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On a general balance law for continua
with an interface (*)

F. DELL’ISOLA and A. ROMANO (**)

1. Introduction

In the literature two different types of reasoning are developed in order
to obtain local evolution equations and jump conditions for a continuous
system with an interface (C, S).

The first one (we used in [1]) starts with an integral balance equation
valid only for the whole system. (see also [2], [3]).

In this case it is seen in a simple way that the general balance equation
is equivalent to a local volume equation and a surface jump condition where
the so-called /localization residual appears.

This residual is usually interpreted as describing a non local interaction
and therefore is neglected when this interaction does not need to be taken
into account.

The second one, on the other hand, starts assuming a general integral
balance equation valid for all material volumes included in (C, S).

The local form of this integral equation is then obtained owing to the
arbitrariness of material volumes (see [4], [5]).

Notwithstanding its more clear physical justification this second ap-
proach makes use of the concept of material volume, which is ambiguous
when this volume includes a portion of a nonmaterial (i.e. not made up with
always the same particles) and adsorbing interface (for instance in the case
of phase transition). ‘

In this paper we formulate (sec. 3) a general integral balance law (GIBL)
valid for a continuosly moving family of Eulerian volumes at any instant ¢ inc-
luded in the region C(¢) © R’ occupied by the continuous system (C,S).

(*) Work supported by G.N.F.M. of the Italian C.N.R.
(**) Dipartimento di Matematica ed Applicazioni «R. Caccioppoli», Via Mezzocannone,
8 - 80134, Napoli (Italy).
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Moreover, in:

— subsection 3 A) we define (when the projection of velocity on § is
continuous across S) a family {c, (t)} of Eulerian regions which can be re-
garded as (') a «first order» material volume and assume that for this
{cm (1)} the GIBL holds. It results that it reads as the usually postulated in-
tegral balance law for material volumes;

— in subsection 3 B) we deduce even when the projection of the veloc-
ity on S in discontinuous across S the local balance law by applying GIBL to
a fixed arbitrary Eulerian volume included in (C, S).

— in subsection 3 C) we finally observe that when applied to the region
occupied at the instant 7 by the whole system (C, S), GIBL reduces to the
global integral balance law postulated for instance by SUHUBI [3].

In the following sec. 2 some kinematical formulas are shown which will
play a relevant role in sec. 3.

2. Some kinematical formulas

Let us assume that the family of Euleriam volumes C (¢) and of Eu-
lerian surfaces S (7) (representing the regions of space occupied by re-
spectively the continuous system C and the interface S) satisfy the fol-
lowing properties:

i) A regular vector function u defined in C(0) x R* exists such that
u (C(0),7) = C(r) with jacobian determinant J # 0.

ii) Yz € R*, 8 C(7) is a regular surface whose outward pointing (unitary)
normal N always exists.

iij) Yz e R", S(¢) € C(¢) is a regular surface having (unitary) normal n al-
most everywhere and such that:

either asS()y=0

or aS(r) € 3C ().

We underline that because of iii) the region C (¢) is shared by the sur-
face S () into two disjoint sets C; (¢) (i = 1, 2) whose boundary d C; (¢) is in

general only almost everywhere regular. The normal n is always assumed to
point towards C, .

iv) u (G (0), 1) = C (1). Vie R".

()) In an intuitive sense to make clearer later.
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Physical volume properties of (C, S) will be represented by means of
scalar fields f; (x,t) which are regular in C;, V¢ € R*.
We will call f the couple:

i, £}

and f* the restriction of f; to S respectively, with i = 1,2.

In a completely analogous way physical surface properties will be repre-
sented by means of regular surface fields £, .

In literature, and in the following sections, integral balance laws for the
fields describing (C, S) are postulated for a variety of families of Eulerian vo-
lumes & (¢) included in C (¢).

This circumstance induces us to prove the following theorems:

THEOREM 1.

Let us consider a family k (t) of subsets of C (). Let o (1) = k (t) n S (¢).
k(t) results to be shared as C(t) in two disjoint sets k;(t).

If k (t) satisfies properties analogous to i) + iv), then the following deri-
vation formula holds:

d

(D) —-—-S fdc=S —f—dc—g [[fc,,]]d0+g SV,  N.do
dt e k¢t (1) k()

where ¢, is the geometrical normal speed of the surface o,

u
V, = 3 : (the function u, is that appearing in properties i), iv));

Ny is the unitary outward pointing normal to the surface 3 k ().

Proof: Formula (1) is easily proved when we note that:

d S d d
— fdc=—-——§ fdc+——-g fdc.
dt i dt e’ dt )™

where ki = k n C;.

In fact we can apply to both derivatives on right hand side the follow-
ing formula (see also SERRIN [6]) valid for an arbitrary moving volume veri-
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fying property 1i):
d
(2) —
k

where V, - N;, is the normal speed of the boundary of k; and is equal on
o (t) to ¢,. Ny, obviously is the outward pointing unitary normal to k; (2)).
Adding this last two formulas each other we obtain:

d 0
—————S fdc=& fdc+
dt i k() O1

AR\ do—g Ife.] do

k(1) o(t)

We report here for completeness that formula (2) can be deduced, for
instance, making use of vector function w,. In fact if J, is the Jacobian de-
terminant of this function we have;

d S d
= ﬁdc=-———-g £3 dc0=g [f,.J,divVJr
dt i dt Jio * ki(0) ' *
+<——Z—+Vk-Vﬁ)Jk]dc0=S /RPN £V N, do
01 Ky 01 aki(0)
THEOREM 2.

Let k (1) and o (t) defined as in Theorem 1) satisfy together with the hypo-
thesis 1) + iv) the following one:

\J) dk(t)y noC(t)=@.
Then the following derivation formula holds:

_4
dt

‘/IW(V'Nk)z H‘Nk

- /D, dl+
Saouo) v - N; i - Ni|

S,
g fodal = g (e 3,,) do
o(r) o(ip)

ot

=1

3)

£V, - vdl

80(to)
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with:

do(r,t)
do (r, (1, 1), t,)

Jlo (r’ t) =

where x € S(t) and t, (x, t) is the intersection with S (t,) of the curve passing
through r and perpendicular to the family of surfaces S (t),

Dn = (Vk ' H—C,,),

v the outward pointing unitary normal vector to the curve d o (t,) tangent to the
surface o (t,),

We remark that;

a) with simple geometrical considerations (see for instance [3]) it is
possible to show that the following equality holds:

O J,=—2Hc¢
5t to“ n

5,
b%=&tﬁ

b) when v - N, = 0, a portion of o () of surface-measure not van-
ishing can be included in 9 & (¢). This means that the left hand side in for-

mula (3) can be infinite. This is the reason for which (v - N,)™! appears in
its right hand side.

so that it results;

S,
d¢

—2He fy .

t=tg

o i)

Proof : We begin observing that, if we choose a suitably small ¢, o (z,)
can be regarded as the image through the application r of suitable surface

0, () € S(t) for every instant ¢ € [t,—¢, I, + €], so that the following
equality is meaningful: .
(Remark that o, (f,) = o (¢,))

0 (1) © (0(t) =0, (1)) = 0 (t) U (0, (t) — 0 (2)).

Additivity of integration implies that:

@) dS fd dS fd +d8 £ do— -2 £ d
—\ fdo=— L do+ — do — — do
dt o dt Jo,um dt Joy=ona) dt Jg, =0t
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A simple application of change-of-variable theorems leads to:

d

(5) _d—t— ga,(;)ﬁ do

0,
= " 3,.) d
Swo) Y (o i) do

=1,

In order to evaluate the remaining derivatives we note that when at a
point of do (¢,) the quantity:

n - N, D,
fn - Ny|  [D,|

[N
i

is equal to + 1, part of the quantity £, contained in o, (¢) is leaving o (¢) while if
it is equal to — 1 some f, not included in g, is added in o (¢). (see fig. 1).

Moreover (see fig. 1) the measure of d (0 (¢t)—o0, (¢)) or d (0, (1)—o0 (1))
is given by:

d@o (1) (Vi, - v+ 5D, tga) dr

where « is the angle appearing in fig. 1.

FG. 1.
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We obviously have that:

L= (v N
V'Nk

tg o=

These considerations imply that the sum of the considered derivatives
is the line integral appearing in formula (3), which is thus shown.

THEOREM 3.

Hypothesis v) in Theorem 2 actually can be skipped, formula (3) being va-
lid more generally even if dk(t) n 3 C(t) is a nonempty set.

Proof : We begin remarking that Ye > 0 it is possible to find a family
k. (¢) of Eulerian volumes included in & (¢) for which the hypotheses of
Theorem 2 are verified and such that: (if Ve > 0 o, = k. N S(¢))

bo(0(t)—0. (1)) <e and |p@o(®)—p @o, (1)< ¢

where y, indicates the Lebesgue measure on the surface S (¢) and u, the Le-
besgue measure on the curves 3¢ and d g, .

Let us calculate the limit for e — 0 in both the members of equations
(3) written for the family of volumes k. .

The limit of both the terms in the second member of this equation are
easily calculated using absolute continuity of Lebesgue integral and the cir-
cumstance that Thomas’ derivative is not defined in a subset of 9o (¢)
which has two dimensional Lebesgue measure zero. The sum of these limits
gives second member of eq. (3) written for the volumes k (¢).

In order to calculate the limit of the first member we observe that if the
surface S (¢) can be covered with just and the same chart ® at every instant
t belonging to a suitably small neighbourhood of ¢, we have: (if U? are the
coordinates in this chart)

d S d
—\ fido EF(s,t)=-——-S foJodE‘ =
dt ag(t) t=tg dt Ze(r) t=ty
0% Js
=g —é—J—dZ+S £Jv-vdL
ZTe(to) at dZe(ty)

where:

d
L(0)=®(0(n), 1)), = FHl
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v is the normal vector to 8% (1); and

du’s
a1

VA =

with U’ (U%, t) that function mapping EE (t,) in EE (¢) (it exists because for

the volume k property i), iv) hold).
(This formula can be obtained repeating in R* the reasoning used for
showing formula (2)).

In a completely analogous way we obtain: (with obvious meaning of
symbols)

d

£ o]
o(t)

0/ 3,
p —f—d2+ flsv-vdL = F(2)

() 9t 9T (1)

Absolute continuity of Lebesgue integral and the uniform continuity of
the functions f, J, and v in Z (1,) assure that when ¢ — 0 the function
F (e, t) converges uniformly to F (7).

Formula (3) in thus proved even if property v) is skipped when S (7) is
covered by just one chart.

When S (¢) can be covered by a finite number of charts repeatedly ap-
plying the obtained result it is easily seen that formula (3) still holds.

3. A general integral balance equation for continuously moving Eulerian
volumes

Let us consider a family of Eulerian volumes k (¢) < C(¢) for which
derivation (1) and (3) hold. We postulate the following general integral bal-
ance law (GIBL): (we use the symbols defined in sec. 2)

d
-——-(g fdc+ fcdo>==& f(Ve—X%X)—@) - Npds +
dt \lJew o(n) 3k(r)
(6)
+ Rdc+ R, do + (V. — Vi) + @) - v+
k(1) a(t) da(l)
Y 1—(\’ : Nk) n - Nk ]
wfo —————t dl
" v N Du In - Ni|

where f and f; represent the volume and surface density of a same physical
quantity moving with the velocities X and v, in k (7) and on o (1), respectively.
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Moreover R and R, represent volume and surface production density of
the quantities f and f, while the vector fields ® and ®, represent the non-
convective fluxes of the same quantities in the material volume and surface
instantaneously coinciding with & (¢) and o (¢).

In (6) the terms containing:

x—V, and v, -V,

can be regarded as representing the unit fluxes through 0 k related to the
quantities f and f;, and due to the motion relative to k (¢) of the particles
constituting the continua, while the last term in the line integral takes into
account. the relative motion of the surface with respect to the boundary of
the volume k (¢).

In fact, if the surface moves with normal speed ¢,, a part of it, carrying
the property represented by f;, goes out (or enters) the volume k because
the angle between v and N, is different from zero and the normal speed
V.- n of 3k is different from c,.

The area of this part is proportional to the tangent of this same angle
and to the relative normal speed| D, | of the surface with respect to the vo-
lume k (¢) (when v - N, is different from zero), while the quantity D, n - N,
is positive when the surface carries out f,, otherwise negative. Ifv - N, = 0,

the previous formula has to fail, because the derivative at first member

could be not finite. However, to our end it is enough to know the balance
laws for volumes whose boundaries have normals different from n.

In the following subsections we particularize GIBL to three important
cases. More precisely we will take as family & (¢) the families:
A) ¢, () representing a «first order» material volume;
B) ¢ representing a fixed Eulerian volume;
C) C(r) representing the whole region occupied by (C, S).

It is obvious that because of our definitions all these three families sa-
tisfy conditions i) = iv).

3A. «Greatly» viscous interface and «first order» material volumes

When, as in phase-transition or in the case of two immiscibile fluids,
the particles on the interface, sharing the fluids or the phases, continuously
change, it is impossible both to find a material parametrization for the inter-
face itself and coherently to identify a material volume. However, it is pos-
sible to justify the reasoning, frequently made in literature, in which the
previous concepts appear.
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In fact, if the assumption:
(7 X =% =V,

is made, it is possible to define in a suitably small time interval, a kind of
« first order» material volume c,, (), as the image through the motion of the
volume whose lateral surface is generated by the normal directions to S
starting from the points of any closed regular curve on S. By virtue of its de-
finition, the intersection a,, (¢) of S with ¢,, (z) is made up, at first order with
respect to time (see how GIBL. reads in this case), by material points be-
longing to the aforesaid volume at the initial instant.

We finally remark that because of (7) the just defined family of
volumes ¢, (f) satisfies i) + iv). GIBL thus reads for the volumes ¢, (¢):

-
—_— fdc+g fcdo)=
dt em(®) Om(t)

(8)

® . Nds+

dem(r)

®, - vd!

Rdc+g R, do +

cm(t) om(1) do(n)

We remark that v. — V, - v = 0 in this case together with geometrical

flux terms, containing the normal surface speed c,, which are eliminated
because of our choice of the volumes (N is the outward pointing unitary
normal to ¢, (), so that v- N = 1).

We conclude giving a more intuitive justification of the reason which
led us to call ¢, (f) first order material volume. The intersection of
S(t+ dr) with ¢, (t+ dt) is not completely made by particles belonging at
the instant 7 to ¢, (¢) so that this volumes are not strictly a material volume.
On the other hand it is easily seen that the measure of the portion of
0, (1 + dt) made up of particles not belonging to ¢, (¢) is:

. 0 x.
X.r+c,ndt)—v . (r)) - vdidl = Cn -

‘ndt?dl
d0m(1) dam(1) 0x

where u is the generic point belonging to 0 g,, (¢);

which is a second order quantity not appearing in (6). The previous equality
is true because of (7).
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Now we need to calculate the derivatives appearing in the first member
of (6). It is easy to show that formulas (1) and (2) become:

d 0
—g fdce =S (—f—+divf)i>dc+ [fx—c¢) - n]do
dt Jew =ty Jenti \ 02 Om(to)
a & fd g (6"(fJ)+d'f )d
— do = P ivs f, v.| do
dt Jonw i=ts Jomiio) \O 1 t ’

The integrand in the second member of the last relation is equal to the
derivative of the function f, J, (with J, (r, t,, ¢) do (x,, &) = do (1, 1)) along
the integral curves of the field of components ¢, n and v,, when v, is differ-
ent from zero, and to Thomas’ derivative of the same function whenv, = 0.

This circumstance gives some content to the fictitious material system of
surface coordinates frequently introduced in literature (see for instance [4]).

Substituting these relations in the balance equation (6), and applying
once more Gauss’ theorem, we obtain local balance equation already found
in literature:

—-g—{—+div(fx—®)—R=O in & () u G ()
9

M—2Hc,,fl,+ divs (V. — @)+ [f (X —¢)+®] -n=0

ot on S(t)—19 S ()

the second of which, in the u®* system of coordinates on S, becomes:

% +fa (el =2H )= (f; c®)p + (v =0, + [f(x—¢)+®] - n=10

3 B. Case of discontinuous motions across the interface. GIBL applied to an
Eulerian fixed volume

As already remarked, the necessity of taking into account the possibil-
ity for the interface of adsorbing or emitting particles (for a more careful dis-
cussion of this point see [7]) obliges ut to renounce to the Lagrangian de-
scription of the motion of the system under consideration. In fact, we can
follow the material particle only until it reaches the interface, since, when it
merges into this interface, it completely loses its identity.
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We can conclude that we are forced to use the Eulerian formalism in
order to describe with the same mathematical model phenomena including
both the cases of a material interface and a nonmaterial one (but eventually
carrying physical properties). So, as we have at our disposal Eulerian quanti-
ties only, it seems quite natural to try to find a general balance law valid for
every Eulerian fixed volume. '

Moreover, this kind of equation allows us to treat the more general
case in which tangential velocity is discontinuous across the interface. The
interest paid to this last case could be also justified in view of the possibility
of describing by means of this model a system composed of two perfect
fluids, without being forced to introduce a boundary layer with a viscous be-
haviour contiguous to the interface. Hence, GIBL is assumed to be valid for
every fixed Eulerian volume ¢ contained in the interior part of the region
C, (1) v C,(¢) v S(t) occupied at the time 7 by the system C,, C,, S when
I € [t,— &, 1, + €]. It is obvious that this family of Eulerian volumes satisfies
all hypotheses assumed in sec. 2. In this case GIBL reads:

d
7 (gcfdc+go(’)jf, do)
(10)

+g {(ﬁ,vt+¢>o)~v—
do(r)

R,do+

o(lo)

=—-S (fx+) - Nds+g Rdc+
dc

(4

=14

1— (v - N)y? 7 n- N
CnJo
v-N fn - N|

}dl o(f)=cnS()

(where N is the outward pounting normal to 9 c).
Another application of formulas (1) and (2) to such a volume leads to:

0
g (——f+ divf:i—div<1>+R>dc+
c\gt

(11)

-+

3, : .
<6z (o i) + divs (v = @) + [f(X—¢) + @] - m)do =0
o(to)

Arbitrariness of ¢ and ¢, implies again eq. (9).

3 C. Balance equation for the whole continuous system as a particular case of
GIBL

Let us particularize GIBL to the case in which k (¢) actually is the
whole volume C (7). It is easily seen that in this case eq. (6) becomes that
postulated by SUHUBI [3], or KOSINSKI [2].



On a general balance law for continua with an interface 337

In fact because of assumption iii) about the motion of the considered
system we have that either the linear measure of d S (¢) or the line integral
term of eq. (6) in which (v, — V) and D, appear, vanish. In both the cases
we can conclude that formula (6) thus reads:

all
— |\ fde+\ £ do) -
dt \lcgy S()
(1D
= (f=®) - Nds+| Rdc+| R,do+| &, vdl
cw st as()

3C(t)

This integral equation is equivalent to local and jump condition (9)
where localization residuals have to be added.
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