N
N

N

HAL

open science

Restructuring Object-Oriented Applications into
Component-Oriented Applications by Using Consistency
with Execution Traces

Simon Allier, Houari Sahraoui, Salah Sadou, Stéphane Vaucher

» To cite this version:

Simon Allier, Houari Sahraoui, Salah Sadou, Stéphane Vaucher.
Applications into Component-Oriented Applications by Using Consistency with Execution Traces.

Component-Based Software Engineering, Jun 2010, Prague, Czech Republic. pp.216-231.

00502294

HAL Id: hal-00502294
https://hal.science/hal-00502294
Submitted on 26 Aug 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Restructuring Object-Oriented

https://hal.science/hal-00502294
https://hal.archives-ouvertes.fr

Restructuring Object-Oriented Applications into
Component-Oriented Applications by using
Consistency with Execution Traces

Simon Allier!>2, Houari A. Sahraoui!, Salah Sadou?, and Stéphane Vaucher!

! DIRO, Université de Montréal, Canada
2 VALORIA, South-Brittany University, Vannes, France

{alliersi ,sahraouh, vauchers}@iro .umontreal.ca,sadou@univ-ubs.fr

Abstract. Software systems should evolve in order to respond to chang-
ing client requirements and their evolving environments. But unfortu-
nately, the evolution of legacy applications generates an exorbitant cost.
In this paper, we propose an approach to restructure legacy object-
oriented applications into component-based applications. Our approach
is based on dynamic dependencies between classes to identify potential
components. In this way, the composition is dictated by the context of
the application to improve its evolvability. We validate our approach
through the study of three legacy Java applications.

1 Introduction

An intrinsic characteristic of software, addressing a real world activity, is the
need to evolve in order to satisfy new requirements. Resulting from empirical
studies, Lehman’s first law states that software should evolve else it becomes,
progressively, less satisfactory [10]. Although old, this law has never been contra-
dicted. The required reactivity (increasingly growing) of software applications,
supports for business processes which are evolving more and more quickly, has
even increased the scope of this law as the years go by. Maintenance is now,
more than ever, an inescapable activity, the cost of which is ever increasing.
Estimated at approximately 50 % to 60 % of the software total cost in the eight-
ies and nineties [11, 14]; recent studies now evaluate this cost at being between
80 % and 90 % [4,18]. This high cost has undoubtedly been an effective cata-
lyst for the emergence of new programming paradigms. Modular languages, then
object-oriented languages, and more recently component-oriented programming,
have always had as first justification, the significant increase in maintainability
level. These new approaches can be used to build new applications. But what
about legacy applications? In this case one can use the techniques of reverse
engineering to transform the structure of the application, without changing its
functionality, so that it conforms to the new paradigm.

In the past we presented a work that allows a company to organize its source
code into reusable components [7]. In this work, identifying parts to put to-
gether in order to make a component was left in charge of engineers. What we

propose is to automatically identify, in the case of object-oriented applications,
classes to be grouped to form a component. Some approaches for identifying
components [20] or high-level architectures [16,13] already exist. These works
generally use the dependencies, between program elements, extracted by static
analysis to identify highly cohesive and weakly coupled object-like structures.
For components, the idea is to group together classes that contribute to the
same functions. Generally, the restructuration of an application aims at improv-
ing its maintainability, including its evolvability. And often evolutions have a
functional scope. But the classes used for building an application have in most
cases a bigger scope than what is needed by the latter. So, unlike the approach
based on static dependencies, we promote the dynamic dependencies for the aim
of maintainability improvement. Thus, we clam that the most reliable way to
determine which class contributes to which function is to execute the program
with individual functions. Traces corresponding to execution scenarios could be
analyzed to extract functional dependencies.

The rest of the paper is organized as follows: Section 2 describes the steps that
constitute our approach. Scenarios execution and trace extraction are explained
in Section 3. Section 4 gives details of our approach for identifying groups of
classes that represent potential components. We provide three case studies in
Section 5. Before concluding in Section 7, we describe some related works is in
Section 6.

2 Approach Overview

We view a component as a group of classes collaborating to provide a system
function. The interfaces provided and required by a component are the method
calls respectively from and to classes belonging to other components.

So, we propose an approach for identifying components using traces obtained
by executing scenarios corresponding to system use cases. The identification of
candidate components consists of clustering the classes of the target system in
such a way that classes in a group appear frequently together in the execution
traces. In the same time, we also try to minimize the coupling between compo-
nents.

Thus, the identification becomes an optimization problem where the goal
is to identify groups of classes whose interactions are the most consistent with
the execution traces. As this is a NP-hard graph partitioning problem, we use
heuristic search to find a near-optimal solution.

Therefore, our approach is structured in three steps (see Figure 1):

1. Starting from a set of use case scenarios generate the execution traces. This
step allows identifying dependencies between classes;

2. Produce a preliminary set of candidates using a global search. At this stage
we use a genetic algorithm to produce this initial solution;

3. Refine the component candidates using a local search. We use a simulated
annealing algorithm in order to achieve the local search.

Use-Case II
Scenarios

o

e —

Step1 (/ Execution Trace \

N >
~ Senenton

Execution Traces

. g
Component N
Step2 Preliminary C { :
ry Component Identification ’
. /

Sl

Candidates

Step 3) Component \/ Component
R (R Candidates

\efinemim//

Fig. 1. A three-step process for component identification

At the end of the identification process, groups that have a consistency with
the traces below a predefined threshold are candidates to be packaged as com-
ponents.

The execution traces are considered as the reference that guides the search for
an identification solution. In the first step of the search, a population of potential
groupings is created. Following an evolutionary algorithm, new groupings are
derived that better match the interactions contained in the execution traces.
This step serves primarily to find the region of the search space that has the
highest potential to contain the best solution. Another step, in the form of a
local search, allows to explore this region to find the near-optimal solution.

This approach does not aim to identify reusable components. Indeed, compo-
nent identification, in our case, is guided by the functional logic of the considered
application. Restructuring the application using the identified components has
the sole purpose of improving its maintainability. Thus, the goal of our identifica-
tion process is not to fully re-architect a system into components. Our objective
is rather to find groups of classes that could be packaged for reuse purpose.

It is true that in the case of a company, who work in a particular application
domain, identified components can be considered reusable. But in this case, the
execution traces must be obtained from several of its applications.

The extraction of the execution traces is described in Section 3. The two
steps of the component identification are detailed in Section 4.

3 Execution Trace Generation

For the purpose of component identification, we are interested in finding dynamic
relationships between classes. Hence, an execution trace (or call tree) is for us a
directed tree T(V, E) where V is a set of nodes and F, a set of edges between

nodes. Each node V; represents a class of the system (Cl;). An edge (V;,V;)
indicates that an object of class Cl; calls a method of an object of type Cl;. The
root of T'(V, E) corresponds to the entry point of the system or a thread run by
the system.

Fig. 2. Example of Execution Trace. (Left) Method-Call Tree. (Right) Corresponding
Dynamic Relationships between Classes

The execution traces are obtained by capturing the calls between instance of
classes during an execution of a use case scenario. Every thread, created during
the execution, produces an execution trace. In this initial version of the traces,
nodes are labeled by both the actual types of the objects that are called and
the methods called as showed in Figure 2(left). For example, when execution
method m1, object B, instance of class B, called method m2 with as receiver
object A, instance of class A. A, in turn, called m3, with as received D of class
D.

In a second phase, nodes of the execution traces are relabeled by the classes
corresponding to the called objects. The relabeling process is straightforward.
Indeed as the call tree is generated dynamically, the concrete type of each ob-
ject is recorded. This second phase produces traces where nodes are classes,
and edges, dynamic relationships between classes. In the example illustrated in
Figure 2 (right), the sequence <B.m1, A.m2, D.m3,> is replaced by <B, A, D>.

The identification of components from execution trace is relevant only if
the execution traces cover all the functions of the system. Therefore, to extract
the traces, we systematically apply all the recorded execution scenarios in the
documentation.

4 Component Identification

As mentioned previously, the identification of components is modeled as a
clustering problem. Indeed, the goal is to find the best partitioning P;(V) =
{C1,...,Cn} where V is the set of classes in the system and a C; is a a com-

ponent candidate containing a subset of V. P;(V') needs to satisfy the following
completeness and consistency properties:

= Uo<j<n Cj =V (completeness)
— Vj,k|j # k,C; N Cy, = {0} (consistency)

Exploring every possible clustering configuration cannot be done efficiently
as we would need to consider every possible combination (NP-hard). We there-
fore propose using meta-heuristic search algorithms to find a near-optimal solu-
tions. These algorithms are generic and are applied to a specific domain (in our
case, graph partitioning) by defining the possible movements in the search space
(transformations) and a fitness function that will be maximized.

In our approach, the search for a component-based architecture is imple-
mented using a hybrid search [8] which combines two different meta-heuristics:
genetic algorithm (GA) and simulated annealing (SA). GA is a global search
heuristic that applies changes to multiple solutions (called populations) and re-
turns a solution that is globally near-optimal. This solution is then used as the
initial solution of the SA algorithm, a local search algorithm. SA is called a local
search algorithm because it explores the neighbourhood of a solution. Its output
is our final solution. Both algorithms use the same solution representation and
fitness function.

4.1 Solution and Space Representation

A solution for both algorithms can be any set of candidate components
which respects the criteria of completeness and consistency. These candi-
dates are represented by the set of classes they contain. In the exam-
ple presented in Figure 2, the execution trace corresponds to a system
with a set of classes A,B,C,D,E,F,H,I,J. One possible solution maybe:
{{4,C,D},{E, J},{H,I, B, F}}. But there are many alternatives. In the fol-
lowing subsections we’ll see how to choose the best alternatives.

4.2 Fitness Function

The fitness function used (Equation 1) evaluates the quality of a partition consid-
ering both the internal cohesion of components and the level of inter-component
coupling of every component C' (C' can also be seen as a set consisting of classes
that it gathers). The function takes as input A (for architecture), the set of
component candidates proposed by the solution, and calculates the weighed av-
erage of the fitness of individual components (C! being the set of classes in the
system). The fitness of individual components depends mostly on their cohesion
(Equation 2) unless the coupling level is too high in which case the fitness score
is heavily penalized. The threshold em used corresponds to the average coupling
of all the classes in the system.

1

eval Arch(A) = il

Z(evalC’omp(C) x |C|) (1)
CeA

evalCoh(C)/2 if evalCoupling(C) < cm

Ic C)=
cvalComp(C) {evalCoh(C’)/2+0.5 otherwise.

Cohesion A good component should include classes that interact with one an-
other to provide a specific set of functionalities; the strength of these interactions
are what we call cohesion. The internal cohesion measure (Equation 3) evalu-
ates how close are the different classes in the execution traces. It calculates the
average distance between pairs of classes belonging to this component in all the
traces. The distance between two classes a and b (Equation 4) is the average
distance between instances of obj(a) of a and obj(b) of b.

To reduce the complexity of exploring the traces when calculating distances
(number of edges), we use a constant d which indicates the maximum interesting
distance between two classes. In other words, if we consider that the distance in
the call graph, between two classes, that is acceptable to consider is for example
d = 5, then we normalize the actual distance n using d (dividing it by 5). For
distances less than 5, it will weigh less than 1 (acceptable) and for 5 and more is
given a weight of 1 (worst penalty). The distance distMin(C, x,b) is the minimal
distance between a node corresponding to an instance = of the class a and any
instance of the class b in the execution trace where x appears. If no path with a
length less than d is found, the distance is considered as d. all the node of the
path are an instance of a class of C' and such as the leng of the path is lower to
d, otherwise distMin(C,z,c) return d.

1 . .
m Z Z d’LSt(.’L’,y,C) 'Lf ‘C| >1

zeC yeCy#x (3)
| if 0]=1

evalCoh(C,d) =

1
dist(a,b,C) = ——— distMin(C,z,b 4
@00 = iz 2 (C.) (1)
j(a)
The number of classes into the same component increases with d. The choice
of the best value of d can be done with small examples of applications from the

domain and some experience in the domain.

Coupling One of the strengths of component-based development is that its
components are loosely coupled and can be mixed and matched to build sys-
tems. The function evalCoupling(C) (Equation 5 evaluates the level of coupling
between components by counting the number of classes that are connected to a
component (either calling or called). Classes that are part of the component are
ignored.

evalCoupling(C) = | U connected(x)| (5)
zeC

For the example presented in Figure 3, the solution S =
{{A,B,C},{D,F},{E,H,1,J}} would produce the following metrics with
d=3:
cm = 2.66
evalCoh({A, B,C}) = 0.47
evalCoh({D, F}) = 0.33
evalCoh({E,H,I,J}) =0.7
evalCoupling({A, B,C}) =2
evalCoupling({D, F}) = 2
evalCoupling({E, H,I,J}) =4
eval Arch(S) = ((0.47/2)%3+(0.33/2)%2+((0.7/240.5)+4)) _) 4q

9
In the following, we’ll see how to determine the possible compositions.

4.3 Global Search

A genetic algorithm is a global meta-heuristics that emulates the concept of
evolution. In order to find a solution from a population, it starts with a pop-
ulation (Py) containing a set of solutions (called chromosomes) and simulates
the passing of generations on this population. This initial population is a ran-
domly generated. For every iteration of the algorithm, a new population (Pj11)
is produced by selecting pairs of chromosomes ((¢1, ¢2)) from P; and applying a
crossover and/or a mutation transformation to these pairs with a certain proba-
bility. For this work, we systematically add the best chromosome of a generation
to the next generation. The precise algorithm (Algorithm 1) uses three inputs:
MaxlIter, MaxNiter and MaxzSize. MaxIter is the maximum number of gen-
eration for the evolution. MaxNiter defines maximum number of generations
where no improvement is accepted. Finally, MaxSize defines the maximum size
for a population.

Selection. The probability of selecting a chromosome ¢ from the current pop-
ulation P depends on its quality with regards to the other chromosomes. This
probability is given by the function:

eval Arch(c)

P P) =
s, P) > acp evalArch(a)

This way of selecting components, called elitism, allows to give more chance
to the fittest components to be selected.

Crossover. The “classic” crossover transformation consists of spliting two chro-
mosomes ¢; and c¢o into two parts and merge the first part of ¢; (respectively
the second part of ¢;) with the second part of ¢y (respectively the first part of
¢2). However, this crossover might generate a solution that does not respect the
constraints of completeness and consistency. Indeed, some classes could exist in
more than one component in the new generated chromosomes or do not exist at
all. To preserve the two above-mentioned properties, we propose the following
variation:

Algorithm: genetic(MaxIter, MaxNiter, MaxSize)
let iter := 0; niter := 0
create a initial population Py
let Best := mincepeval Arch(c)
while (iter < MaxIter) and (niter < MaxNiter) do
eval Piter
let Pitert1 := {0}
while Pjter+1 < MaxSize do
Select c1,c2 € Piter
Crossover c1, ¢ with probability p. to cf, ch
Mutate ¢}, c5 with probability p., to ¢, cs
Piters1 := Piger41 U {c}, b
end
let BestLocal = mincep,,,, eval Arch(c)
Pitert1 := Piter41 U {BestLocal}
if evalArch(BestLocal) < eval Arch(Best) then
Best := BestLocal
niter :=0
end
iter + +; niter + +
end
return Best

Algorithm 1: Genetic algorithm

— Divide the chromosome ¢y (respectively c2) into two parts c¢i; and ci2 (re-
spectively co1 and ca9), each containing a subset of components.

— Create a chromosome ¢| by insert ¢;; between co; and coo (respectively ¢
by inserting co; between ¢11 and ¢q2)).

— Delete in c21 and co9 all the classes appearing in ¢17 (respectively in ¢1; and
c12 all the classes appearing in ca9).

For example, the chromosomes:
a={{A,CI},{E,J},{D,H, B, F}}
C2 = {{A,H},{B,C,D,E},{FL{LJ}}
partitioned into:
{{A,C,1}} and {{E, J},{D, H, B, F}} for ¢y,
{{A,H}, {B,C,D,E} and {F'},{I, J}} for cs.
produces the two chromosomes:
&y ={{H#},{B, D, E},{A,C,I}, {F},{J}}, and
C,2 = {{I}> {A,H}’ {BaCaDaE}{J}’ {F}}

Mutation. There are three type of mutation applicable to a chromosome:

— Split of a component in two components;
— Merge of two components;
— Move of a class from a component to another.

The type of the mutation is selected randomly as they are components involved
in the mutation.

All three mutations produce solutions that preserve the properties of com-
pleteness and consistency. For example, ¢ = {{A,C,D},{E,J},{B,F,H,I}}
could be mutated in:

Cmerge = {{A,C, D}, {B,E,F,H,I,J}} or into
Cmove = {{A7C}a {D7E7 J}v{B7F7H7]}}'

4.4 Local Search

GA can explore different solutions in a large search space to produces a solution
that is globally near-optimal. This solution is then used by SA as a starting point
for a fine grained exploration of its neighbourhood with the objective of refining
it. The algorithm is presented Algorithm in 2. SA manipulate only one solution
(s) at a time. At each iteration of the algorithm, this solution is compared to
a neighbour (speign) generated by a function Neigh(xz). When syeiqn is better
than s as measured by the fitness function (eval Arch), it replaces it. Otherwise,
it can be accepted with a small probability which decreases as the algorithm
progresses. This element of randomness is included to avoid falling into a local
optimum.

Neighbour Function The neighbourhood function (Neigh(s)) uses the mutation
of the genetic algorithm to produce a neighbour.

Algorithm: Simulated Annealing(s, T'p, delta, t Min, iter, cof)

let Best :=s
while T'p > tMin do
for ¢ = 0;7 < iter;i + + do
let Sneigh := Neigh(s)
let delta := eval Arch(s) — eval Arch(sneigh)

if (delta < 0) or (random < e$) then
S§ 1= Sneigh
end
if eval Arch(speign) < eval Arch(Best) then
Best := sneigh
end
Tp:=cof xTp
end
end
return Best
Algorithm 2: Simulated Annealing algorithm

5 Case Study

In this section, we present and discuss the results obtained on three systems of
different size (respectively 40, 73 and 221 classes).

5.1 System Descriptions

Our approach was evaluate on three systems. The first is an interpreter of the
language Logo 3. It has a graphical interface which allows writing the code and
a window which shows the result graphically. This programs contains 40 classes.
Jeval 4 is the second program. It is an expression interpreter. It contains 73
classes. Finally the last system is Lucene °, a high-performance, full-featured
text search engine. Lucene contains 221 classes.

number of executions|trace
Logo 8 19
Jeval 9 9
Lucene 19 59

Table 1. Capture of the executions traces

5.2 Extraction of Traces

The extraction of execution traces was implemented using MuTT [12]. MuTT
is a Multi-Threaded Tracer built on the top of the Java Platform Debbuger
Architecture. For a given program execution, MuTT generates an execution
trace for each thread.

For the three system, the extraction of the execution traces were generated
as follows:

— Logo: The execution traces were obtained by executing different scenarios
of use case. The definition of use cases and execution scenarios was easy,
because, one of the authors of this paper was in the development team of
the Logo interpreter.

— Jeval, Lucene: The execution traces of Jeval and Lucene were derived by
executing different scenarios of use cases. Scenarios was obtained by the test
cases defined for these systems. We ensured that the test cases cover well
the use-case scenarios.

Table 1 gives for every system the number of execution scenarios and the
number of generated execution traces. There are more traces than scenarios
because a trace is generated for each thread.

3 http://naitan.free.fr/logo/
* http://jeval.sourceforge.net
® http://lucene.apache.org/

5.3 Result

The identification results for the three systems are presented in Table 2. For
each system, it shows the number of identified components and the numbers of
those who are related to the application and those who are not. A component is
related if it contains the classes that provide a system function. It is considered
as not related otherwise.

number of component |related|not related
Logo 5 3 2
Jeval 5 5 0
Lucene 25 16 9

Table 2. Results of component identification

Logo Interpreter This system produces 5 components. Component Library im-
plements the basic functionality of the language Logo (Math, String, ...). Display
is composed of the classes responsible for the display of the instructions of the
language Logo. Both components implement only one function. The third com-
ponent Ewvaluator GUI provided two interrelated functions: the evaluation and
the GUI for the result of the evaluation. The two other components do not
contain functionally related classes. They both contain classes related to error
management and other classes that plays the role of glue code between the three
other components.

Jeval This system is partitioned into 5 components. Of these 5 components two
represent respectively the library of the mathematical functions (sin, log, ...) and
the library of the string functions. All the contained classes are related to the
functions. The three other components contain classes necessary for respectively
the parsing, the interpretation, and the mathematical operators evaluation. De-
pending on the viewpoint, these components could be merged.

Lucene From the 25 components, 16 are good and 9 bad. Four of the good
components contain clear single functions. For example, QueryParser contain
only classes responsible for the parsing of the search queries. The others 12 good
components provide only one function, but with few classes missing. Here again,
some could be merged if the goal is to obtained coarse-grained components.
For example, the indexation function is split into subfunctions (5 components).
Finally 9 identified components have no clear function.

As mentioned in section 2, the goal of our identification process is to find
group of classes that could be packaged for reuse purpose. It is then normal
that some of identified components are not considered as good. When putting a
threshold on EvalComp, almost all the bad components will not be considered.

5.4 Components as a Behavioral Understanding Aid

Identified candidate components could be used to understand the behavior of a
system. In the case of Logo Interpreter, when classes are grouped by their corre-
sponding components in the execution traces, one can understand the behavior
of the system. Indeed, the obtained nodes in the traces represent the system
functions and, the links represent the function interrelations. Each execution
scenario is then associated with a component interaction scenario.

Initialisation

Evaluation

Como D Can D

Fig. 3. Execution trace

To illustrate the behavior understanding process, let us take the example of
the following use case scenario:

Actor: Logo programmer

Scenario:

Al: Run the Logo interpreter

A2: Write the following code in the editor window

point 1 1

write " Hello”

A3: Run the evaluation of the code from the editor window
A4: Close the Logo interpreter

The execution trace corresponding to this scenario is shown in Figure 3. In
this trace the component Fwvaluator GUI was manually divided into two com-
ponents Fvaluator and GUI This trace contains two different phases : initial-

ization and evaluation. In the first phase, when the Logo interpreter is run the
GUI triggers the initialization of components Evaluator Library and Display
(drawing standard output). In the second phase, the typed code is parsed and
evaluated (Evaluator). During the evaluation, Evaluator calls twice Library: the
first time for the function point and second time for the function write. The
function point call the component Display to display the point at the coordinate
(1,1), and the function call the component GUI to print in the standard output
the text “Hello”.

5.5 Discussion

The results of this case study are satisfactory. Indeed even if components identi-
fied are not all in the "related” category, the majority provide a unique feature
and by spliting or merging the others, it is easy to obtain ”related” component.
Furthermore, this case study revealed a possible limitation of our approach. In-
deed, our approach is designed to treat all the classes of the system as potential
parts of components. It does not consider explicitly the case of glue-code classes.
Detecting such classes and excluding them from the partitioning will certainly
improve the identification results.

6 Related Work

The work proposed in this paper crosscuts three research areas: architecture
recovery /remodularization, legacy software re-engineering, and feature location.

Different approaches have been proposed to recover architectures from an
object-oriented program. The Bunch algorithm [16] extracts the high-level ar-
chitecture by clustering modules (files in C or class in C++ or Java) into sub-
systems based on module dependencies. The clustering is done using heuristic-
search algorithms. In [15], Medvidovic and Jakobac proposed the Focus approach
whose goal is to extract logical architectures by observing the evolution of the
considered systems. The approach identifies what the authors call processing and
data components from reverse engineered class diagrams. Closer to our work, the
ROMANTIC approach [2] extracts component-based architectures using a vari-
ant of the simulated annealing algorithm. In addition to dependencies between
classes, other information sources are considered to help identifying functional
components rather than logical sub-systems. Such sources include documenta-
tion and quality requirements. In [20], Washizaki and Fukazawa concentrate on
the extraction of components by refactoring Java programs. This extraction is
based on the class relation graphs. In the above-mentioned work, the component
extraction process uses dependencies between classes/modules that are extracted
using static analysis. Dependencies are not related to particular functions of the
considered system which makes it difficult to relate identified components to spe-
cific functions. Thus, the components identified have a general scope and are not
dedicated to the application. Whereas in the case of our approach, identification
is guided by the context of the application, which will facilitate its maintenance.

Our approach use heuristic-search methods [8], genetic algorithm and simu-
lated annealing. Search-based methods is widely applied to solve problems sim-
ilar to ours. For example, Seng [19] improves the design of an 00 code with a
fitness function that quantify the improvements in design metrics. To this end, a
genetic algorithm is used. In [9], Kessentini uses meta-heuristiques to transform
models by examples. More close to our work, [2] use a variant of the simulated
annealing for extract component-based architectures.

Feature location is probably the problem that is closest to the one addressed
in this paper. Many research contributions proposed solutions that are based on
dynamic analysis [6] or combinations of static and dynamic analyses [3,12,17].
In general, static analysis uses call graphs and/or keyword querying. From the
other hand, dynamic analysis consists in executing scenarios associated with fea-
tures, collecting the correspondent computational units (PU), generally methods
or classes, and deciding which PU belongs to which feature. The decision can be
made by metrics [6], FCA [3], or a probabilistic scoring [17]. Finally, sometimes,
static analysis is used to enrich the dynamic analysis. Both analyses can also be
performed independently and their results combined using a voting/weighting
function. The combination of static and dynamic analyses is also used in a semi-
automatic process where visualizations are proposed to experts to make their
decisions [1]. Like in our case, the feature location approaches use dynamic anal-
ysis and try to associate program units to scenarios. The difference, however, is
that the problem of locating features and identifying components are different
in objectives and nature. In the first case, the goal is to determine code blocks,
methods, or classes that are involved in a particular feature represented by a set
of scenarios. For component identification, a scenario may involve many features
(data acquisition, processing, data store, and results displaying). The association
between feature and scenario is not a one-to-one relation. Moreover, the execu-
tion of a feature may necessitate the execution of many other features, which
makes it difficult to draw the boundaries. For this reason, we view the component
execution as sequences of interactions between classes in an integrated dynamic
call graph.

7 Conclusion

Our main objective in restructuring an object-oriented application into a
component-oriented application is the improvement of its evolvability. Thus,
unlike other existing approaches where dependencies between classes are de-
rived by static analysis, we used, for our component identification approach,
method call trees obtained by executing use case scenarios on the application.
This guarantees that only functional dependencies are considered in the compo-
nent identification. Indeed, application’s evolutions have most often a functional
scope. Moreover, the execution traces, obtained thanks to the use cases, limit
the analysis of dependency only to the space covered by the application. While
the classes, which are often generic, cover a wider space.

In the past we presented a work that allows a company to organize its source
code into reusable components [7]. This consisted in a reorganization of the
development life-cycle and in the use of the UML2 component model in order
to wrap a code corresponding to a component. Although in the case of our
experimentation with our industrial partner, the engineers know very well the
existing code, identification remains a tedious job. Moreover, in several cases of
incorrect component identification, the cause was a reflex related to their long
experience with the object-oriented approach.

The work presented here is complementary to that presented above. It is an
aid in identifying components by grouping classes. As our approach relies on
execution traces of an application, the proposed grouping is necessarily adapted
to this application. What goes in the direction of improving the maintainability
of the application. In the case of our industrial partner, applications are built to
the same scope (Geographical information systems) using their library of classes.
To build their library of components, we should grouping classes by using traces
from all their applications. After that, we plan to use another work, that we
have already made, in order to automatically select components [5].

Our approach comes just before building the components. It only proposes
the classes that must go together. Thus, its use is possible with any model of
components.

References

1. J. Bohnet and J. Doéllner. Visual exploration of function call graphs for feature
location in complex software systems. In SOFTVIS, pages 95-104, 2006.

2. S. Chardigny, A. Seriai, D. Tamzalit, and M. Oussalah. Quality-driven extraction
of a component-based aachitecture from an object-oriented system. In CSMR,
pages 269-273, 2008.

3. T. Eisenbarth, R. Koschke, and D. Simon. Locating features in source code. IEFEE
Trans. Software Eng., 29(3):210-224, 2003.

4. L. Erlikh. Leveraging legacy system dollars for e-business. IEEE IT Professional,
2(3), 2000.

5. B. George, R. Fleurquin, and S. Sadou. A methodological approach for selecting
components in development and evolution process. Electronic Notes on Theoretical
Computer Science (ENTCS), 6 (2):111-140, January 2007.

6. O. Greevy and S. Ducasse. Correlating features and code using a compact two-
sided trace analysis approach. In CSMR, pages 314-323. IEEE Computer Society,
2005.

7. R. Kadri, F. Merciol, and S. Sadou. CBSE in Small and Medium-Sized Enterprise:
Experience Report. In CBSE, June 2006.

8. V. Kelner, F. Capitanescu, O. Léonard, and L. Wehenkel. A hybrid optimization
technique coupling an evolutionary and a local search algorithm. J. Comput. Appl.
Math., 215(2):448-456, 2008.

9. M. Kessentini, H. Sahraoui, and M. Boukadoum. Model transformation as an opti-
mization problem. In MODFELS, pages 159-173, Berlin, Heidelberg, 2008. Springer-
Verlag.

10. M. Lehman and L. Belady. Program evolution: Process of software change. London:
Academic Press., 1985.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

B. P. Lientz and E. B. Swanson. Problems in application software maintenance.
Communiactions of the ACM, 24(11), 1981.

D. Liu, A. Marcus, D. Poshyvanyk, and V. Rajlich. Feature location via information
retrieval based filtering of a single scenario execution trace. In R. E. K. Stirewalt,
A. Egyed, and B. Fischer, editors, ASE, pages 234-243, 2007.

O. Magbool and H. Babri. Hierarchical clustering for software architecture recov-
ery. IEEE Trans. Softw. Eng., 33(11):759-780, 2007.

J. McKee. Maintenance as function of design. In AFIPS National Computer
Conference, pages 187-193, 1984.

N. Medvidovic and V. Jakobac. Using software evolution to focus architectural
recovery. Automated Software Engg., 13(2):225-256, 2006.

B. S. Mitchell and S. Mancoridis. On the evaluation of the bunch search-based
software modularization algorithm. Soft Comput., 12(1):77-93, 2008.

D. Poshyvanyk, Y.-G. Guéhéneuc, A. Marcus, G. Antoniol, and V. Rajlich. Feature
location using probabilistic ranking of methods based on execution scenarios and
information retrieval. IEEE Trans. Software Eng., 33(6):420-432, 2007.

R. C. Seacord, D. Plakosh, and G. A. Lewis. Modernizing legacy systems: Software
technologies, engineering processes, and business practices. SEI Series in Software
Engineering, 2003.

O. Seng, J. Stammel, and D. Burkhart. Search-based determination of refactorings
for improving the class structure of object-oriented systems. In GECCO, pages
1909-1916, New York, NY, USA, 2006. ACM.

H. Washizaki and Y. Fukazawa. A technique for automatic component extraction
from object-oriented programs by refactoring. Sci. Comput. Program., 56(1-2):99—
116, 2005.

