
HAL Id: hal-00502389
https://hal.science/hal-00502389v1

Submitted on 14 Jul 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Component Deployment Evolution Driven by
Architecture Patterns and Resource Requirements

Didier Hoareau, Chouki Tibermacine

To cite this version:
Didier Hoareau, Chouki Tibermacine. Component Deployment Evolution Driven by Architecture
Patterns and Resource Requirements. Third European Workshop on Software Architecture, Sep 2006,
Nantes, France. pp.236-243, �10.1007/11966104_19�. �hal-00502389�

https://hal.science/hal-00502389v1
https://hal.archives-ouvertes.fr


Component Deployment Evolution Driven by

Architecture Patterns and Resource

Requirements

Didier Hoareau and Chouki Tibermacine

VALORIA Lab., University of South Brittany, France
{Didier.Hoareau,Chouki.Tibermacine}@univ-ubs.fr

Abstract. Software architectures are often designed with respect to
some architecture patterns, like the pipeline and peer-to-peer. These pat-
terns are the guarantee of some quality attributes, like maintainability
or performance. These patterns should be dynamically enforced in the
running system to benefit from their associated quality characteristics
at runtime. In dynamic hosting platforms where machines can enter the
network, offering new resources, or fail, making the components they
host unavailable, these patterns can be affected. In addition, in this kind
of infrastructures, some resource requirements can also be altered. In
this paper we present an approach which aims at dynamically assist
deployment process with information about architectural patterns and
resource constraints. This ensures that, faced with disconnections or ma-
chine failures, the runtime system complies permanently with the original
architectural pattern and the initial resource requirements.

1 Introduction

When we design software architectures, we often make use of architecture pat-
terns, like for example the pipe and filter, the client and server, peer-to-peer
pattern, etc. These vocabularies of recurrent solutions to recurrent problems1

are the guarantee of some quality attributes in the designed system. These qual-
ity attributes include maintainability, portability, reliability and performance.
Starting from these high-level design documents (architecture descriptions), we
can produce low-level implementation entities that will be deployed.

One of the characteristics of emerging distributed platforms is their dy-
namism. Indeed, such dynamic platforms are not only composed of powerful
and fixed workstations but also of mobile and resource-constrained devices (lap-
tops, PDAs, smart-phones, sensors, etc.). Due to the mobility and the volatility
of the hosts, connectivity cannot be ensured between all hosts, e.g. a PDA with
a wireless connection may become unaccessible because of its range limit. As
a consequence, in a dynamic network, partitions may occur, resulting in the
fragmentation of the network into islands. Machines within the same island can
communicate whereas, no communication is possible between two machines that

1 With analogy to design patterns but at a more coarse-grained level of abstraction.



are in two different islands. Moreover, as some devices are characterized by their
mobility, the topology of islands may evolve.

Dynamism in the kind of networks we target is not only due to the nature
of the devices but also to their heterogeneity making difficult to base a de-
ployment on resource’s availability. When deploying component-based software
in dynamic distributed infrastructures it is required that the deployed system
complies permanently with its corresponding architecture pattern(s). By taking
advantages of changes in the environment (e.g. availability of a required re-
source), the initial deployment can evolve but any reconfiguration must respect
architectural choices. This makes the running system benefit from the targeted
quality attributes, and more particularly those which are dynamically observed,
like performance or reliability.

In this paper, we present an approach to drive component deployment and
component deployment evolution in this kind of dynamic networks, based on in-
formation about architecture patterns and resource requirements. This approach
uses two kinds of constraints: the first one represents patterns and resource re-
quirements formalisation; the second one corresponds to the result of transform-
ing the former constraints into run-time ones. These run-time constraints are
checked dynamically and are used to drive component deployment and compo-
nent deployment evolution.

In the next section we present how we can formalize architecture patterns
and resource requirements using a constraint language, and we illustrate this
formalization by a short example of a client/server pattern. We present in sec-
tion 3, the deployment process and the resolution mechanisms of these con-
strained component-based software in dynamic infrastructures. Before conclud-
ing, we present some related work in section 4.

2 Formalization of Architectural Decisions with ACL

In order to make explicit architectural decisions, we proposed ACL, an Archi-
tecture Constraint Language [11]. Architectural decisions are thus formalised as
architecture predicates which have as a context an architectural element (com-
ponent, connector, etc.) that belongs to an architecture metamodel. ACL is a
language with two levels of expression. The first level encapsulates concepts used
for basic predicate-level expression, like quantifiers, collection operations, etc. It
is represented by a slightly modified version of UML’s OCL [9], called CCL (Core
Constraint Language). The second level embeds architectural abstractions that
can be constrained by the first level. It is represented by a set of MOF ar-
chitecture metamodels. Architectural constraints are first-order predicates that
navigate in a given metamodel and which have as a scope a specific element in
the architecture description. Each couple composed of CCL and a given meta-
model is called an ACL profile. We defined many profiles, like the ACL profile for
xAcme (which is an XML extension of Acme ADL [3].), for UML 2, for OMG’s
CORBA Components [8] (CCM) or the profile for ObjectWeb’s Fractal [1].



2.1 Architectecture pattern description

Suppose that we have developed, at architecture design-time, a component soft-
ware that represents a company printing system. We would like to automate the
installation and the reconfiguration of this system to all company employees.
This printing system is organised according to the client/server pattern. The
printing service is based on a ServerPrinter which receives print jobs from Client-

Printer. The client/server pattern is characterized by the following constraints:
i) there is no direct communication between ClientPrinters, ii) each ServerPrinter

can accept jobs from at most 10 different clients, and iii) a ClientPrinter can use
at most two ServerPrinters. These first two constraints can be described using
ACL profile for Fractal as following:

context ClientServer : CompositeComponent inv:

ClientServer .binding ->forAll(b|b.client.component .kind

<> b.server.component .kind )

and

ClientServer .subComponents ->select(c|c.kind =’Server ’)

.interface ->oclAsType (Server ). binding ->size () <= 10

These constraints navigate in the MOF metamodel of Fractal ADL which is
presented in Figure 1. This metamodel abstracts components, which can be com-
posite or primitive. Composite (or hierarchical) components are entities which
have an explicit description of their internal parts. Primitive (or atomic) com-
ponents are directly implemented by an object class. Components express their
functionalities and requirements through respectively, server and client inter-
faces. In addition, controller interfaces embed non-functional specifications, such
as predefined operations which manage the lifecycle or the contents of a given
component. A composite component specifies also a set of bindings which are
simple method invocation connectors. These bindings are attachments between
client and server interfaces. Bindings can represent either hierarchical or assem-
bly connectors (with analogy to UML’s delegation and assembly connectors).
Hierarchical connectors bind interfaces of composite components to interfaces
of their sub-components. Assembly connectors bind interfaces of components of
the same level of hierarchy.

2.2 Resource and location requirements description

In addition to these architecture design constraints, the deployment of each com-
ponent is governed by some resource and location requirements. Indeed, at design
time, we are unlikely to know the machines that are involved in the deployment
and thus where to deploy each component. However, one can define for each
component its requirements in term of resources, that is, the characteristics of
the machines that will host the component. For example, a ServerPrinter must
be hosted by a machine that has at least 512MB of free memory, a CPU scale
greater than 1GHz (1000MHz) and that is connected to a printer.



Component
+kind: ComponentKind

Interface
+name: String
+isCollection: Boolean
+isMandatory: Boolean
+isInternal: Boolean

Primitive CompositeClient Server

Binding

+interface +component
*1..*

1

1..*

+componentAttachment

+composite

Attribute

Controller
+kind: ControllerKinds

ClassImplementation
*

+contract

1

*
1

Realization

+realization*

0..1

1

<<enumeration>>

ControllerKinds
+Attribute
+Lifecycle
+Content
+Binding

+ownedAttribute

*

1

* *

1 1

+extendedDefinition

0..1

1

+subComponents

*

<<enumeration>>

ComponentKind
+Client
+Filter
+InterpretationEngine
+Layer
+Repository
+Server

Fig. 1. A MOF metamodel of Fractal ADL

Resource constraints can be defined using an ACL profile (i.e. a CCL and
a metamodel), called R-ACL (Resources-ACL). R-ACL integrates in its meta-
models concepts related to system resources and their properties2. Resource con-
straints introduced above and related to ServerPrinters components are described
in R-ACL as following:

context ServerPrinter :Component inv:

ServerPrinter .resource ->oclAsType (Memory ). free >= 512

and

ServerPrinter .resource ->oclAsType (CPU ). processors

->select(cpu:CPU_Model |cpu.speed > 1000)-> size () >= 1

and

ServerPrinter .resource ->oclAsType (Devices )

->select(printer:Printer )->size () >= 1

As discussed above, these constraints navigate in the resources metamodel,
but have as a scope a specific architectural element (ServerPrinter component).

Besides resource constraints, it is sometimes required to control the place-
ment of the components, especially when several machine can host the same
component. For example in the Client/Server system we designed, we would
require that for reliability reasons (redundancy at the server side), all Server-

Printers have to be located on distinct hosts. The following listing illustrates this
constraint expressed in R-ACL.

context ClientServer : CompositeComponent inv:

ClientServer .subComponent ->select(c1 ,c2:Component |c1.kind =’Server ’

and c2.kind =’Server ’ and c1.location .id <> c2.location .id)

2 The resources metamodel is not presented in this paper due to space limitations.



3 Constrained Components’ Deployment in Dynamic

Infrastructures

When the choice of the placement of every component has to be made, the initial
configuration of the target platform may not fulfil all resources’ requirements of
the application and some needed machines may not be connected. We are thus
interested in a deployment that allows the instantiation of the components as
soon as resources become available or new machines become connected. We qual-
ify this deployment as propagative. We propose a general framework to guarantee
the designed architecture and its instances for each deployment evolution.

We present first the requirements of a deployment driven by pattern and re-
source specifications. Then, we detail the deployment process and the resolution
of constraints in dynamic environments.

3.1 From architectural constraints to runtime constraints

At design time, we are unlikely to know what are the machines that are in-
volved in the deployment and thus what are their characteristics. Hence, a valid
configuration of the client/server pattern presented in section 2, can only be
computed at runtime. A valid configuration is a set of component instances, in-
terconnected and for which, a target host has been chosen. Every architectural
constraint (e.g. on bindings or number of instances) has to be verified and the
selected hosts must not contradict the resource and location constraints.

Our approach consists in manipulating all the architectural and resource
constraints at runtime in order to reflect the state of the deployed system with
respect to these constraints. The reified constraints are generated automatically
from the R-ACL constraints and correspond to a constraint satisfaction problem
(CSP). In a CSP, one only states the properties of the solution to be found
by defining variables with finite domains and a set of constraints restricting
the values that the variables can simultaneously take. The use of solvers such
as Cream3 can then be used to find one or several solutions. The CSP that
corresponds to our patterns consists of the following constraints:

C1 the number of instances allowed for each component
C2 the resource constraints (e.g. Mem.free ≥ 512)
C3 the location constraints (e.g. x 6= y)
C4 a binding constraint between every component that can be bound
C5 the number of outgoing bindings allowed on a client interface
C6 the number of incoming bindings allowed on a server interface

Each Ci corresponds to a set of constraints. As we will detail below, these
sets are sufficient to generate a valid configuration regarding to an architectural
pattern. The deployment process that is presented in the next section relies on
these constraints in order to build a mapping between the component instances
and the hosts of the target platform.

3 http://kurt.scitec.kobe-u.ac.jp/∼shuji/cream/



3.2 Deployment process

When dealing with dynamic networks where partitions may occur and hosts
availability has to be faced with, it is hardly feasible to rely on a specific machine
which would be responsible of the deployment. We made the most of the results
obtained in [5] in which we have used a consensus algorithm to elect a manager
that decides on the placement of a set of components. The consensus algorithm
ensures that no contradictory decisions can be made in two different islands, e.g.
the same component cannot be instantiated in two distinct islands.

The deployment descriptor contains the identity of the machines that are
involved in the deployment. This requirement is necessary in order to define the
notion of majority on which the consensus relies. However, when the deploy-
ment is triggered, some machines may not be connected. The first step of the
deployment consists in broadcasting the architecture and deployment descriptors
to at least one machine that belongs to the deployment target, which in turn
broadcasts the descriptors to all the machines that are connected in the network.
Each machine that receives these descriptors, creates the constraints described
in the listing above depending on the deployment and architecture descriptors.
Then a process is launched on each host. Locally, each machine maintains its
own set of constraints (C1 to C6) and tries to make the deployment evolve until
(a) solution(s) exist(s) for constraints C1, that is, some components can still be
instantiated. The main steps of this process for the machine mi and a component
C that can be deployed on mi are:

– For each resource constraint associated with C, a dedicated probe is launched
(e.g. a probe to get the amount of free memory required by component C)
in order to check if locally, all the required resources are available (C2). The
observation of the resources is made periodically.

– If this is the case, that is, the component can be hosted locally, mi sends its
candidatures to all the machines involved in the deployment. This candida-
ture indicates that mi can host component C.

– Thus, mi may receive several candidatures from others for the instantiation
of C. When a candidature is received, mi has to resolve a placement solution
regarding to constraints C3. Depending on location constraints, a placement
solution may require a sufficient number of candidatures

– Once a solution has been found by mi, it tries to make it adopt by the
consensus algorithm. If the consensus terminates, mi updates the deployment
descriptor with the new information of placement and broadcasts it to all
the nodes that are currently connected.

– When a new descriptor is received, mi updates the set C1 and C3 in order
to take into account the placement decision made previously.

– mi can then resolve some bindings towards newly instantiated (remote) com-
ponents (C4) by sending a request to the machines hosting them. This is
possible only if constraints C5 are still verified.

– When mi receives a request of bindings, according to C6, it can accept or
not this request and inform the sender of its answer.



– Depending on the answer, the definition domain that corresponds to the
binding constraint (C4) is updated (removed from the constraint set if the
binding is not possible or set to the remote host otherwise).

This process defines a propagative deployment driven by architectural and re-
sources concerns. Since the observation of resources is made periodically, when a
resource becomes available on a specific machine, this may yield the deployment
to evolve. Similarly, when a machine enters the network (e.g. it is switch on),
it announces its presence to the other nodes which will send it the current ver-
sion of the architecture and deployment descriptors, making possible this newly
connected machine to participate in the deployment evolution. In our current
prototype, each machine maintains the list of connected hosts.

4 Related Work

Many ADLs provide capabilities to describe architecture patterns. Medvidovic
and Taylor in [7] makes an overview of some existing ADLs offering such func-
tionalities. Descriptions of architecture patterns with these ADLs make possible
some reasoning about the modeled system, analysing its structure and evaluat-
ing its quality. At the best of our knowledge, only a few of these ADLs allow the
enforcement of architecture patterns on an implementation deployed at runtime
in a dynamic infrastructure. Some of the works targeting this goal are presented
below. In addition, resource and location requirements are not well handled in
all these languages in a homogeneous manner with architecture patterns like in
R-ACL. If we would like to change an implementation technology (from Fractal
to CORBA components, for example), R-ACL constraints can be easily trans-
formed, as demonstrated in [12]. The solution adopted in this work which aims
at transforming R-ACL constraints into runtime constraints makes also simpler
the transformation of these new R-ACL constraints (in CORBA components
ACL profile, for example).

We share similarities with researches on self-healing and self-organizing sys-
tems [6]. Indeed, the proposed approach here ressembles to the approach of [4,
10] in which the architecture of the system to deploy is not described in terms of
component instances and their interconnections but rather by a set of constraints
that define how components can be assembled. In both cases the running system
is modelled by a graph. The main difference with our work is that reconfigura-
tions of the systems are explicitly defined in a programmatic way while this is
achieved automatically by the resolution of the constraints Ci in our work.

The work presented in [2] shares the same motivation to define high level
deployment description with regard to constraints on the application assembly
and on the resources the hosts of the target platform should meet. The authors
present the Deladas language that allows the definition of a deployment goal in
terms of architectural and location constraints. A constraint solver is used to
generate a valid configuration of the placement of components and reconfigura-
tion of the placement is possible when a constraint becomes inconsistent. This
centralized approach does not consider resource requirements.



5 Conclusion & Ongoing Work

Deploying distributed systems in dynamic infrastructures remains a challeng-
ing task as resources and hosts availability cannot be predicted. In this paper
we presented an approach which helps at assisting the deployment process with
information about architecture patterns and resource requirements. This infor-
mation is formally specified at design-time as constraints, written with a specific
predicate language. These constraints allow the definition of complex component
interaction and platform dependencies. In order to react on changes in the en-
vironment, these constraints are transformed and manipulated dynamically. By
using these constraints, a propagative deployment is defined: components are
instantiated as soon as needed resources become available and required hosts
become connected while ensuring architecture consistency.

Our implementation is based on existing prototypes: ACE [11] for the de-
scription and the evaluation of ACL constraints, and a deployment manager
based on Cream to maintain and solve runtime constraints. An evaluation of the
behavior of our approach in a dynamic network is in progress.

References

1. E. Bruneton, C. T., M. Leclercq, V. Quéma, and S. Jean-Bernard. An open com-
ponent model and its support in java. In Proceedings of CBSE’04, may 2004.

2. A. Dearle, G. N. C. Kirby, and A. J. McCarthy. A framework for constraint-based
deployment and autonomic management of distributed applications. In Proceedings

of ICAC’04, pages 300–301, 2004.
3. D. Garlan, R. T. Monroe, and D. Wile. Acme: Architectural description of

component-based systems. In G. T. Leavens and M. Sitaraman, editors, Foun-

dations of Component-Based Systems, pages 47–68. Cambridge Univ. Press, 2000.
4. I. Georgiadis, J. Magee, and J. Kramer. Self-organising software architectures for

distributed systems. In Proceedings of WOSS’02, pages 33–38, 2002.
5. D. Hoareau and Y. Mahéo. Constraint-based deployment of distributed compo-

nents in a dynamic network. In Proceedings of ARCS 2006, LNCS, volume 3864,
pages 450–464, 2006.

6. J. Magee and J. Kramer. Self organising software architectures. In Proceedings of

FSE’96, pages 35–38, 1996.
7. N. Medvidovic and N. R. Taylor. A classification and comparison framework for

software architecture description languages. IEEE TSE, 26(1):70–93, 2000.
8. OMG. Corba components, v3.0, adpoted specification, document formal/2002-06-

65. OMG Web Site: http://www.omg.org/docs/formal/02-06-65.pdf, June 2002.
9. OMG. Uml 2.0 ocl final adopted specification, document ptc/03-10-14. OMG Web

Site: http://www.omg.org/docs/ptc/03-10-14.pdf, 2003.
10. B. R. Schmerl and D. Garlan. Exploiting architectural design knowledge to support

self-repairing systems. In In proceedings of SEKE’02, pages 241–248, 2002.
11. C. Tibermacine, R. Fleurquin, and S. Sadou. Preserving architectural choices

throughout the component-based software development process. In Proceedings of

WICSA’05, pages 121–130, November 2005.
12. C. Tibermacine, R. Fleurquin, and S. Sadou. Simplifying transformations of archi-

tectural constraints. In Proceedings of SAC’06, Track on Model Transformation,
April 2006.


