Outlooks in Saint Venant theory
I. Formal expansions for torsion of Bredt-like sections

F. dell’ISOLA and G.C. RUTA (ROMA)

STARTING FROM a regular curve (middle line), we define a section of a Saint Venant cylinder trans-
porting the curve along its normal; this we call a Bredt-like section. A formal series expansion for
Prandtl stress flow function valid for these sections is given. Starting from it, and using standard
relationships, formal cxpansions for warping, shear stress vector field and torsional stiffness are
obtained. Although the expansions are affected by degeneration in regularity, at least where curva-
ture of the middle line is not smooth or at its ends, we obtain all traditional results of the theory of
strength of materials and are able to give an estimate of the error associated with them. Morcover,
some interesting open problems are formulated, concerning both the problems of regularizing the
expansions and of genceralizing them for sections with variable thickness.

1. Introduction

IT 1S WELL KNOWN [1—7] that in the Saint Venant linearized theory of torsion there
are two different ways to find the tangential stress vector field, each leading to a
boundary value problem. Both ways are equivalent; one is based on the search of
a potential function for the stress, sometimes called the Saint Venant function,
which is also proportional to the warping; the other leads to the so-called Prandtl
stress flow function. If we look at the general expression of the problem, one has
to find that vector field t, defined over the section D of a Saint Venant cylinder,
which obeys the Cauchy balance equations

1.1 divt=0 in D°,
(1.2) t-npp =0 along 0D,

and the integrability condition

(1.3) f t 1 =2GrA;, VL.
C

Here ngp denotes the outer normal unit vector to the boundary of the domain
D°, where D° denotes the interior of D, 7 is the angle of twist, i is the modulus
of elasticity in shear and £ is an arbitrary circuit (closed curve) in D. By I we
denote the unit vector tangent to £ while A is the area confined by £, with sign
depending on the orientation of the cycle with respect to the orientation of the
plane P containing D.
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The first method to solve system (1.1)—(1.3) starts from a particular function
which satisfies (1.3):

(1.4) t= Gr*r,

where  is the Hodge operator, which rotates a vector contained in P by 7/2 in
the positive orientation of P. By r we denoted the position vector of a typical
point ¢ in P. Even if the domain is not simply linearly connected (we will suppose,
that it is monoconnected), from (1.4) and (1.3) it follows that

(1.5) (t-t-1,=0
!

for any circuit £ included in D. Equation (1.5) is equivalent to
(1.6) t—t= Grgrad¢,

where ¢ : D — IR is a potential function for the field t — t, sometimes referred
to as the Saint Venant warping function. By substitution of (1.6) in (1.1)-(1.2),
one obtains

1.7) Ap =0 in D,
(1.8) grad¢ - ngp = — *r - Ngp along 0D,

where A is the Laplace operator. The problem of finding tangential stress vec-
tor field is now reduced to a boundary value problem which is in the standard
Dini-Neumann form.

The second method to find the field ¢t starts with observing that (1.2) implies

(1.9) %t-na)‘=f*t-]a)\=0.
)Y X
With this result, we may now deduce from (1.1) that, for any cycle £,
(1.10) f*t-lg=f*t-*n35=ft-n35=/divt=0,
c 88 88 s

S C D being a surface whose boundary is £JdX. Equation (1.10) assures that
(1.11) st =Grgrady = t=-Gr*grady,

where ¥ : D — IR is known as Prandtl stress flow function [8]. If we substitute
this result in (1.1)—(1.3), we obtain another boundary value problem, this time
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in a Dirichlet form:

(1.12) Ap+2=0 in D°,

(1.13) Y = 1, along 8D;,

(1.14) }1{ grad  x 1z = 24, ¥ closed line L.
C

In (1.14) the 9D; are all the connected components of 0D and the ¢! in (1.13)
are uniquely determined by (1.14) up to an additive constant. The constant can
be chosen in such a way that ¢ = 0 along the outher connected part of the
boundary.

Both systems (1.7)~(1.8) and (1.12)-(1.14) in general do not have a solution
in analytical form: such a solution is known only for a few domains, that is, for
sections whose boundary is a circle, an ellipse, a square or a triangle with equal
sides; in the last two cases the solution is given in terms of a series and is due to
Saint Venant himself.

There always is, of course, the possibility of searching solutions of (1.7)-(1.8)
and (1.12) - (1.14) by a numerical approach, but this would lead to list of numbers
giving no qualitative understanding of the problems. Qualitative results are a good
tool for the designer: they put into evidence which parameters are of importance
in the design of a structure undergoing torsion.

Among these there are also “technical” results derived to searching solutions
sufficiently close to the exact one by approximating the functions of interest by
means of linear functions; such an approximation is valid only when the section
is made up by thin stripes. These results are usually attributed to Virasov [9]
for open sections and to BReDT [10] for closed, hollow (tubular) sections: Vlasov
starts from a constrained material (the section is rigid in its own plane and the
middle line of the domain is free of shear), while Bredt uses a particular geomet-
rical construction of the domain which lets him attain his result quite easily.

Our aim is, starting from Bredt’s way to imagine the geometry of sections,
to develop a different approach to the problem: we will use a “rational” series
expansion for the functions of interest (warping, stress, torsional stiffness) and
a perturbation technique [11]. This is a well known standard procedure that
will provide a set of equations, valid for thicker domains. We will prove that
this method will let us recover “technical” results and give us further qualitative
results for sections which cannot be considered “thin”, both for open and closed
sections.

We choose to study a section whose geometry can be described starting from
its “middle line”, trying to follow Bredt in his analysis of torsion of “thin” closed
hollow sections. Let us choose in P a line I of length [, which can be either open
or closed, and parametrize it through an abscissa s:

(1.15) r(s):={geP: g—o=rs), se[0.},
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where P is the plane to which the section belongs and o is one of its points,
chosen as the origin. It is possible to define a Frenet basis over I™:

(1.16) I(s) := i%_ifl = 1r)y(s),
(1.17) m(s) := (—I%%ﬂ = r(s) x I(s),

where k(s) is the curvature of I' at s. After this, let us build the section D by
“thickening” the middle line along m; more precisely, we say that the domain we
consider is

) o(s
(1.18) Drs = {p €eP:p—o=rp(s)+ 2% ry(s), z € [——(;—), —(2;)}} ,
&(s) being section’s thickness at s; the section will be said to be open or closed,
depending on I being open or closed. We can also write:

(119) D:= {p cP:p—o=ry(s)+ 26—(2'1)— *1(s), s € [0,71, z€[-1, 1]};

we choose the orientation of the boundary of D, in order to have always outer
normals expressed by the equation

(1.20) ngp = —m.

In this paper we will confine ourselves to the case of sections with constant
thickness. This will imply that the curvilinear coordinate system C = {(s,2)\s €
[0,1), = € [-1,1}} (see (1.19)) is orthogonal and therefore the Laplace op-
erator can be represented without use of covariant derivatives, i.e. ChristofTel
symbols. The choice of such a coordinate system does not lead to a well behaving
asymptotic expansion (for a discussion of this problem see [11] Sec. 2.5): indeed,
although the first terms of our expansions perfectly match the results already
known and supply their generalization, some regularity problems are left open in
the case of middle lines whose curvature is not analytic. Moreover, in the case
of open sections, there occurs a problem of matching inner and outer solutions
of an edge boundary layer. These phenomena most likely arise from the fact
that the particular expansion chosen is singular: the starting elliptic operator is
turned into a hierarchy of ordinary differential equations in which either a shift
in singularity or a coordinate singularity appears (see [11] Sec. 2.4 and following).

2. Representation of Laplace operator in system C

One of the most interesting features of torsion is that, in general, sections
cannot remain plane and undergo a deformation traditionally known as warping.
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Such a strain is strictly linked with section’s shape and resistance and so we
will begin our study analyzing it. If we wish to know the warping of a section
undergoing torsion, we should remember the following relation between warping
and the potential function ¢:

(2.1) w(p) = 17é(p), peD.
To find warping we have now a boundary value problem similar to (1.7)-(1.8):

(2.2) Aw =0 in D°,
(2.3) gradw - ngp = —7xr-nyp along 0D.

Problem (2.2)—(2.3) is well-posed, that is to say, as

(2.4 f gradw - ngp = 0.

Condition (2.4) assures that there exists a unique solution of the system
(2.2)-(2.3) and that this solution is the only one. However, it is well known
that in order to determine this solution for sections of interest in technical appli-
cations, there are two possible approaches:

a) numerical methods of integration;

b) the so-called “technical” theories for cylinders with “thin” sections, i.e.
“thin-walled beams” (for example [9, 10]). These theories give solutions under
the hypotheses usually based on the fact that if the section is “thin”, one may
approximate functions involved in the problem by first order polynomials.

Let us now use curvilinear coordinates system C, that is to say, abscissa s along
the middle line I" and ordinate z along the direction of Frenet normal m; let us
also suppose é(s) to be constant with respect to s. A basis for 7 can then be
obtained considering vectors tangent to the coordinate lines:

T ‘)”f,)“’”)—r(,()(l—m())
26) is,2) = 20D 2y

such a basis is orthogonal. To avoid tedious notation let us omit the dependence of
the functions of interest on the coordinates, where this does not lead to confusion.
If we wish to have an orthonormal basis, it is sufficient to divide (2.5)-(2.6) by
their norm, and to obtain (cf. Fig.1)

2.7) e = L =r

o~

(2.8) € = 1 = ar).
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A

FiG. 1.

We may therefore formulate the problem (2.2)—(2.3) in the following way [12,
13, 14]:

110 (] w9 [lixll 9w\ 2 o
@9 Tl [ (i 7))t (i )| =0

1 Ow 1 ow
(210) <ﬂ-il—ﬂ-53—r6 + mg; *lJ()) o Xk 0 = —-TI(Q * IJO along 01)

In our case it is easy to see that Eq. (2.9) assumes the form

§ L
) 5 ow|, 9 [ 70w

1
— 4+ =
6 Js 6 9s 0z 0z
) (1 — zn—z-) 1-— zni

we have to assume that
2\
1
K

to be sure that the Jacobian of C is not singular.

(2.11) ;
2

(2.12) 6 < sup
sef0,])
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To solve problem (2.9)-(2.10) by means of an “asymptotic” analysis, let us
suppose to have a set of domains built exactly as D, but with different thickness,
constant for each domain. It is then obvious that warping depends on § as well
as on s, z: we suppose that it is possible to write a formal series expansion for w
in terms of é:

(2.13) w(s, z,6) = Z wy(s,2)8™;
n=0

with (2.13), system (2.9) - (2.10) becomes now

o 3.3 l 2.3
14 6n+3 —ﬁ nss"’i nzz+i§' ns_ﬂ n,z
(2.14) 7;){ [ g n. g Un, g Un, g Un.

K2

1 3
+4n+2 [an,ss + 22216211)",22 + za—wn,z}

+6n+1 [———;—znwn’zz - gwn,z] + 6”[wn,zz]} =0 in D°,

(215) D w, 0" = ~T30 - r, z=4£1,Vs;
n=0

here g, stands for the derivative of g with respect to z. In particular, (2.15)
implies

(2.15Y W,z =0, n#1,
(2.15)" Wy, = ——;—rg ‘r), n=1

To (2.14) - (2.15) we shall also add, for closed sections, the condition of continuity
(2.16) w(l) = w(0), Vz.

Thus we have transformed (2.2)-(2.3) into a hierarchy of systems, one for each
power of §. One could expect that, since the originary problem was well-posed,
so should also be each problem of the hierarchy; unfortunately, it is not so.

This may be proved by induction: one can at once see that the zeroth step of
the hierarchy gives us an equation for wy ., so that we know the dependence of
wg on z; however, to have an equation for wy 5, one must wait for the third step
of the hierarchy. It is clear though that, in order to solve the same third step, one
is supposed to know also the exact expressions for the other terms that appear
in that equation; in particular that implies one should know w, .. This is possible
because of the very simple relations one has at the first two steps; but proceeding
further this implies overwhelming difficulties.
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In general, at the k-th step one has a relation between wy, .. and the derivatives
of w at previous steps. Unfortunately, boundary conditions (2.15) do not com-
pletely determine wy, leaving in it an undetermined function of s. This implies
that fundamental information for that step are at our disposal only by solving
the following steps, whereas for this solution one has to know all the preced-
ing solutions. It seems to be impossible to solve the system (2.14) - (2.15) using
the proposed procedure: even though (2.2)—(2.3) was a well-posed problem, its
analysis through a perturbation technique leads to a ill-posed set of successive
problems.

We may give a justification of this phenomenon by observing that the expres-
sion of Laplace operator as given by (2.11) is affected by the possible singularities
occurring when (2.12) is not verified: moreover, the regularity of coordinates C
is C'1, while for a theorem due to KELLOGG [19] the solution belongs to the class
C*D)n C¥(D°). As a matter of fact, a singularity (see [11]) occurs in expansion
(2.13) whose terms have a regularity lower than that of the exact solution. Such
an effect is in our case enhanced by the circumstance that warping is given as the
solution of a Dini-Neumann problem, i.e. a boundary value problem with data
on normal derivatives, whose regularity is even weaker.

Our idea is then to look for a solution of the warping problem by an analogous
technique, starting from basic torsion problem expressed in terms of Prandtl stress
function.

3. Asymptotic expansion for Prandtl function
We choose an expansion for Prandtl function of the form
o0
(3.1) P(s,z,6) = Z (s, 2)6";
n=0

in this way, system (1.12)—(1.14) is turned into

s g 3,3 ! 2,.3
S _Ek _E AN
(32) {6 [ 8 ¢n,ss 8 "[Jn,zz + 8 "//n,s 8 ¢"»5]

n=0

1 3 K?
+6712 |~ 22262 + z—Y,
6 [477[77,,5.9 + 4 K ¢7l,ZZ 2 U) 4
4ot {——gm"z/z - El/) } + 8" ]}
2,:/ n,zz ) n,z n,zz
6 3
=2 (1-2z
> ( 5 K +

(33) Y a6t =) ¥,6"  along 9D
n=0 n=0

1
%zzﬁzéz - 5335363) in D°,
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n . ntl _ y7s 752 4 T3 o

(3.4) ]4 23 .6 — f{ KD " = 206 - 17+ 2% along OA.
=1 n=0 2=1 n=0

If the section is simply connected (in our case, if it is open), its boundary is
only one closed curve, and Egs. (3.2) and (3.3) supply a hierarchy of well-posed
problems, as will be proved below. If the section is not simply connected (in our
case, if it is closed, with a hollow), we must consider, in addition to (3.2) and (3.3),
Eq. (3.4) as a condition of integrability; A is the area enclosed by the middle line
and ) is the boundary of the hollow, which has opposite orientation to that of
the same curve regarded as part of the domain boundary.

We must observe, as it was remarked at the end of the previous section,
that also asymptotic expansion (3.2) is affected by a degeneration in singularity
phenomenon; however, as the boundary value problem is in a Dirichlet form, the
sequence of ¢,, allows an evaluation of all quantities of interest in torsion, at least
when I' is analytic. However, although we do not prove here that this is really
the case for expansion (3.2), we believe that at least its first steps reasonably
approximate the frue solutions; we limit ourselves to refer to [11] for a more
detailed discussion on this subject.

We now look for the solution of system (3.2)—(3.4), step by step, both for
closed and open sections; we remember that one may always choose ¢ so that at
the outer boundary (z = —1) it equals zero.

3.1. Closed sections

Solution at step &°

Considering in system (3.2) - (3.4) the coefficient of the zeroth power of 4, we
have

(3-5) o =0 = tho(s,2) = z0a(s) + Yools);
substituting (3.5) into (3.3) we obtain

(3.6) Yo(s,—1) =0 = Yo(s, 2) = (= + 1)oo(s),
(3.7) Po(s, 1) = const = ¢g(s,2) = ¥(2) = (2 + 1o,

where . is a constant independent both of s and 2. It is now possible to use
(3.4) and (3.6):

(3.8) 2 ]4 Yo.=0 = o0=0 = ¢o(z)=0.

z=1
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Solution at step &'

Let us go on with our solution; keeping in mind (3.8), the second step of
Eq. (3.2) gives us

(3.9) Pre: =0 = P1(s,2) = 291a(s) + Pro(s);
again applying (3.3) it results that

(3.10) D1(s,—1) =0 = Pi(s,2) = (z + Ddhro(s),
(3.11) Pi(s,1) = const = Pi(s,2) = Pi(z) = (z + 110,

11,0 being a constant; another relation must be used, that is, Eq. (3.4); substituting
in it (3.11), we have

~i| |

61 2= > d=] > BE=ZE+D,
z=1

A
where 7 := 27 is some sort of “equivalent radius” for the middle line I'. It

is worth noting that expression (3.12) is the same as that which can be found
in “technical” books (for example [15, 16, 17]) under the assumption that the
cylinder is “thin”, that is to suppose the Prandtl function t be linear along 2.

Solution at step §°

If we take (3.2) at its third step, Eqs. (3.8) and (3.12) lead to

2 —_
(B13) Yrm—n7=-5 = ¥As,2)= %— <H% - 1) + zt2.1(5) + P2:0(s)-

Equation (3.13) and the boundary conditions (1.13) in the form of (3.3) give
Gl a1 =0 = ta(e2) = 3= D) (5= 1) + G+ Do),
(315) tals,1) = const = 4a(s,2) = 7~ 1) (% - 1) + (2 + Do,
where t,.1 is a constant. As usual, we now turn to apply (3.15) to (3.4):

(3.16) 2 }{ V2. — f kP, =—1 = Py =
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Solution at step &

Equations (3.8), (3.12) and (3.16) give us
(A7) 3= 25 (F=1) > dhals2) = 22 (7 = 1) + 2sa(s) + ¥30(s).
Equation (3.17) and boundary conditions (3.3) lead us to the results

(B18)  a(s,~1) =0 = ¥3(s,2) = 52> + DT = 1) + (= + Da(s),
(3.19) s, D) =c = Pi(s,2) = ;z(z3 ~ )T — 1) + o(z + 1),

where ¢ is a constant. If we apply (3.19) to (3.4), we obtain

K 1 K 1
(3.20) 2 f ¥3,: = f K2, = % rilindih 7 E(KT_ 1) = 7 (a7 — 27)
z=1 z=1 2=1 2=1

= Phy(s,2) = 2%(9 — ) (kT - 1)+ 5@ (aF - 27) (2 + 1),

where

(3.21) a:= ]{ k(T —1).

z=1

Solution at step &*

Tt is a straightforward calculation which gives us (x” is the second-order deriva-
tive of k)
K (hT K'T 4 5 (a7 — 2m)

1) 2
+ (1 -3z )32 a5 ;

(3.22) V4., = (1 — 93—~

and

- R H(HT D e ey MET

(3.23) Ya(s, z) = (1 + 222 - 32%) 192 (5-62"+=z )384

k(aT — 2)

481

Without going on to further steps, we observe that every ¢; is uniquely deter-

mined. We may prove this by induction: having proved that we are able to find a

complete solution at the first four steps, it is easy to see that at each step ¢ one
has:

a. One equation, derived from (3.2), which gives us a relationship between

¥ .. and an algebraic sum of derivatives of ; with j < i; as these constitute a

+(z2-1)
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homogeneous polynomial, it turns out that ¥;(s, z) is a polynomial of degree ¢ in
» and it depends on two functions of s alone;

b. Two equations, implied by (3.3), which define the form of the polynomial
¥i(s, z) and give us some information on the functions of s above mentioned;
more precisely, we obtain one of these functions in terms of the other. Therefore
we are left with only one function to determine, about which we have some
information, of the kind: it is a constant, or equals a known expression plus a
constant;

c. Such information is employed by the equation derived from (3.4) which
finally lets us solve the problem and find the expression of ¥;(s, z). One interesting
property of ¥i(s, z) is that it presents only odd or even powers of z, depending
on whether i is odd or even.

We may say that this way of seeking a solution of the torsion problem for
hollow cylinders is rather succesful (see Conclusions); let us then turn to examine
the case of open sections.

3.2. Open sections

As already said, an open section is simply connected, which implies that the
problem is now ruled by Egs. (3.2) and (3.3) alone; in particular, if 9D is con-
nected, we can say that Eq. (3.3) reduces to

(3.24) =0 along 0D.

Let us now look for the solution of system (32)-(3.24). It should be reminded
that the solution which will be given here is an outer solution (see [11]), that is,
it coincides with the exact solution only outside a thin region near the shorter
edges of the section. Indeed, in closed sections an edge effect layer arises, since
solutions given in this section are not capable to satisfy all boundary conditions.
They need to be matched with an inner solution valid in the edge layer which
satisfies boundary condition at s = 0, s = 1. Tt will be a further step of our
research to investigate what happens in the edge layer and to provide complete
matched asymptotic expansions. We remark explicitly here that the outer solution
we supply coincides with those found in the literature [4, 17).

Solution at step &°

It is quite easy to see in this case that (3.2) implies
(3.25) Yo,2z = 0,

which means that vy is affine in z; but, as (3.24) tells us that 1 vanishes both at
z = —1 and z = 1, we may at once conclude that

(3.26) o = 0.
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Solution at step &'

At this step results (3.25) and (3.26) show us that we have exactly the same
situation as in the previous section concerning step §°; we may thus conclude that

(3.27) =0

Solution at step 82

Equations (3.2), (3.26) and (3.27) tell us that now we have

1 P
(3.28) V0 = =5 = Yals,2) = =+ 2 (s) + (o),
while the restriction of Eq. (3.24) to the lines z = £1 gives us
_ .2
(3.29) Pals, z) = o(z) =

The remaining part of the boundary condition corresponding to the lines s = 0
and s = [ cannot be fulfilled. This is a well-known phenomenon in singular
perturbation problems. We will return to this problem in the final section. We
can observe that this is the solution one usually finds in ordinary handbooks on
the strength of materials.

Solution at step 6

This time we have

K "3
(3.30) V3. = —— = P3(s,2) = =5+ 3¥sa(s) + ¢30(s),
4
which, with the help of (3.24), becomes
o 2) = (1 - 228
(3:31) ¥a(s,2) = (1= 2D

Solution at step &*

This step is also easy to solve; we obtain from (3.2), (3.27), (3.29), (3.31),

2
(3:32) Wu.o = g1 =957 = Ws(s,2) = (22 3 + aa(): + dao(s)

and this, with the help of (3.24), becomes

192

(3.33) Pa(s, z) = 92(2~ -3:4+1).

We can stop now and repeat what we said about the solution of system
(3.2)-(3.4) for closed sections: we have, as a matter of fact, the same struc-
ture at each step as that observed there; we can conclude that also for open
sections the torsion problem in terms of Prandtl function may be solved in this
way. Let us now look for the relations between warping and .
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4. Asymptotic expansion for warping

An equation which lets us link the warping and Prandtl functions is given
directly by (1.5), (1.7), (1.13), (2.1):

4.1) gradw = —T * (grad ¢ + 1)

where each function is 2 field defined over the domain. We may now explicitely
express the gradients in (4.1) in terms of the coordinates s and z, use expansions
(2.13) and (3.1) for w and ¢ and write as well the complete expression for r given
by (1.19). We get

(4.2) ! i w6 =T {i 6" — 7 i b 6"
2 n=0 n=0 2

n=0

(4.3) io: Wy, 60" — z% i::ownyzﬁ'”l

n=0
1 & il ) 62
= —T [5 nézov,bn,sé 4 (—2- - zr;-—4) T * rﬁ} ;

having proved in the previous section that we are able to find the complete
expression for Wy, for each k, we can as well find complete expressions for wk at
each step, what we were not able to do following the method described in Sec.2,
both for closed and open sections.

4.1. Closed sections

Solution at step &
It follows directly from (4.2) and (4.3) that

4.4) o, = 0,
(4-5) wo,z = 0.
It is worth noting that 44) corresponds to (3.8) and (4.5) could be derived also
from an attempt to solve (2.2)-(23) at the first step; in this case we may note
that at the first step the shift in singularity phenomenon did not occur, so that
also system (2.2)- (2.3) provides a correct solution.

Solution at step &'

Again starting from (4.2)-(4.3) and keeping in mind (3.8), (3.12) we have
(4.6) wo,s = 27% —rrg X Thy

)

(47) w1,z

1

T
- 51’0 . l'/o.
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Simple integration of (4.5) and (4.6) gives

(4.8) wo(s, 2) = wo(s) = 27 (gs - .Q(s)) + wg(0),

where £2(s) is the area enclosed by the arc comprised by the values 0 and s of
the abscissa on the middle line and the two radii r(0) and r(s). Equation (4.8)
is the same which is possible to find in «technical” books under assumptions of
“thin” section (see the already quoted books [9] and [18]).

Solution at step 8

If we now substitute (3.8), (3.12), (3.16) and (4.8) into (4.2), (4.3), we have

(4.10) wy, = 0.

t]

(4.9) wy,s = —z% (1+ &1y x 1)

By integration we find
(4.11) wi(s, z) = —z%ro ‘1),

plus an inessential constant; this is a new result which enables us to predict the
warping of a hollow section of the kind described in Sec.2 when the wall is not
so “thin”; we may see that warping is not constant and varies with z, such a
variation might be called tilting. Equation (4.10) corresponds to the boundary
conditions (2.3).

Solution at step §°

At this step, with the same procedure as that used in previous sections, we
find

T—2
(4.12) wy, = 25 [ﬂ(l )+ ”] :
(4.13) ws, = —{—6(22 —1)K'7,
and integrating we obtain
(4.14) wa(s, z) = was) = {5 [ar —7 °r /n(fﬁ - 1)] .
0

Solution at step §*

We have now
(4.15) Wy, = —(323 — DT

© 48
which implies

(4.16) w3(s, z) = 4L8(3z3 — 2T
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4.2. Open sections

In this section we will apply the same procedure as that used in Sec.4.1,
starting from Egs. (4.2)-(4.3); we shall make use, of course, of expression for
the Prandtl (outer) function for open domains, that is to say, Egs. (3.26), (3.27),
(3.29), (3.31), (4.33).

Selution at step 8°

We have immediately

(417) Td’().z = 07
(4.18) wo, = 0,

about which we may make the same remarks as those concerning Egs. (4.4), (4.5).

Solution at step §'

Going on to the next step we have

(4.19) w,s = —TT X T,
(4.20) Wy, = —%ro . x).

From (4.18) and (4.19), one obtains
(4.21) wo(s, z) = wo(s) = —7rp X o,

which is the well known Vlasov equation of warping for “thin-walled beams” of
open section [9].

Solution at step &

This time we have

(4.22) wys = —z% (1 - Kkro X 15) 5
(4.23) w, = 0,

integration of (4.20) and (4.22) gives
r
(4.24) wi(s, z) = —25T0 - ro,

plus a constant; this is a new result concerning sections which are not so “thin”;
note the filting already mentioned concerning (4.11).
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Solution at step &

If we want to follow the procedure for further steps, we have
(4.25) we = TS
(4.26) w3, = 0,

we may integrate (4.23) and (4.25) to obtain

(4.27) wy(s, z) = wa(s)

N'“‘
o\

which is another new result.

Solution at step §*
Let us examine the last step:

(4.28) w3, = 0,

(4.29) Wy, = —T——(~ - )
one integration of (4.26), (4.28) gives us

(4.30) ws(s, z) = const,

which is a new and interesting result that shows us that there is a gap between
the third and fifth step in this calculation.

We remark that at all steps the cross-derivatives of wy, are equal, which is an
important test of the validity of our derivations.

So we may say to have found a kinematical solution of the torsion problem
for these sections. Let us now examine some interesting statical properties.

5. Tangential stress field

Let us suppose to have a formal series expansion of the tangential stress field t:
(5.1 t(s, z,6) = Z t.(s, 2)0";
n=0

as we know each coeflicient of the formal series expansion (3.1), we may use
(1.11) and (1.6) to find an equation for t. In particular, we have

(5.2) S8t - Z t,6"2 = 26T [(Z P 26" — iz_’i i ,(/)n126n+1> "
n=0 =0 =

n=0
1 o0
5 > ¢n,sé‘"“(*r6)] :
n=0
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s0, operating as in the previous sections, we can solve system (6.2)-(6.3) step by
step both for the closed and open sections.

5.1. Closed sections

Solution at step &°
We immediately have, on the basis of (5.2),

(5.3) o, = 0,
conciding with a result already obtained, cf. Eq.(3.8).

Solution at step &'

‘We have now

2GTA
(5.4) to = Grrey = 274
Equation (5.4) can be found in technical literature: due to the assumption of
“thin” section, the state of stress is plane, directed along the middle line, and
besides one may neglect terms of higher than the second order in a power series
expansion of Prandtl function, and obtain a constant distribution of tangential

stress.

Solution at step &>

Simply applying (5.2) and (5.4), we get
(5.5) t; = Grz (ng — 1) ro;

equation (5.5) is a new result that, as already said in connection with (4.11), takes
into account the fact that the section is not so “thin”.

Solution at step §°
If we go on with our simple procedure, it is quite easy to prove that

56) t=0Gr { [%(w ~1) (zzﬁ - %) + 11—2(@7 _ 27r)] "
+[Za- 2] o)

which shows that this is the first step in which a component of shear stress along
m appears.

Solution at step &*
Our last result for this case is

(5.7) t; = zrty + GT + 52%(2,4? ~ 1)1 - 22)(+rh),
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which is another new result. Let us examine what happens in the case of an open
section, keeping in mind that we have at our disposal only a partial knowledge
of the complete solution.

5.2. Open sections

Solution at step &°

We immediately have from (5.2)

(5.8) Py, =0

about which we may repeat the remark made before, concerning (5.3).

Solution at step 6

We have now the possibility to write tangential stress vector field at the first
step:

(5.9 to(s,z) =0

this is a result already known: stress distribution in an open section cannot be
determined before arriving at the third step of Prandtl function.

Solution at step 8

We get now from (5.2), (5.8), (5.9),
(5.10) t1(s, z) = —Grzry,.

Solution at step 6°

We have at this step, remembering the results of previous steps,
(5.11) to(s, 2) = GT—(l - 329y,

which is the first of our new results for open sections.

Solution at step 6*

Equations (5.2), (5.8), (5.9), (5.10) and (5.11) yield
(5.12) ts(s,z) = Gt z——(— — 2 + 251 (z - 1) 15|,

which is another new result. We see that, starting from this step, the effect of
tangential stress along the normal to middle line becomes appreciable.
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6. Higher order torsional stiffnesses

Usually the torsional stiffness is defined as the ratio of torque divided by unit
torsion angle, that is to say,

al

since it is possible to express tangential stresses in two ways, either by means of
a potential function or through Prandtl function; it is also possible to derive two
different equations for torque, each starting from a different point of view. That
implies we have also two different formulae for torsional stiffness:

(6.2) K = G(J - D),

(6.3) K =2G ( ¥+ A,\%) ;
/

in (6.2) J is the section’s polar moment of inertia and D is the so-called Dirichlet
integral, which is given by

(6.4) D= [grad¢ xr.
/

In (6.3) A, is the area of the hole. To simplify the calculation, we use (6.3). Let
us suppose for K a formal power series expansion similar to those already used:

(6.5) K@) =) K%

=0
we may then substitute (6.5) into (6.3), as well as the formal series expansion
(3.1) for Prandtl function. We then have the following results.

6.1. Closed sections

We may see at once that
(6.6) Ko=0

which means that at the zero order, that is to say, when thickness tends to zero, the
considered section exhibits no resistance to torque, which is physically reasonable.
Going on with our calculation we have

- 2
(6.7) Ky =2G ( / o + Zgl/—‘) = 467’1 :
D
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which coincides with the well-known Bredt formula that one may found in every
book on the strength of materials. At next step we find

1 _
(6.8) K, =26 (E / Py — \) =0

D

which is a new result and gives us a mathematical reason for the validity of Bredt
formula: since there are no immediate corrections to the torsional stiffness of a
Bredt-like section, its approximate value has proved to be good enough for some
applications. If we go on, we find

(6.9) K3 =G [’ LU “F] ,

3 12

which gives us a third-order correction for Bredt formula. At the next step we
find

(6.10) K4 =0.
6.2. Open sections
It is absolutely trivial to show that
(6.11) KNo= Rk, =K, =0
it is also easy to see that

(6.12) Ky = %—l

which is the usually known result for “thin” sections; going on we have
(6.13) K4=0

which is a new result, interesting because it enables us to see that for open
sections there are corrections for K only at higher orders of §. However, we have
to remark that we have not developed a matching of Prandtl function close to
the ends of the section to account for the edge effects. This seems not to affect
(6.12), but it could change the result given by (6.13). Further investigations will
clear up this point.

7. Conclusion and open problems

The only exact solution available in literature with which we can compare our
results is that of a circular ring. Our asymptotic expansions supply exact solutions
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after three steps. All sections belonging to the class B we have studied share the
property of having a vanishing second order torsional stiffness. We remark that
the only other solution in analytical form for our problem which may be found
in literature is that of an elliptic shaft [4] and that, unfortunately, this section
does not belong to B: indeed, its second order torsional stiffness does not vanish.
Further investigations will be developed in the following directions:

a. To find an expansion valid for Bredt-like sections with variable thickness;

b. To develop a matched asymptotic procedure to handle the edge layer effect
appearing in open sections;

c. To cure the loss of regularity arising in present expansions using the methods
proposed in [11];

d. To determine mathematically the range of validity of the proposed expan-
sions using the potential theory, as first done by KeLLOG [19];

e. To estimate rigorously the errors associated with the Bredt results in some
cases interesting from the point of view of applications.

In our opinion, the expansions proposed in this paper show a new example of
a well-known phenomenon occurring in asymptotic analysis: first terms supply an
accurate approximation of true solutions, while starting from a given step, a loss
of regularity may be observed.
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