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Introduction 

In this paper we propose a perturbation method for calculating the fields appearing in Saint-Venant 
torsion theory in terms of a parameter (E) characterizing the thickness of the cross section (CS) 
of S~int-Venant cylinders (SVC). We recover all the classical formulas found by Bredt [1] (see also 
Vlasov, [2]) as terms of first order in E. Moreover an iterative procedure is obtained which supplies 
successive corrections to Bredt's formulas useful in the case of CS of "moderate" thickness. The 
proposed expansion relies on a construction procedure for CS general enough to apply, for instance, 
to SVC whose doubly connected CS are bounded by ellipses. Thus we can check our perturbative 
method on the available exact solutions (cf. [3]) of Salnt-Venant torsion problem for homothetic 
elliptic CS. We suggest a procedure to calculate "perturbatively" [5] the fields characterizing the 
SV torsion problem assuming that the Prandtl function & [6] can be expanded in terms of c: 

o o  

= ~ , ~ , d '  (i) 
k=O 

Let ~) be a CS of the SVC, which can be represented as follows: ~ = ~PI\D0, where ~)~, i -- O, i, 
are simply connected domains, ~)o C DI and o~D0 N (9~)i = 0. Prandtl function @ is the solution of 
the following elliptic boundary value problem: 

A~b+2 = 0 i n / ) C H ,  (2) 

q~ = 0 on0~)1 (3) 

= @ on O'Do, (4) 

V~b-n = -2Aavo. (5) 
"Do 

Here H is a plane, A is the Laplace operator, V is the gradient operator,, is the outer normal of 
the domain ~)0 and Aavo its area. Because 4, is determined up to a constant we can fix the value 
of qb on a~)l to be zero. The values of ~b on @'D0, ~, is an arbitrary constant to be determined 
using the integral condition (5). Generalizing the results found in [6] we construct a wider class 
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of CS. Indeed we consider those sections which are the union of a e - fami ly  of curves image of a 
given curve under a linear (in e) homotopy. Once the development for Prandt l  function is found 
we can calculate the development for torsional rigidity R, warping w and tangent  stress t using the 
formulas [7],[8],[9]. 

R=2G[_ ¢ + A ~ . o 3 ,  Vw(y)=-~(,V¢(~)+,(y-o)), t = - C ~ , V ¢  (6) 
d T )  1 

where o E I I , .  is the 7r/2-rotation operator in II, y E D, G is the modulus of elasticity in shear and 
r is the angle of twist. 

e - Families of Cross Sections 

Let Fo be a curve whose parameterization is ro : [0, l] --+ II 

~0: ~ ~ r0(~). (7) 
If not misleading we identify s with the arc-length of the curve F0, thus I will be the length of 
F0. We consider, for Prandt l  problem, a family of domains, parameterized by e. The domain D~ is 
obtained as the union of the curves F, ,  z-lifted from F0 by the scalar field 5, whose representation 

is: (to,, ~ 0/)~ = Fo U r l . )  d s '  

r (s~:l) \ \ ~  

(s) 

FIG.1 

The figure represent a generic Dr domain. The two ortogonal vectors r0,, and *r0,8 and the construction (8) 
are depicted, The circle evidentiates s-constant curves while, in the square, z-constant curves are shown. 

Considering the couple (s, z) as a coordinate system on D~ we get the following holonomic basis 
(when not necessary we omit the explicit s-dependence of the various functions) 

O r  
e,(s ,  z) - 0s - ro,. (1 + ze(5,,. + 5~,.K)) + ze * ro,.(KS, - 5~,.) (9) 

0r  
e 2 ( s , z )  - O z  - e(ro,.5, - *ro,.6~) (10) 
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(K(s)  is the curvature of r0, 66,, = d'~,, i = 1, 2 ) a n d  the following metric-tensor: 

I( c2(6~ + 6~) -(~61 + z~'(6161,, + 626,,,)) ) 
g'J = g +-(~61 + z~2(6161,° + 6262,,)) (I + z~(61,, + K62)) 2 + z~E~(62,, - K61,,) 2 _ (II) 

g = e 2 [~z (6162,° - 61,,62 - K(6~ + 6~)) - 62] ~ is the determinant of the metric tensor. 
For the sake of completeness we quote here the expression of the gradient and laplacian that will 
be used in the foregoing [10]: 

. . . .  c +  o+{,+}) ,(o , ,  ) 
v ¢  = g'+¢,,e+; A ¢  = g', ko='o=J ozh i j = ~ ~x, v~+ ¢'` (12) 

(ihj~ are the ChristoIfel symbols, i , j , h =  1,2; z t - - s ,  xm-- z, ¢,, = 
k ) 

Formal Expansion of the Prandtl Function 

Using (1), (11) and (12.2) eq. (2) becomes: 

Where 

~ {  ~" A¢ ... .  + (13) 
r l =0  

~.+1 (B,+b.,+ +B2¢ ... .  + Ba¢ .... ) + 

~.+2 [c1¢. , .  + c 2 6  . . . .  + c . ~ . , .  + c . +  . . . .  + c ~ ¢  . . . .  ] + 

+.++, + D,+ .... .... + .... ] } =  

= -2+  + [+z (,~162,. - 61,.62 - K(6p + 66)) - ,%]' .  

A ---- - - 6  2 

B2 = z616~,, - 3z6~61,, - 3 z K 6 ~  - z K 6 ~  

Ba = 26162 

c ,  = z ( - 2 K 2 ( + F ~  + 6+") - K ( + F , , .  + 36666,,. + 2616~62,.) - 2616~,.62,0 - 2~6~ , .  - 

K .  (63 + 61666 + &~&2,.. 4- 66662,..)) 

c ~  = z 2 ( - 3 K 2 6 2 ( 6 p  + 6+ +) - 6 , , . g ( 2 6 p  - 66+ +) + ~1, . ( -361, .62 + 26162 . )  + ~262, . (46 ,K - 6~ . ) )  

Ca = 8t ( 26~ 82,o - 62, K - &++ g - 2626,,,) 

c ~  = 2z  (6pK + +,+++K + 26,626,, ,  - 6F2, ,  + +F~, , )  

C~ = -6162  - 6~ 

2 2 3 D ,  = - z 2 (621 + 62) 61k - -  ~++ K 3 - 36.61,. K 2 - 26~,. K + 361~ , .  K 2 - 2 6 ~ , . K  - 

(6161,,, + 6262,°) K,° + 6161,°°K - 6t,..62,. + 6262,.°K + 61,.6:,,°° 
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• D 2  = z 3 ( - 5 ~ K  3 - 25~5~K a - 5~K a - 35~5,,o52,K 2 - 35~61,oK 2 - 5~5~,°K - 35~,°5~K - 5~,,52 + 

35352 . . . . . .  o K  2 4- 3~1~22J2 ° K  2 + 4(~1~2¢~1 °(~2,1~" Jr- (~1(~12 s(~2° -- 35~5~,.K _ (~2(~i,s(~2, ° 2  2 .jr. (~2(~2,t K + (~l(~3,s) 

D° z(-2515~, .52 ~ 2 2 • = +25,51,.52,°-251,°52,o52+2515~5~,°-i-5~K,o-i-2~5]K,o+5~l(,°-{-5~5251,oo+ 

• D~ = 2z  ~ ( ~ g  + ~1~ + , k A  - '~,'k°) (~1,h,, + '~2'k,) 

• D~ = z ( ~  + ~ )  ( - ~ g  - ~1~ + ~,~, .  - ~ , , A )  

Noticing that (12.1) V¢ .  n[.=o ~ 1 = -6~¢,. + K¢,z and using (1), we get for condition (5) 

1 
~-~ E~ ~ro ( - e ~ ¢ , .  + ~¢,z} = -2eAro. (14) 
n----0 

In this way we get for the first three terms of the c-expansion of Prandtl function: 

l ( r o )  = ro ~ t~'l ' 1(8) = f; ~ 1 ,  j = 5~ )"  

~)O(8, Z) .~- O, (~I(S,Z)= 2At° I(ro) (1 - z) (15) 

( 1 -  z) Aro ~( j ~  . 2Aro 
- ( 1 6 )  

Torsional Rigidity, Warping and Shear Stress 

Using formulas (6) and the expansions R = E.~=o R.e" ,  w(s ,  z) = ~']n°°=o w . ( s ,  z)e" and 
t (s ,  z) = ~.°°=o t . ( s ,  z)e", we get: 

Ro = O, R1 - 4GA~o 
l ( r 0 )  ' 4aA~°{l(ro)f~2-~-~fJ} 

R2 - P ( r 0 ~  ro 

For the warping 

Wo(S,Z) _ 2Aro + ro x to,. 
T 

 (Jr° 
{ I ( ; :  t~l ) z 2 ) 5-~ - *to" to,, + 52ro" to,, 

and finally for the tangential stress 

(17) 

(18) 

(19) 

(2o) 
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to(s,z)  to, to. / l(ro) ~ 
~rr = (~rr'~rr)=lt2Ar°-'~-2 '°} (21) 

(G';r't" t1,~Gr, = (2 [J/2 + z(6,61,o - 6,62,,)] + 6,(2z - 1) + 

The values R1, w0 and to are the usual ones quoted in the literature [12], [13], [14], they are due 
to Bredt [1]. We emphasize that  for the CS considered in this paper the first non zero contribution 
to the z -component  of the shearing stress is of the first order in t. 

Conclusions and Perspectives 

Let D be the section enclosed between two non homothetic ellipses F0 and r l  whose parametric 
representations are respectively: 

r0 : [0,2~r]---~ H, r0 = ( acos~ ,bs in~)  (23) 

r :  [0,2it]-+ II, r =  (kacosip,(k+q)bsin~p) (24) 

where k is the homothety parameter, q/k is a "homothety defect" which is determined by the angle 
between the principal axes of r0 and r i  and we choose as e-parameter :  t := kq-oa = kb-bb = k - 1. 

We get for the torsional rigidity 

R1 = 2Glraab 3q- (25) 
P 

R2 = GlraSb3~ 2(b2-a2)(1-k)(l+c)+2a2+Cq 2~+-q-ilJl (26) 

~ [ ( b i - a 2 ) ( l i - . l i . l - b i q ]  with c = and p = a 2 - b 2 -I- ~ [ h+q~i J" 

When q -,, 0 we find (in agreement with the well known exact formula): 

4~rG asbs(k-  , 6~G a3b3(k- 1)2 (27) 
R z =  a S + b  21) R 2 =  aS+b2 

For fixed a, b and k the ratio ~ is a function of q. When a = 4, b = 2 and k = 1.3 we get 
RI  

R2(k - 1) 2 
-- ~ -~ 0.135 + 0.292q - 0.091q 2 + 0.122q s + O(q 4) (28) 

so fo " R a ( k -  1)a , r example, with q = 0.2 we find = ,  , 20%. Therefore the homothety defect increases 
~ t t k _ l /  - -  

the value of the second order correction on tomional rigidity. 
In the end we want make few comment on the results obtained. Despite the fact that  this procedure 
is general enough to supply all exact solutions available in the literature it is not able to manage 
the most general CS. The applicability of out expansion procedure and the convergence rapidity 
of the obtained approximating series depends upon many geometrical factors. We expect that  the 
convergency properties improve if z- l i f ted  curves are close to isocurves of the Prandtl  function 
[3]. This condition may not be satisfied by the t - fami ly  of CS we have constructed: indeed eq. 
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(8) implies that the s-constant coordinate curves (see Fig.l) are straight lines and in the theory of 
conformai mapping [15] it is proven that the orthogonal coordinates curves to isocurves of harmonic 
functions in general are not straight lines. Therefore the proposed expansion method is likely to 
be valid only when the thickness of the section is "moderate" in the sense that quoted orthogonal 
coordinate curves can be approximated by straight lines. 
At the moment the problem of studying the convergence of the proposed expansion is unsolved. 
This question could be better understood using the theory of Pad~ approximants. 
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