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A moving boundary problem describing the growth
of a droplet in its vapour

V. A. CIMMELLI (POTENZA) and F. DELL’ISOLA (ROMA)

IN [1—-5] AND [12] THE THEORY of shells is generalized: nonmaterial bidimensional continua
are introduced in order to model capillarity phenomena. In this paper we solve some
mathematical problems arising when the quoted models are used to describe the growth in
its vapour of a sufficiently small drop in the neighbourhood of an equilibrium state. We
start to consider the source terms appearing in the integro-differential parabolic evolution
equation (IDE) deduced in [5] for the temperature field in the vapour phase. We prove that,
due to coupling between the capillarity and thermomechanical phenomena occurring close to
the interface, these terms have both space and time Hélder coefficients equal to that one
refalive to the second time-derivative of the radius of the droplet. To our knowledge only
GEVREY [14] partially treated this case for PDE of parabolic type. We improve his results in
order to prove the well-posedness of the moving boundary problem formulated in {5] for
IDE.

1. Introduction: physical motivation and discussion of proof strategy

1.1. Physical motivation

THE IMPORTANT role played in technology and applied science by capillarity
phenomena (see for instance the classical books [13]—[14]) has drawn a growing
interest in the theoretical study of models suitable for their description. Indeed,
the classical theoretical studies, of capillarity mainly due to Gibbs (for a more
detailed discussion and more references see [12] and [13]), are confined to the
consideration of equilibrium states, while non-equilibrium phenomena have a lot
of relevance in applications. Our attention was drawn by the surface
tension-elastograms like that on p. 92 in [13]: a periodically time-varying surface
tension is induced by changing concentrations in a biphasic solution. Our idea was
to look for a similar effect induced, in a biphasic mono-component system, by
a periodically varying supersaturation vapour temperature and/or pressure.
Therefore we want to study, on a theoretical ground, the time evolution of the
radius. R(f) of a liquid drop in presence of a periodical time variation of
supersaturation pressure or temperature, in the neighbourhood of an eqilibrium
state for the system

S = (liquid small drop + interface + surrounding vapour).
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1.2. Models for capillarity phenomena

The models we use to develop our theoretical treatment are those proposed in
[1—4] and more recently improved in [12]. In those papers, in order to model the
interfaces between different phases the concept of bidimensional directed nonmaterial
continuous system is introduced, pencralizing the one classically introduced in the
theory of shells: indeed in this theory such systems are modelled which, during their
evolution in time, always consist of the same sct of material points, while the study of
interfacial phenomena obviously requires the introduction of a continuum which at
different time instants contain different scts of material points. To bidimensional
nonmaterial continua surface densitics of material properties are attached, for which
the evolution equations have to be found (sce [12] for a more detailed discussion).

Let us now quote some of the results derived in [5], the paper upon which the
present one is mainly based.

i. The concept of Soap-Bubble-like (SB-) continuum is introduced: it is
a nonmaterial bidimensional continuum for which some properties which hold for
true soap bubbles are still valid. Morc precisely, it is assumed that the temperature
field is continuous across the interface, the total amount of surface mass is constant,
the surface stress tensor is pressure-like so that a surface tension is sufficient to
describe the stress state in the interface, the interfacial inner energy is an affine
function of specific area. It is clear that one can rcasonably expect that, at least when
S evolves in the neighbourhood of a given cquilibrium state, SB-continua suitably
describe the behaviour of considered interface.

i. For SB — continua the

GIBBS PHASE RULE

is proved; if the equilibrium temperature v and vapour pressure P, belong to 19, 39
and ]P., P¢[ , where the indices ¢ and ¢ denote triple and critical values, then there
exists a unique (uniform) field of pressure in the liquid phase, and a unique radius
R of the droplet for which the equilibrium conditions are satisfied.

We therefore get some equilibrium functions of the equilibrium parameters,
E=(3, P,

R(&), i.e. the equilibrium droplet radius;

p &) i. e. the mass density of vapour phase, which is determined by constitutive
equations of the vapour;

p{&) i. e the pressure of the liquid phase, which is determined when the surface
tension (&) is given;

p,(&)=P, for consistency of notations;

p,(€) i.e. the equilibrium surface mass density.

iii. It is proved that, if the interface is assumed to be SB-like, the liquid phase is
incompressible, the vapour is a perfect gas and all fields are spherically symmetric,
then the linearized (') balance equation for mass, velocity and energy, valid for liquid,

(") In the neighbourhood of one of the previously characterized equilibrium states.
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vapour and interfacial phases yield some evolution equations for mass, velocity and
temperature fields which are decoupled.

More precisely, this means that the evolution of temperature field can be
determined once an Integro-Differential Equation (IDE) is solved in which only the
temperature appears, while the mass and velocity fields are derived from a hyperbolic
problem, in which the (known) temperature field appears as source term.

1.3. Physical meaning of IDE and related FMB: their dimensionless forms

The IDE is quoted in Sec. 2, together with the Free Moving Boundary problem
for its arising in the treatment exposed in [5]. _

In IDE the coupling between thermal phenomena, mechanical and capillarity is
modelled by:

a) its source terms (cf. Eq. (2.2)), whose space and time Ho!der continuity
exponents are both equal to that of the function R(t);

b) the initial and boundary conditions for the temperature;

c) the new (with respect the classical Stefan condition) contributions appearing in
the free moving boundary condition (2.3); moreover, in the most relevant of them the
second derivative of R(t) appears.

We are thus facing the following problem: are the Holder continuity conditions,
satisfied by the source terms in Eq. (2.2), able to assure the Holder continuity of the
heat flux jump? We will see that, in order to get a positive answer to this question, we
are obliged to improve the results found by GEVREY [6]. Indeed he manages to find
solutions of heat flow equations, starting even from the Holder continuity properties
for the heat source which are weaker than those usually applied in the literature (see
for instance CILIBERTO [7]). '

We explicitly remark here that, in order to recognize that the IDE and its initial
and boundary conditions, as formulated in Sec. 3 can be easily regarded as
adimensional equations, we only need to change slightly the meaning of the symbols
in Sec. 2 by using the set of physical quantities listed in ii) together with the
characteristic time 9 (also appearing in the following Eq. (2.5)) defined as follows

M
=l

where M is the total mass of the interface and o, appears in the generalized
non-equilibrium Laplace equation for pressure at the interface. More precisely, it
represents the proportionality coefficient which relates the pressure lag

P, — P +2/R,
which is not vanishing far from equilibrium, with the speed lag
v — R,

where v is the normal barycentric speed of the material particles lying in the interface.
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For the sake of self-consistence we conclude this subsection recalling that

1. IDE stems from the balance of energy when it is considered in the vapour
phase in the case of spherically symmetric fields; moreover (cf. [5]), in the quoted
balance of energy the time derivative of mass density field appears; this derivative is
determined (also in terms of temperature field) once the system of linearized
hyperbolic equations (to which the balance of mass and linear momentum reduce) is
solved. This is the reason for which an integral operator acting along some
characteristic lines, appears in Eq. (2.2).

2. BE (i.e. the following condition (2.3)) is determined when balance of energy is
postulated for the bidimensional continuum modelling of the interface: it generalizes,
in the considered instance, the classical Stefan condition. We underline here that,
while in the latter only the first order time-derivative of the drop radius R(t) appears,
in BE an extra term, containing the second order derivative of R(?) times the
capillarity coefficient, is found.

3. The boundary conditions for IDE on the moving boundary (2.5), (2.6) and
(2.9)1, in the following Sec. 2, are obtained from the balance of interfacial mass and
linear momentum and the dynamic version, found in [3], of Gibbs’ conditions at the
interface. In [3] these dynamic conditions are determined assuming that:

3.1. the jump of Gibbs’ dynamic potential at the interface is proportional to the
average mass flux through the interface;

3.2. the previously introduced speed and pressure lags are mutually
proportional;

3.3. the increase of interfacial mass is proportional to the interfacial average
Gibbs’ potential lag.

1.4. Discussion of the proof strategy

In this paper we prove the existence and uniqueness theorem for the solution of
the moving boundary problem formulated in Sec.2, when R(¢) is known, in a space of
functions which show some regularity properties which are compatible with the free
boundary condition (2.3). The proof is based upon a fixed point method which uses
the results on the solutions of parabolic equations available in the classical works of
GEVREY [6], CILIBERTO [7] and FRIEDMAN [8].

Indeed we always consider a space of functions whose strong derivative are
Holder continuous; however, we cannot use the results found neither in Ciliberto’s
nor Friedman’s papers, but we need to implement them with Gevrey’s results (or
better to say, with Gevrey’s techniques), which are more general. This impossibility is
due to the quoted coupling properties between thermodynamic and capillarity
phenomena: a thermal source arises in IDE because of surface phenomena, and, as we
prove in the following sections, this source is space and time Hélder continuous, but
the space Holder exponent is equal to the Hélder time exponent, and both are equal
to time Hélder exponent of the function K(f). Those are difficulties we solve in this
paper: indeed, in the literature only space Hélder exponents which are twice the time
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exponents, arce considered. If one tries to apply the classical results in the Boundary
Fquation (BE) (2.3), one is lead to regard the boundary value of space derivative of
the solution of IDE (i.e. the heat flux), which is part of the source appering in BE, as
a function of time whose Holder continuity exponent is one half of that of R, which is
clearly a contradiction.

We shall prove that this contradition can be solved considering the space of
source terms in heat equation whose space and time Hélder exponents are equal to
a<1/2. The solution of heat equation still exists in this case (this result is mainly due
to Gevrey, who really needs only time Holder continuity), and is sufficiently regular
to supply a heat flux that is space-time Hélder continuous with exponent a.

Therefore we will use the following proof strategy:

a) we study the regularity properties of source terms in IDE as determined by the
regularity of the function R(z). We assume that the rate of growth of the drop is
smaller than the speed of sound in the vapour (cf. [9] for physical meaning of such an
assumption);

b) we define a class o of functions and discuss the existence and uniqueness in
A" of the solution of IDE when R(t) is chosen in the class C?>** and boundary data are
given as in Sec.2. We are considering the Moving Boundary Problem MBP which is
obtained from the corresponding Free Moving Boundary Problem found in [5];

c) we prove that in BE the heat flux appearing as source term has the same
Holder continuity of the second time derivative of R(t);

d) we prove the continuous dependence of the solution of MBP, as an element of
A, on the initial and boundary data.

2. Statement of the problem. Regularity properties of the source terms

In this section we shall summarize the main features of the problem outlined
in [5].

Let now 9 be a spherical region of R* and 89 its boundary. We shall consider
a spherical liquid droplet 2, its center coinciding with that of 2, with time-dependent
radius R(t)e[R(0), b], where R(0) is a positive number and b the radius of 2. We
suppose moreover that the droplet is surrounded by its vapour which occupies the
domain 9* = 9 — P". The temperature on 09 is a given function of time @, (1)
According to the theory exposed in [9], we assume that

2.0) | R@) | <a,

where a means the speed of sound in the vapour.
Introducing a spherical system of coordinates and denoting by r the distance of
the generic point in & from its center, we define

D*={(r,t)eR* xR*: R()<r<b},

D™ ={(r, )eR* xR*: 0<r<R(1)}.
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In [5] it is proved that the problem of determining the evolution of the radius of
the liquid droplet near the equilibrium condition, when surface and convective
phenomena are not negligible, is solved if the following problem is solved:

Find a triple (3, R(#)) which satisfies the conditions

@.1) 59 =9, — %, =0 inD,
=F "
2.2) 9 =85+ 4@+ K js,,, 0| & inD*,
p=1I
(2.3) AR+ LR+ 10 +R(CH9 — C8;,)+YR14C =0,
3,00, ) =0, S(R(®), 1) =), I9,r, 0) = u(r),
(2.4) 9.6, )= D), RO =R, RO) =R,
where:

1) in (R(0), 0) and (b, 0), respectively, the following equalities hold:
.4y ¢—u0,R—uor,+l D,; <I>E_u0,,+,1 b,
2) the physical case which is considered in [5] leads to the identifications

Pp(t) = R(OF (D),  uy=r3y(r),

2.5) €,
v'(t) = (J R(x) e de) e~ /0 + v,

where v," is an initial value and 0 is a given constant,
3) kK, C* and A, are suitable constants and 4C=C* — C~,¥ is a linear function
of the variables R, R, v/,

2.6) 9 = bys(R—R(0))+bsy R+ byt

4) F,, I, & are functionals depending on (r, ), the function R(f) and, in the case
of @, on suitable initial and boundary conditions, [S]. They are defined as follows:
once the curve R(?) (%) is fixed, it is well known (see [10]) that there exists a unique
couple of functions u,(r, £) and wu,(r, ¢) defined in {(r, ¢) : R(¢) <r} which is the solution
of the system:

2.7) Uy o+ Cllypt-cityfr =0
(2.8) cuy i+ a*(uyy — wfr)+d(9,, — 9,/r) =0,

satisfying the initial and boundary conditions:

(?) The curve R(f), because of Eq. (2.0), is not characteristic so that mixed data problem for the
hyperbolic system (2.2)—(2.9) in D* is well-posed.
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u(r, 0) = uy(r), u(r, 1) = uy(r), Vrel[R(?), ];
(2.9) u(R(2), ) = R(Dp, (1),
w(K(1), 1) = mR(1) R(t), Vtel0, T],
where m is a given constant and p, a suitable linear function of v, R, R:
pv = c/(R(E) — RO+ c,R()+ c,0'(2)
Moreover, we assume that

u0(0) = R(0)p,.(0), i, = mR(0) R(0),
2.9y uR(0) R'(0) = t10,:R(0) + aun R(0) .

Using the results found in [10] we can see that the characteristic curves of Egs.
(2.8)—(2.9) are the lines whose angular coefficient is a.
We set

PR, 1, t, IBO)Y=u(r, t).
Let
Dq(r, D={(, 1)eRTx R*: 0<1<1, r+a(t—H<Eé<r—a(t—1)}.
Once the curve R(?) is fixed, we define the application
Pp: R* X Rt*SR*x R,
210 Py(r, D= (R(zy), 7))
as follows:
® cither it is the unique intersection, if it exists, of the characteristic line
stemming from the point (r, £), whose angular coefficient is a, with the curve R(¢) (?);
® or it is the intersection of the quoted line with the line £=0.

We remark here that t, =1,(r, ¢).
Let us moreover assume

D'(r, 9=(D*ND(r, ) — D, (Pu(r, 1)).
The functionals I(R, r, t) and F(R, r, t) are defined as follows:
(2.11) Dr.n= {J {1} x [I,F.].
te[0, t]

In order to find the regularity of the time derivative of the function ® we
represent the solution of the system (2.7) —(2.8) in the whole plane R? using the method
of characteristic curves, as it was done in [10], and prove some lemmas.

(*) Uniqueness of this intersection can be easily proved starting from assumption (2.0).



622 V. A. CIMMELLI AND F. DELL'ISOLA

‘This solution will be given by a couple (y, ¥,) which will satisfy in the interval
| R(0), oo] the initial data (2.9) and (2.9"), and in the interval [—co, R(0)], some suitable
initial data of the type

l/’l(r: 0) = Xl(r) ’ ‘Pz = Xz(r)-

Hence we have
ViR, D) = R@Op (1),  Y(RQ), 1) = mR(1) RED).

The existence of such initial data is assured by arguments completely analogous
to those found in [10].

Due to the uniqueness theorems quoted in [10], together with the D’Alambert
representation formula, using some simple algebra we conclude that:

When (r, ¢) is such that 7,(r, £)>0, then

2.12)  ®(R, r, t, IBC) = R(v)p,(v)) — 1/2u0 (R(r,) +ar))

r+at

+12uo(r+an+1/2a | uyp(§)dE,

R(t)+ar,
while if (r, ¢) is such that 7,(r, £)=0, then

r+at

(2.12) &R, r, t, IBC) = 1/2 (uio(r+ at)+ wo(r—ad) + 1/2a | ux(€) dE.

r—at

LEMMA 1. If 7,(r, {) is defined according to Egs. (2.10), then

ot, _ > —1
== a(a—R(z,(r, )",
@.13)

o,

== R, D)=

Proof. It is a trivial application of the Dini Theorem. M
LEMMA 2. If &(R, r, t, IBC) is given by Eq. (2.12) and ﬁ(t) is a-Holder

continuous, then @, is a continuous function in D* which is a-Holder continuous in
both the space and time variables.

Proof. In fact, using Eqgs. (2.12) and (2.12") we have: when (r, t) is such that
7,(r, £)>0, then

@.13) &, =1, {R(t,p,(v))+(R(z)) — ROY) [c,R(x,)+ c,R(z,)
+ (V) (R(x) — 0'(e)] = 1/2 oz (R(zy)+at) [R(r)+a]
— 1/2a u,(R(z,)+ at,) [Ii(r,)+a]} +af2uy (r+at)+1/2 um(r+at)4,
while, if (r, t) is such that 7,(r, £)=0, then



A MOVING BOUNDARY PROBLEM DESCRIBING THE GROWTH OF A DROPLET... 623

2.13) @, =a/2(uyp(r+at) — o (r—at))+ 1/2 (uyy (r+ at) + uyy (r — at),

so that the regularity of @, follows from Egs. (2.9), (2.9") and (2.13) and from the
assumed regularity of R.

LEMMA 3. Let f (r, t) be a given function whose domain is D7, and let G(r, £) be
defined as follows:

dr.

a0 =[]

0

p=I

Iff(r, o) is

i) either a-Holder continuous with respect to r with Holder constant H.(f),

ii) or a-Hélder continuous with respect to ¢ with Hélder constant H,(f), then
G(r, 1) is a-Hélder continuous with respect to both r and ¢.

Proof. We prove this statement only in the case i) which will be used later. The
proof when ii) holds is completely analogous.

We start defining

t

2.14) A(+a, B, ) = [ f(+ac+B, vy de,

A is a-Holder continuous with respect to 5.
Indeed, from (2.14) we get

(2.15) | A(+a, B, ) — A(+a, B, ) | <H,(f)t | B,— B, | ,

where H(f) is the space Hélder coefficient of f
We now split G(r,, £)—G(r,, #) into four parts and prove that G(r, t) is space
Hoélder continuous.
In fact, it is easily seen that
!
Gy, ) = Glr ) = [(FF(r, 1, 1), 0) — f(F (s 1, 7), 1)t
0

. 0,0

+ I U, t, 1) = fI(ry, t, ©), D) dr+ j (fU(ry, t, ©) — fU(ryy 8, T), T)dr

L)) 0

1l(rl,t)

+ (SU(r, t, 7)) — fU(ry, 1, 1), T) .

7 (ry0)

Now the first three terms are of the form (2.14), where b; have suitable values.
In the first two integrals we have

B —-B, = x,—x,,
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while in the third one we have
|B,—B,| <|RI| lovJor| |r,—r,l.

Finally, the absolute value of the last integral is easily bounded when we
remark that

Ve[t (r, 1), t,(ry 0], )
| Iry, t, D) — I(ry, t,0) | < | Oyfor | 2alr,—1, |.
We can conclude, using Eqgs. (2.15) and (2.13°), that
(2.16) H(G<2H(NHt+H(f)t | a(f%— a)' 1*+2H,.(f) | (f!— ay' | abt.
In order to prove the time Holder continuity of G, we split

G(r, 1) — G(r, tp)

in a way similar to that used in space Hdolder continuity to obtain finally

2.17) H(G)<2H () ta*+2H (f) ta* B

3. Existence and uniqueness of the solution of MBP. Class K

Let us recall some definitions:
A real function f is said to be Hélder continuous with exponent « if there exists
oe(0, 1) such that

| fx+h) — f(x) | <H()H,

where H,(f) is a constant Holder coefficient of f.

For every me N we shall say that fbelongs to the class C"*if its m-th derivative
exists and it is a-Hoélder continuous.

A function of n real variables f(x,, ..., x,), whose domain is a compact subset
X of R", belongs to the class C™*+% "+ if the m-th partial derivative with respect to
x;(i=1, ..., n) is a-Holder continuous with respect to x; itself.

Let

DF=D*n{(r, 1): 0<t<T}.
We now define the class A (D7) as follows:
A (DH={v:D*—> R with v eC***% p,eC'+=0+%; 9, e CO+*% .
We define in A~ the following norm:
Holl,=suplovl| +suplo, | +sup| v, | +H,)+H/0,).
Let us introduce the following notation:

<Di = 0DF —{(r, t): R()<r<b; t=T},
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=0},
<ap),

Consider now the problem (2.1)~(2.2) when R(t) is a given function belonging to
C***and the initial and boundary data, listed in Eq. (2.4) and imposed on the function
3., are vanishing.

The existence of the solution of Eq. (2.1) is assured by standard theorems on the
parabolic equations which can be found, for instance, in [8].

Let us introduce the function

(3.0) Fr: H Ay

so that we can define

.x’o(Di)':‘{veJi’, v

such that F(v) is the solution, satisfying the conditions () = 0, of the
Dt

following equation:
t

~ p=Fq
GO S0 — k0 = 2B K (0,00 0 drtstr, )=f inD*,
0 p=Ig
where F(r, 1) is a source term belonging to CO+= 0+«
Moreover, we introduce the following quantity:

u= inf {|R(O|, | R()-b]},

te{0, T}

which will be assumed in the following to be strictly positive.

PROPOSITION 1. As the solution of Eq. (3.1) belongs to o, definition (3.0)
makes sense and there exists 7" such that & r(v) is a contraction in ;. Moreover,
there exists a unique solution of Eq. (3.2) with vanishing initial and boundary data.

Proof. As ve %7, the Lemmas 2 and 3 assure us that the right-hand member of
Eq. (3.1) belongs to CO+®0+e

Moreover, in Appendix A, theorem A.1, we shall use the last result together with
some theorems stated in [6-8] in order to prove that, if R(t) belongs to C*** then
Sr(v) € A, and there exists a constant I, (w', T, b, a), which is bounded when T tends
to zero, such that:

(3.2) V(Wl, wz)e‘;{% ” yR(Wl) - yR(Wz) ” XO<L(/J_I-,- T, b, a) ” W, —w, “ .7('0[ -
Obviously, for suitable value T of t, we have IT" < 1 so that ) 1s a contraction

in A (D$).
Using the Banach-Caccioppoli fixed point theorem we conclude that

Aved ;: Flv) =0,
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v, when R(1) is fixed, there exists a unique solution of Eq. (2.1) with vanishing initial
snd boundary data (). B
et us consider a couple

(PR(1), Pp(t))eC1+* x Clta
and use it to define the function
(3.3) vr, t) = A(r, )+ B(r, 1),
where
Alr, )= [D5(t) — PR(OT( — R®) (b — RO+ By(t),
B(r, )= vy(E(r, D)= uy8) — A, 0)=uy(&) — pE+4,
E=[(b—R(0) (b—R(®) "] (r— R(®)+ R(0),
P=(240) — 2x(0))(b—-RO)),
9=-R(0)(250) — 2x(0)) (b —R(0))™" — &4(0).
It is easily seen that
v (R(@), 1) = Dx(t), vyb, 1) = BL(1), y(r, 0) = uy(r).

If R()eC*** then, because of Proposition I, we can assume that
Dr(t) = 3,(R(), ©) belongs to C'+=, ‘
LEMMA 4. If the functions

(¢E(t)s @R(t))EC‘“ X C1+u

and u,(r) belong to C>*¢, then the functions v, and v,, are a-Ho6lder continuous both
in the space and time.

P r o o f. Since evidently v,, and v,,, exist and are continuous, in order to prove
this statement it is sufficient to calculate the space and time Hélder constants of both
vy, and v, ,,. Now it is easily seen that

A,=0,
H(B,)
H(B,)
H(4))

< VU H(v,),
<
<
H(A4,) < (H(Prs — P )by + H(®r)+sup | &p— &y | 2ba%7*,
<
<

b*u*H (vy,.)+sup | vy, | 2aby?,
sup | @z, — Px, | a®bu ' +sup | Gp— b, | au?,

H(B,) < H (0o Jaby?,
CH(B) <sup | v, | a®.
so that the lemma is proved W .

(*)Note that Eq. (2.1) coincides with Eq. (2.2) when s(r, 7)=0.
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We put now
(B4 v=uv+v,,

where v, is the solution of Eq. (3.1) with vanishing initial and boundary data.
Lemma 4 assures us that the function

t

(35) - ?CI ij,rr(p’ T)

belongs to CO+»0+a

Setting g(r, t) = s(r, t) we conclude that » satisfies Eq.(2.2) with arbitrary initial
and boundary conditions.

In this way we have proved the following;:

THEOREM 1. If R(f)e C*** is such that u>0, then in the interval [0, T"] there
exists a unique solution of Eqs.(2.1), (2.2) with initial and boundary conditions given by
Eq. (2.4) and satisfying Eq. 2.4').

p=F
dr+cv,, — Cy, = g(r, 1)
p=I

4. Continuous dependence of the solution of MBP on initial and boundary data
We now introduce the space 9, i.e. the space of initial and boundary data:
4.1
2 = C'"*[0, T} x C'*[0, T] x C***[R(0), b] x C'*=[R(0), b] x C°**[R(0), b],

which satisfy all compatibility conditions, in (R(0), 0) and (b, 0), listed in Sec.2.

An element of 2 is the set (Pg, Pg, tg, Uy, tzo) which will be denoted in what
follows by IBD.

In order to define a norm in 92, we recall that:

if f(x)e C*e,
@2 SN gara=sup | | +sup | £, | + .. +sup ol + 17015,

so that we can define

@3)  IIBD o= |l &l pput |l Pell crvat Nt Il ot Do Il s ut Ny v
M We begin with the observation

(4.4) vfr, ) = Alr, )+ B(r, 1).

Simple calculations yield the result

2 -

(4'5) ” A ” < ” IBD ”9}[“1‘*‘“2 ” R, ” cliat iy ” R, ”u vl

2
(46) ” B ” B2 = “ “”) “ “ r”l I “}_ ” l<l “ ohia - “1 ” Rl ”,] ('} l‘
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where a,, a,, a,, are three suitable constans such that the following limits are finite:

4.7 limpla,, limgla,  limpla,.
u—-0 w0 u—0

Consider now function »,. We remark that v, is the solution of the following
equation:

~ ; p=F1:
@.8) vy =iy = 2B, + K 0,00, 1) drtslr, i D+,
0 p=1_r
where s(r, t) = — v, is a source term belonging to C%+*%+* which vanishes on <Dj.

We split the function v, in the following way:
4.9 v, =WV+U,.
Vi is such that
(4.10) Ve = Vi = 4@, +5(r, 1)
and U, satisfies the equation

Fy ~ L p=Fy
dt+ k [Vi.(p,7) dt.
0

p=1I

t
@1y U, -U, =% [U,09

0

p=I;

We can apply to the solution of Eq. (4.10) the Theorem A.2 of the Appendix and
Lemma 4 in order to prove that Vi€ A, and, moreover,

4.12) IV, < LR, 9K,,
where Ky is |l 28,450, ) | o4s 040-
Let now U} be such that

p=Fy

4.13) U= Ul,= K [h, 0| dr.

0

p=Ig

Lemma 3 assures us that the right-hand side of Eq. (3.13) e C**=%*2 50 that we have

(4.14) Ui, <LR@, )K,,
~ : p=Fq

where K, is the C***%*¢ norm of k jV,ﬂ(p, 1) dr..
0 p=I

On the other hand, owing to Lemma 3, we can write
(4.15) K, < JR(t), ) Kt.
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Using Eqgs. (4.12), (4.13), (4.15) we conclude that
(4.16) ot il ,, < LR@, ) Ky + JRO, ) Kot
where
v=WV+U}

Consider now the solution of the equation

t

~
-1
'1’,t - U’l',rr = k J‘U’ll,rr > T)

0

p=F,

t
. dt+ k [V,.(p, 7)
1 0

p=F,

p=I;

As proved in the Appendix, the application
SL:U— Ut

is contracting in 4, so we conclude that

4.1
-( 7 lim U= U,
and, if V] =V, + U},

4.

(*.18) lim o} =v,.

On the other hand, for every n we have
4.19) o7l xS L(R(), ) Ky + J(R(D), ) K,_st ,

where K,_; is the C%**%+% norm of

t

’JZJU;*;‘ ) 7)
0

t
p=Fy

ot EJVI,,(p,T)

0

p=F_
dr.

I
T

P

As n tends to infinity, the constant K,,_, is bounded by || v, || £, 5O that we can write
(4.20) Moyl @R, Ko (L= JR@), ey

On the other hand, we have

(4.21) K, <(Lp 1 1BD |l 5,

so that (4.20) reads

(4.22) oyl <L (NN IBD Il 5)(1 — JRE), Doy,
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where J(R(t), t) is found in the proof of Lemma 3, and is easily seen to be
bounded when

inf | Rt)—a| = >0.
1e[0,T]
|
The last formula, together with Eqs. (4.5) and (4.6), proves the
THEOREM 2. If R(t) € C*** and is such that ji and pi' are not vanishing and the initial
and boundary data belong to 9, then the operator which maps IBD onto the unique
solution v of MBP, ve X', in a suitable interval [0, T"] is continous and

(4.23) loll o< (@Lp" 11BD Il 4.

Appendix

In this section we prove

THEOREM A.1. Ifve X, IBD € 2 (°) and Eqs. (2.4), holds, then F(v) € A7, and Eqgs.
(2:2) holds.

P r o o £ We note that F(v) is the solution of the heat equation with a source
term (%) fe COt=%*¢ satisfying

(A.0) IBD =0.

As it is well known (see for instance [6]) we can write F(v) as follows:
(A1) Fr) = Z,(r, 1) — z(1, 1),
where

1) Z(r, t) represents the following integral:

(A2) Z,(r, 0) = ~(@n)y" | Upte, 1, & mf (& m)dédn,
J

(A.3) UP(,-; , & 1) = e~ ORI ()12

ii) z,(r, t) is the solution of 6z, = 0 corresponding to the IBD given by Z, e
In GEVREY [6] it is proved that:
a) | Z, | <@() Hf) e+ (p.344),
b) H(Z)<(L) | f] £77%  (p.360),
o) 1 Z | <@y Ifle (p.358),

(*) The space 2 of initial and boundary data IBD is defined by Eq. (3.1).

(¢) The source f was defined in (2.1) where s=—g and g is given by Eq. (2.5).

(") (L) is a constant which is bounded, when ¢ tends to zero, and its value is varying in different
formulas.
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d) Z;, exists and is time-Holder continous with eXponent y<uo; its Holder
constant will be denoted by H(Z;) (p.361—362).
Note moreover that, as it is easily seen from Eq. (A.2),

(A.4) Z,(r0) =0, Z,r 0)=0.

In the hypotheses d) and (A.4) the following results hold (Gevrey, p.342 and
footnote 3 p.362):

o |z | <WH(N;

0 |z, | <@H( "

g) HI(ZO,I)< (L) fIt(f) tl/2—a .

h) z,, exists and is time-HGlder continous with exponent y<a; its Holder
constant will be denoted by H/(z,,). The last result is an obvious consequence of d),
the footnote at p.361 and the theorem before Eq. (22), p.342 in GEVREY [6].

i) Statements d) and h) imply that F(v), exists and is time Hélder continous
with Hélder constant H; (F(v),).

Moreover,

H} (F0) ) <(L)H(S)

because of Eq. (34)” p.363, the footnote p.361, and footnote 3 p.362 in Gevrey.
The inequalities a)...c) and e)...g) prove that

(A.5) I (V) F+ | Fr), | +H, K@), < (L) ”f” O+, 04a *
On the other hand, using d), h), i) and Eq. (A.0) we can see that
(A6) ' ‘y;((v)ﬂ< ﬁm (‘?R(U),rr) < ty (H’{(yR(v),t) +Ht(j)) < (L)t? H(j) .

In order to prove that H,(¥x(v),,) exists and is bounded by (L)H(f), we perform

the following transformation:
¢=[(b—RO) (G —RO)'1(r—R(®)+R(0),
(A7) :
v={(b—RO)*(b— R(s))?do,
0

which maps the domain D* on the rectangle R* =[R(0), b] x [0, T].

If we introduce the notation (% = %(v))

(A9) HrE, D), ()L 1),
we have

(A.10) K&, 1), = AE 1), ¢,

(A.11) (&, 1) = FE, D) (€, ),

(A12) Fr&, D = B, Dot FYUE, 1) L

Under such a transformation the cquation 8.9, = f becomes
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(A-13) H& Do — HlE D) = T,
where
=M€, 1), )t + HE D) ot

We note that as %,, = &x,+f we have
(A.14) H(Sm) < H(H)+H,(f).

Moreover,
A15)  H(Fr) = H (h7:+ %00 1) < H (%) 1)

+H, (% L) 0)< |7, | H (&) D)+ H, (%) 1)
(A16)  H. (& £I(, 0) = H, (Sr:€) (T 1)
< | Frp | abPp 4ot | o, | <@HELN)a@p0+p't?),

where we used formula (A.6).
(A.17) H (%), ) < H(R) @ 0) | & | 2 < DU HY( Ky

We split now £(¢, 1) as in Eq. (A.3) and write
(A.18) KE 1) = ZLE D)+3E 1)

Because of Eq. (A.18) we have
(A.19) H(F) < H (Z(& 1))+ He Gol&, 9

In order to apply to Z, the results found by FRIEDMAN in [11] we remark that,
because of the hypothesis (2.4') 2 is vanishing in (R(0), 0) and (b, 0) so that (see [11]
Lemma | and its proof):
(A.20) H, (Z{¢, 1)) < (DHT)-

On the other hand it is possible to find an upper bound for H, (34(¢, 1)) by using
the following arguments:
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I Owing to footnote p.361 Eq. (21" p.338, and to the results quoted at the
beginning of p.362 in GEVREY [6]

(A21) Z(RO), )eC™ 2, (b, )eCO 2.
f fs

II. Owing to Eq. (3) p.469, which is obtained only for rectangular domains, we
conclude, taking again into account footnote 3 p.362 in Gevrey:

(A.22), H,3o(& 7)) < (L) (H )+ H ().

Finally, we have to estimate H () and H,(f) in terms of || | coaore- IS €aSily seen that
(A.22), Hf) < D207 1 ovnores

(A.22), HF) < @2 11 greones

where 2; are bounded functions of the variable y .
Using now all results (A.15) ... (A.22),,, we observe that (A.14) becomes

(A.23) HyS(T 0, < 267 N Goeones

where 2 is a bounded function of the variable u .
Equations (A.5), (A.6) and (A.23) prove that %(v)e X",
Consider now v, and v,€ X, The function H(v,) — %(v,) belongs to o, and is

a solution of the following equation:
t

(A.24) SLAwL) —Ho)] = K [0, — v)un(p, 0
0 p=I;

The right-hand side of Eq. (A.24) belongs to C°**°+%, owing to Lemma 3, and
vanishes when t—0 so that we can apply to %(v,) — S(v,) formulas (34”) p.363 in
Gevrey and (A.23).

In our notation they read

p=F¢

dt.

(Azs) ” 'ZR(D)I _"5,}{(02) ” Jfo < S(R(t)’ T; b) ” ) ” cO+a,0+a>
where o p=F;
E=F[o,—o)dn )| dr.
0 p=I

On the other hand, using the estimates found in proving the Lemma 3, it is easily
seen that there exists a constant K, bounded when t tends to zero, such that

(A.26) FEN coraoie <KRO, £, bt 10y =0, 11, .

Equation (3.2) is proved when we choose L= SK pg
We remark that in proving Theorem A.1, we also proved the following
THEOREM A.2 If le C***°** and V is the solution of

V=WV, =11

which vanishes on <|D*, then Ve X, and, moreover,
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IV, < LRO, D NN areone,
where L(R(?), {) is bounded when pi and ' are not vanishing.
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