are determined subsequently in the semi-inverse method used to analyse the problem. Thus

TN = 0 on ∂A ×[0,ℓ], (7) 
where N is an outward unit normal to the boundary in the reference configuration. In Signorini's method, we assume that the displacement field u has a series expansion

u = ∞ n=1 η n u (n) , (8) 
where η is a small, yet to be determined, parameter in the problem. Thus, provided sufficient conditions of regularity,

H = ∞ n=1 η n H (n) , E = ∞ n=1 η n E (n) , (9) 
and, up to second order in η,

I E = η tr E (1) + η 2 tr E (2) , I 2 E = η 2 (tr E (1) ) 2 , II E = 1 2 η 2 [-(tr E (1) ) 2 + tr(E (1) 2 )], I HH T = η 2 tr (H (1) H (1) T ). ( 10 
)
Substitution from ( 9) and ( 10) into (2) yields

T = ∞ n=1 η n T (n) , (11) 
where T (1) = 2µE (1) + λ(tr E (1) )1,

T (2) = T (2) + µ α 1 2 tr(H (1) H (1) T ) + 2(tr E (1) ) 2 + α 3 (tr E (1) ) 2 + α 4 2 (tr(E (1) 2 ) -(tr E (1) ) 2 )
× 1 + (α 5 + 2)(tr E (1) )E (1) α 1 (tr E (1) )H (1) T -(

H (1) T ) 2 + α 6 E (1) 2 , (12) 
T 2 = 2µE (2) + λ tr E (2) 1.
From (1), ( 7) and ( 11), we conclude that for n = 1, 2,...

Div T (n) = 0, in A ×[0,ℓ], T (n) N = 0, on ∂A ×[0,ℓ]. (13) 
We note that T (2) is obtained from T (1) when E (1) is replaced by E (2) in the expression for T (1) .A l s o ,T (1) and T (2) are symmetric tensors; however T (2) is not symmetric.

Let e denote, in the reference configuration, a unit vector along the axis of the prismatic body. We introduce the following decompositions.

x = r + ξ e, u (n) = w (n) e + v (n) , E (n) = ǫ (n) e ⊗ e + γ (n) ⊗ e + e ⊗ γ (n) + Ê(n) ,
T (1) = σ (1) e ⊗ e + t (1) ⊗ e + e ⊗ t (1) + T(1) ,

T

(2) = σ (2) e ⊗ e + t (2) ⊗ e + e ⊗ t (2) + T( 2) ,

where

Ê(n) = sym grad v (n) , ǫ (n) = w (n)′ = ∂w (n) ∂ξ , γ (n) = 1 2 (v (n)′ + grad w (n) ), sym grad v = 1 2 (grad v + (grad v) T ), (15) 
and grad(div) is the two-dimensional gradient (divergence) operator with respect to coordinates in the cross-section A. Thus w gives the displacement and ξ the coordinate of a point along the axis of the prismatic body, v the displacement in the plane of the body, and the tensor product ⊗ between two vectors a and b is defined in terms of the Euclidean inner product as follows:

(a ⊗ b)c = (b • c)a (16) 
for every vector c.

For the initial infinitesimal twist, we assume that

v (1) = ξτ( * r), w (1) = τφ, ( 17 
)
where τ is the angle of twist per unit length, φ is the Saint-Venant warping function in linear elasticity, and ( * r) equals e × r. The displacement field [START_REF] Signorini | Sulle deformazioni termoelastiche finite[END_REF] implies that

E (1) = τ sym ( * r) + grad φ ⊗ e =: τ sym[γ (1) ⊗ e] (18) 
and thus tr E (1) = 0.

The warping function φ is a solution of div grad φ = 0i n A,

grad φ • n =-( * r) • n on ∂A. (20) 
We recall that ( 13) are satisfied for n = 1, and in the following we seek their solution for n = 2. The governing equations can be written as

σ (2)′ + div t (2) =-2(λ + µ)ξ τ 2 , in A ×[0,ℓ], (21) 
t (2)′ + div T(2) = τ 2 (λ + µ)grad ( * r) • (grad φ) -λ -µ α 4 2 γ (1) 
-µ α 6 4 div γ (1) ⊗ γ (1) , 1) • γ (1)τ 2 λ( * r)

in A ×[0,ℓ], (22) 
t (2) • N =-µξ(r • N)τ 2 , on ∂A ×[0,ℓ], (23) 
T(2) N = τ 2 µ( * r) ⊗ grad φ - 1 2 λ + µ α 4 4 γ ( 
•(grad φ) + τ 2 (λ + µ)ξ 2 Î N, on ∂A ×[0,ℓ], (24) 
where Î is the two-dimensional identity tensor. The aforestated form of the equations exploits the geometry of the prismatic body, and in doing so we have closely followed Di Carlo [START_REF] Carlo | Lecture Notes, Dottorato per la ricerca in meccanica teorica ed applicata, Facoltà di Ing[END_REF].

A Saint-Venant/Almansi Solution

As shown by dell'Isola and Batra [START_REF] Dell'isola | Saint-Venant's problem for porous linear elastic materials[END_REF] the Clebsch hypothesis may not always be valid. Hence in the following analysis we use a semi-inverse method, looking for solutions of ( 21) through (24) having the form

w (2) = m i=0 ξ i i! w i (r), v (2) = m i=0 ξ i i! v i (r), σ (2) = m i=0 ξ i i! σ i , t (2) = m i=0 ξ i i! t i , T(2) = m i=0 ξ i i! Ti . (25) 
For i>2, (21)-( 24) become

σ i+1 + div t i+1 = 0i n A, t i+1 + div Ti = 0 in A, (26) 
t i • N = 0 on ∂A, Ti N = 0 on ∂A. (27) 
Equations ( 26) and (27) imply that

A σ i+1 d A = 0, A t i+1 d A = 0, A r × t i+1 d A = 0. (28) 
Substitution for σ i+1 , t i+1 etc. in ( 26) and ( 27) in terms of displacements yields the following.

(λ + 2µ)w i+2 + (λ + µ)div v i+1 + µ R w i = 0i n A, µv i+2 + (λ + µ)grad w i+1 + (λ + µ)grad div v i + µ R v i = 0 in A, (29) 
µ(v i+1 + grad w i ) • N = 0o n ∂A, [2µ sym grad v i + λ(w i+1 + div v i ) Î]N = 0 on ∂A, ( 30 
)
where R is the Laplacian operator in the plane P that contains A.Fori>3, (29) and (30) have the solution

w i = 0andv i = rigid body motion in P , (31) 
and (28) yields that the constants appearing in (31) 2 must vanish. Thus the displacement fields (25) 1 and (25) 2 take the following forms:

w (2) (r,ξ) = ξ 3 6 w 0 3 + ξ 2 2 w 2 (r) + ξw 1 (r) + w 0 (r), v (2) (r,ξ) = ξ 3 6 (v 0 3 + ( * r)ω 0 3 ) + ξ 2 2 v 2 (r) + ξ v 1 (r) + v 0 (r). (32) 
In (32) and below, quantities with superscript zero denote constants. For i = 2, ( 21)-( 24) yield

µ R w 2 = 0i n A, F v 2 = 0 in A, (33) 
(grad w 2 ) • N =-(v 0 3 + ( * r)ω 0 3 ) • N on ∂A, (Gv 2 + λw 0 3 Î)N =-2τ 2 (λ + µ)N on ∂A, (34) 
where G = µ sym grad + λ Î div and

F = div G = µ R + (λ + µ) grad div (35)
is the Navier operator. For i = 1, the integral version of ( 21) and ( 22) over A and the global balance of torque give

λ A (div v 2 )d A + (λ + 2µ)w 0 3 A + 2τ 2 λA = 0, A [v 0 3 + ( * r)ω 3 + grad w 2 ]d A = 0, A ( * r) •[v 0 3 + ( * r)ω 3 + grad w 2 ]d A = 0. (36) 
A solution of (33) 1 and (34) 1 is

w 2 (r) = w 0 2 -v 0 3 • r + ω 0 3 φ(r), (37) 
and (36) 3 requires that ω 0 3 = 0. However, when on the mantle surface tractions whose resultant is a linearly varying torque are applied, then ω 0 3 will not vanish and the warping function for w 2 will equal that for the linear elastic problem. A solution of (33) 2 and (34

) 2 is v 2 (r) = v 0 2 + ( * r)ω 0 2 -τ 2 + νw 0 3 r, ( 38 
)
where ν = λ 2(λ+µ) is Poisson's ratio. Now (36) 1 yields

w 0 3 = 0. ( 39 
)
For i = 1, ( 21)-( 24) reduce to

w 1 = 0i n A, F v 1 = λv 0 3 in A, (grad w 1 ) • N =-v 0 2 + ( * r)ω 0 2 • N on ∂A, (Gv 1 )N = λ(v 0 3 • r -w 0 2 )N on ∂A, (40) 
and a solution of (40) 1 and (40) 3 may simply be written as

w 1 (r) = w 0 1 -v 0 2 • r+ω 0 2 φ(r). (41) 
The balance of torque implies that

µ A ( * r) • (v 2 + grad w 1 )d A -τ 2 µ A r•grad φ = 0 ⇒ ω 0 2 = τ 2 µ A r • grad φ J 0 -D , ( 42 
)
where J 0 is the polar moment of inertia and D := A r • * grad φ is the so called Dirichlet integral, and (38) simplifies to

v 2 (r) = v 0 2 + τ 2 µ A r•grad φ J 0 -D * r -τ 2 r. ( 43 
)
A solution of (40) 2 and (40

) 4 is v 1 (r) = v 0 1 + ( * r)ω 0 1 -νw 0 2 r + 1 2 ν[r ⊗ r + ( * r) ⊗ ( * r)]v 0 3 . ( 44 
)
In order that the axial forces be balanced, we must have

w 0 2 = 0. ( 45 
)
For i = 0, the governing equations are

R w 0 = 2v 0 3 • r in A, F v 0 = λ v 0 2 -ω 0 2 grad φ + µτ 2 r + div (λ + µ)τ 2 ( * r) • (grad φ) - 1 2 λ -µ α 4 4 γ (1) • γ (1) Î - µα 6 4 γ (1) ⊗ γ (1) in A, (46) 
(grad w 0 ) • N =-v 1 • N on ∂A, (Gv 0 )N = λ(v 0 2 • r -w 0 1 ) + τ 2 λ( * r) • (grad φ) - 1 2 λ + µα 4 4 γ (1) • γ (1) Î + µτ 2 ( * r) ⊗ (grad φ) N on ∂A.
A solution of equations ( 46) is

w 0 (r) = w 0 0 +w 0 (r), (47) 
v 0 (r) = v 0 0 + ( * r)ω 0 -νw 0 1 r + 1 2 ν[r ⊗ r -( * r) ⊗ ( * r)]v 0 2 + ṽ0 (r), with 
w0 (0) = 0, ṽ0 (0) = 0, grad ṽ0 0 = (grad ṽ0 0 ) T . (48) 
Functions w0 (r) and ṽ0 (r) are solutions of 1) ⊗ γ (1) in A,

R w0 = 0i n A, F ṽ0 = div (λ + µ)τ 2 ( * r) • (grad φ) - 1 2 λ - µα 4 4 γ (1) • γ (1) Î - µα 6 4 γ ( 
(grad w0 ) • N =-v 1 • N on ∂A, (49) 
(Gṽ 0 )N = λτ 2 ( * r) • (grad φ) - 1 2 λ + µα 4 4 γ (1) • γ (1) Î + µτ 2 ( * r) ⊗ grad φ N on ∂A.
Equations ( 6) require that

w 0 0 = 0, v 0 0 = 0, v 0 1 = grad w0 (0), grad v 0 0 = (grad v 0 0 ) T . (50) 
Thus we have six non-zero scalar constants, namely, w 0 1 ,ω 0 1 , and the components of the vectors v 0 3 , v 0 2 , which characterize respectively the (second-order) flexure, bending, extension and torsion. The corresponding resultant forces and moments on the face A ξ are

N f = Ew 0 1 A + λ A div ṽ0 dA + (λ + 2µ) ω 0 2 A φ dA +τ 2 1 2 λ - µα 4 4 - µα 6 4 (J 0 -D) + τ 2 (λ + µ)D, (51) 
S f = µ(grad w0 0 )A + µ A (grad w0 ) dA +µ A 1 2 ν[r ⊗ r -( * r) ⊗ ( * r)]v 0 3 dA, (52) 
M f = EJv 0 2 -λ A ( * r) div ṽ0 dA + µξ( * S f ) + τ 2 (λ + µ) × A ( * r) ⊗ ( * r) (grad φ) dA - 1 2 λ - µα 4 4 - µα 6 4 × A γ 2 * r dA, (53) 
T f = µ ω 0 1 A ( * r) • * r + grad w0 ω 0 1 dA + A [(r • r)( * r) • v 0 3 ] dA , (54) 
where

E = µ(3λ + 2µ)/(λ + µ), J = A ( * r) ⊗ ( * r) dA. ( 55 
)
E is Young's modulus and J a tensor of inertia. It is clear from the aforestated analysis that the small parameter η in (8) can be identified with the infinitesimal twist per unit length, τ , included in [START_REF] Signorini | Sulle deformazioni termoelastiche finite[END_REF]. The problem of determining the additional displacement field u (2) caused by the loads superimposed upon the twisted bar has been reduced to that of solving two boundary value problems (cf. (49)) in the plane.

Extension Superimposed upon Infinitesimal Twist for a Circular Bar

For this case

v 0 3 = v 0 2 = 0,w 2 = w 3 = 0,ω 1 = 0,φ = 0, w 1 = w 0 1 , v 2 =-τ 2 r, v 1 = v 0 1 , (56) 
and (46) 1 and (46) 3 reduce to

R w 0 = 0i n A, grad w 0 • N =-v 0 1 • N on ∂A. (57) 
Equations ( 57) have the solution

w 0 = w 0 0 -v 0 1 • r. (58) 
The clamping conditions (6) require that

w 0 0 = 0, v 0 1 = grad w 0 0 , (59) 
and thus

v 0 1 = 0,w 0 = 0. ( 60 
)
That is, there is no second-order warping, as is to be expected. The solution of (46) 2 and (46) 4 is

v 0 (r) =-νw 0 1 r + τ 2 8(λ + 2µ) µ(k 1 -λk 2 )(r • r) - µR 2 λ + µ [(2λ + 3µ)k 1 + λk 2 ] r, (61) 
where

k 1 = 1 + α 6 4 ,k 2 = 1 -α 4
2α 1 and R is the radius of the cross-section of the bar. We note that our computed v 0 (r) differs from Rivlin's assumed displacement field ((6.4) of [START_REF] Rivlin | The solution of problems in second order elasticity theory[END_REF]) in some of the terms cubic in the in-plane coordinates. Since the correction terms found by Rivlin are not included in his paper, our result cannot be compared with his. However, the in-plane displacement given by (61) coincides with that found by Wang and Truesdell [START_REF] Wang | Introduction to Rational Elasticity[END_REF]. For an incompressible, isotropic, homogeneous nonlinear elastic cylinder, Green and Adkins [START_REF] Green | Large Elastic Deformations and Nonlinear Continuum Mechanics[END_REF] considered a displacement field akin to that given by (61). From (61) we conclude that the in-plane radial displacements have two components, one proportional to the radial distance from the centroid and the other proportional to the cube of this distance; both depend upon second-order elasticities and are proportional to τ 2 . Also, the in-plane tangential displacements are proportional to τ 2 R 3 and will probably play a significant role in the deformations of thin-walled tubular specimens. The inplane displacements given by (61) are independent of the axial location of the cross-section.

Equations ( 51) through (54) yield that the second-order resultant forces and moments, except for the axial force, at the end face A ℓ vanish identically. The resultant axial force, N,isgivenby

N = EAw 0 1 + τ 2 µπ R 4 8(λ + µ) (λ + 2µ) α 6 2 -µα 4 . (62) 
For N = 0, (62) yields

w 0 1 =- τ 2 R 2 16 
(λ + 2µ)α 6 -2µα 4 3λ + 2µ . (63) 
Thus a cylinder made of a second-order elastic material and twisted by applying only torques at its end faces may elongate or contract depending upon the values of second-order elasticities. This effect, first discovered by Poynting [START_REF] Poynting | On pressure perpendicular to the shear-planes in finite pure shears, and on the lengthening of loaded wires when twisted[END_REF], has been studied by Rivlin [START_REF] Rivlin | The solution of problems in second order elasticity theory[END_REF] and others; e.g. see Truesdell and Noll [START_REF] Truesdell | The Nonlinear Field Theories of Mechanics[END_REF] for additional references. Equation (63) is the same as that in Wang and Truesdell [START_REF] Wang | Introduction to Rational Elasticity[END_REF].

Conclusions

We have analysed the Saint-Venant problem for an isotropic and homogeneous prismatic body made of a second-order elastic material. It is assumed that its deformations from the stress-free state consist of an infinitesimal twist and those caused by the application of loads at its end faces only. The centroid of one end face is taken to be rigidly clamped in the sense that the displacements and infinitesimal rotations there vanish. The displacements superimposed upon the infinitesimal twist are determined by the Signorini's method, and this problem is reduced to that of solving two linear elliptic problems in the plane; the corresponding resultant loads on an end face are given by (51) through (54). The right-hand side of (51) gives the resultant traction applied on the end faces. For zero resultant axial force, w 0 1 need not vanish implying a change in the length of the prismatic body. This effect has been delineated for a solid circular cylinder in Section 4. Equations (37), (38), and the constitutive relation for T [START_REF] Saint-Venant | Mémoire sur la flexion des prismes[END_REF] imply that T2 is a nonzero spherical tensor. From (47) 2 we conclude that T0 does not vanish in general. Hence Clebsch's hypothesis does not hold in this case. Equation (38) yields Poisson's effect linear in the in-plane position vector r but quadratic in the axial coordinate ξ . Additionally, (46) 2 gives Poisson's effect, not of Saint-Venant's type, which is independent of ξ .

We note that constants v 0 3 , v 0 2 ,w 0 1 and ω 0 1 characterizing the flexure, bending, extension and torsion should be proportional to τ 2 in order for Signorini's expansion to be valid.
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