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FORECASTING VOLATILITY IN THE PRESENCE OF
LEVERAGE EFFECT

Rémi Rhodes 1, Vincent Vargas 2, J.C. Domenge 3

Abstract. We define a simple and tractable method for adding the Leverage
effect in general volatility predictions. As an application, we compare volatility
predictions with and without Leverage on the SP500 Index during the period
2002-2010.

1. Introduction

In this note, we adress the following problem: starting from a quite general sym-
metrical model of returns, how does one perturb it naturally in order to get a model
with Leverage Effect? In formulas (2.1), (2.2) below, we propose a simple framework
in this direction. The main motivation for this work is the problem of forecasting
volatility , which has applications in many fields of finance: risk management, option
pricing, etc... The most interesting feature of the construction is precisely that one
can derive from the symmetrical model simple prediction formulas (cf. formula (5.1)
below) for the perturbed model.

The paper is organized as follows: Section 2 defines the model in the discrete
case and states the main properties of the model: correlation functions, existence
of moments,etc... Section 3 defines the model in the continuous case. Section 4
is devoted to the simulation problem. Section 5 adresses the issue of forecasting
volatility. Finally, we gather in the appendix the proofs of Section 2,3,4.

2. The discrete case

2.1. The symmetrical model. We consider the general stationary model for the
(log) returns given by:

ri = σiǫi,

where ǫ = (ǫi)i∈Z is a sequence of centered i.i.d. variables such that E[ǫ2i ] = 1 and
the volatility (σi)i∈Z is a random process that we will write under the form:

σi = σ(γ +Xi),

where X = (Xi)i∈Z is a centered stationary process independent of ǫ with E[X2
i ] < 1

and γ2 = 1 − E[X2
i ]. With these conventions, we get that E[r2

i ] = σ2.
In financial applications, X will have long range correlations:
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2 FORECASTING VOLATILITY IN THE PRESENCE OF LEVERAGE EFFECT

• Power law: E[XiXi+j] ≈ A/(j + 1)µ. Typically, we will take µ ∈ [0, 1].
• Multifractal (µ→ 0): E[XiXi+j] ≈ λ2 ln+(T/(j+1)). Typically, we will take
λ2 ∈ [0.02, 0.05] and T ≈ 2000.

2.2. The model with leverage effect. We consider the sequences ǫ,X of the
previous section. We introduce two extra parameters β, α respectively standing for
the magnitude of the leverage effect and for the inverse of the relaxation time of the
leverage effect. We want to consider the following model:

ri = σiǫi, (2.1)

where the volatility (σi)i∈Z is a random process that satisfies the following recursive
equation:

σi = σ(γ +Xi − β
i−1∑

k=−∞

e−α(i−k)rk), (2.2)

where γ2 = 1 − E[X2
i ] − σ2β2

e2α−1
. We introduce the filtration:

Fi = σ{(Xj)j 6 i, (ǫj)j 6 i−1}
This leads to the following natural definition:

Definition 2.1. We say that a sequence (σi, ri)i∈Z solution of (2.1), (2.2) is non
anticipative if (σi)i∈Z is Fi-adapted.

We can now state the following existence theorem:

Theorem 2.2. There exists a unique stationary non anticipative square-integrable

solution (σi, ri)i∈Z of (2.1) and (2.2) if and only if σ2β2

e2α−1
< 1.

In the sequel of this section, we will therefore consider the unique stationary
and non anticipative solution of (2.1), (2.2). It is straightforward to compute the
following quantities (see appendix):

• Average vol and Variance:

E[σi] = γσ and E[r2
i ] = E[σ2

i ] = σ2.

• Volatility fluctuations: E[σiσi+j] − E[σi]
2 = σ2(E[XiXi+j] + β2

e2α−1
e−αj).

• Leverage correlations:
E[riσi+j ]

E[r2
i
]E[σi+j ]

= −β
γ
e−αj

Remark: Assuming the renormalisation relation γ2 = 1 − E[X2
i ] − σ2β2

e2α−1
is not

a restriction. Indeed, if we are given a set of coefficients (σ, γ, β, α) and a station-
ary process X that do not satisfy this relation, it is possible to renormalize the
coefficients without changing the solution of (2.1) and (2.2). It suffices to define

c =

√
γ2 + E(X2

i )

1 − β2σ2

e2α−1

and γ̃ =
γ

c
, σ̃ = cσ, β̃ =

β

c
, X̃i =

Xi

c
.
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Then the new set of coefficients (σ̃, γ̃, β̃, α) and the stationary process X̃ satisfy
the renormalisation relation. Moreover, the solution of (2.1) and (2.2) is clearly the

same for the datas (σ, γ, β, α,X) or (σ̃, γ̃, β̃, α, X̃).

3. The continuous case

A natural extension of our discrete model to the continuous case is the following.
Given a standard Brownian motion B = (Bt; t ∈ R) and a centered square-integrable
stationary process X = (Xt; t ∈ R) independent from B, we are interested in finding
a stationary solution (σt)t∈R to the equations:

dRt = σt dBt, (3.1)

σt = σ
(
γ +Xt − β

∫ t

−∞

e−α(t−r)σr dBr

)
, (3.2)

where α, β, γ, σ are positive parameters satisfying the relation γ2 = 1−E[X2
t ]− σ2β2

e2α−1
.

Once again, we introduce the filtration:

Ft = σ{(Xs)s 6 t, (ǫs)s 6 t},

leading to the following notion of non-anticipativity

Definition 3.1. We say that a sequence (σt, rt)t∈R solution of (3.1), (3.2) is non
anticipative if (σr)t∈R is Ft-progressively measurable.

We can now state the following existence theorem:

Theorem 3.2. There exists a unique stationary non anticipative square-integrable

solution (σi, ri)i∈Z of (2.1) and (2.2) if and only if σ2β2

2α
< 1.

The unique stationary and non anticipative solution of (3.1), (3.2) satisfies:

• Average vol and Variance:

E[σt] = γσ, E[(Rt −R0)
2] = tσ2, and E[σ2

t ] = σ2.

• Volatility fluctuations: for s > 0,

E[σtσt+s] − E[σt]
2 = σ2(E[XtXt+s] +

β2

2α
e−αs).

• Leverage correlations: for s > h > 0,

E[(Rt+h −Rt)σt+s]

E[(Rt+h −Rt)2]E[σt+s]
= −β

γ
e−αs

(eαh − 1

h

)
.
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4. Simulation

Since the solution of (2.1) and (2.2) is obtained by the Picard fixed point theorem
over a space of stationary processes and since the evolution at time i of σ depends
on the whole trajectory of σ between −∞ and i−1, the simulation of such a process
is not straightforward. We suggest the following method based on finite dependence.
Our purpose is to simulate the process (σi, ri)i∈Z between dates 0 and p > 0.

We choose N > 1 and define the mapping TN which maps a sequence u = (ui)i∈Z

to the sequence u = ((TNu)i)i∈Z by:

(TNu)i = σ(γ +Xi − β
i−1∑

k=i−N

e−α(i−k)uiǫi).

We define recursively the sequence (σN,n)n∈N of random sequences by σN,0 = (0)i∈Z

and

∀n > 1, σN,n = TN(σN,n−1).

We get the following approximation result:

Theorem 4.1. Given N > 1, the approximation error between (σN,n
i )i∈Z and the

solution (σi)i∈Z of equations (2.1) and (2.2) can be estimated by

sup
i∈Z

E[|σi − σN,n
i |2] 6 σ2

( e−αN

1 − C1/2
+ Cn/2

)2

, (4.1)

where we have set C = σ2β2

e2α−1
< 1.

We deduce a simple algorithm to simulate the process σ between 0 and p. We fix
the parameters N and n to get the desired approximation error and we compute
the sequence (σN,k)0 6 k 6 n by applying iteratively the mapping TN . Note that it is

sufficient to compute (σN,n
i )i∈Z over the only dates i = −(n− k)N, . . . , p.

In Figure. 1, we simulate both processes (σi)i∈Z and (ri)i∈Z between the dates
0 and p = 300. (Xn)n is a stationary centered Gaussian process with covariation
E[XiXi+j] = λ2 ln+(T/(j+1)) with λ2 = 0.016 and T = 2000. The other parameters
are chosen equal to α = 0.1, β = γ = 0.89, σ2 = 0.025. We choose N = 300 and
n = 10 in such a way that supk∈Z

E[|σk − σN,n
k |2] ≈ 10−12.

5. Forecasting volatility

5.1. The general forecasting formula. We suppose that we observe (σk, rk)i 6 0

and we want to forecast σi for i > 1. For all i > 1, we want to compute the best
least squares linear predictor of σi, i.e. the minimiser of:

inf
αi(j),βi(k)

E[(σi − E[σj] −
0∑

j=−∞

αi(j)(σj − E[σj]) −
0∑

k=−∞

βi(k)rk)
2]
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Figure 1. Example of simulation

Thus, we introduce for all i, the coefficients (αi(j))j 6 0 of the best least squares
linear predictor of Xi, namely the ones that minimise:

inf
αi(j),βi(k)

E[(Xi −
0∑

j=−∞

αi(j)Xj].

We remind that one can find the (αi(j))j 6 0 by solving the system:

C(|i− k|) =
0∑

j=−∞

αi(j)C(|j − k|), k 6 0

where C(j) = E[XiXi+j] is the covariance function.
We can now state the main theorem of this section:
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Theorem 5.1. Let us denote by σi the best linear predictor of σi. Then we have:

σi = E[σi] +
0∑

j=−∞

αi(j)(σj − E[σj]) + βσ
0∑

k=−∞

α̃i(k)rk (5.1)

where the α̃i(k) (independent of β) are given by α̃i(0) = −e−αi and for k 6 − 1:

α̃i(k) = (
0∑

j=k+1

αi(j)e
−α(j−k)) − e−α(i−k). (5.2)

In conclusion, we get prediction formulas that depend on C, α, β (a function and
2 parameters which have a clear signification).

5.2. An application: the long range correlation case. As an application of
formula (5.1), we will compare the quality of the forecasts with and without Leverage
for the multifractal model, i.e. E[XiXi+j] = λ2 ln+(T/(j + 1)). We study the SP500
index on the period 2002-2010. Our data set will consist of the daily returns ri and
the following volatility proxy σHL

i on day i:

σHL
i = ln(Hi/Li),

where Hi and Li are respectively the highest and the lowest value of the index on day
i. In this context, we will use a filtering window of size L = 1000 (4 years) and use
approximate formulas for the coefficients (αi(j))−L+1 6 j 6 0 associated to the mul-
tifractal choice. More specifically, we choose the (αi(j))−L+1 6 j 6 0 by discretization
of continuous formulas first derived in [9] (i > 1):

αi(j) =
1

π

∫ j

j−1

√
i
√

(L+ i)
√
−s

√
(L+ s)(t− s)

ds, (5.3)

where L = 1000. To keep the paper self-contained, we give in the appendix a new
derivation of formula (5.3). We will compare two set of values for α and β:

(1) The values in the absence of Leverage: β = 0.
(2) Fixing β = 5 (a typical empirical value: cf. [6]), we try different values of the

Leverage correlation length: setting α = 1
Relaxtime

, we choose Relaxtime =
10, 30, 50, 200.

With these two set of values, we will therefore compare the forecasts σHL
i derived

from (5.1):

σHL
i =< σHL > +

0∑

j=−999

αi(j)(σ
HL
j − < σHL >) + β

√
< (σHL)2 >

0∑

k=−999

α̃i(k)rk,

where the αi(j) are given by formula (5.3), the α̃i(j) by formula (5.2) and the
< σHL > and < (σHL)2 > denote the empirical means:

< σHL >=
1

1000

0∑

j=−999

σHL
j , < (σHL)2 >=

1

1000

0∑

j=−999

(σHL
j )2.
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For the aforementionned set of values, we have plotted the renormalized empirical
mean square error (MSE) as a function of the horizon (see figure 2 below where we
set α = 1

Relaxtime
):

i→

√
E[(σHL

i − σHL
i )2]

E[σHL
i ]

.

We see that, for short horizons (depending on α), adding the Leverage effect
improves the renormalized (MSE) whereas only certain values of α (around 0.01)
improve the renormalized (MSE) for all horizons. This can be troublesome since the
precise value of α that one would derive by fitting the Leverage correlation function
seems to depend on the period (not to mention that the Leverage effect is very noisy
and therefore the error bars on the estimation of α are huge!).

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 0  20  40  60  80  100  120

Renormalized MSE on SP500 vol predictions: 2002-oct.2009

No Leverage
beta=5, Relaxtime=10
beta=5, Relaxtime=30
beta=5, Relaxtime=50

beta=5, Relaxtime=200

Figure 2. Plot: empirical MSE for the SP500 index on the period
2002-2010.

6. appendix

6.1. Proof of theorem 2.2. Let σ, γ, β be positive parameters and (Xi)i∈Z a square
integrable stationary sequence. For 1 6 p < +∞, we introduce the metric space
(Ep, dp) where:

Ep = {(σi)i∈Z; dp(0, (σi)) < +∞, (σi) is Fi−adapted and (σi, Xi, ǫi)i∈Z is stationary}
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and the distance function is defined by:

dp((σi), (σ
′

i)) = sup
i∈Z

E[(σi − σ′

i)
p]1/p

It is straightforward to check that (Ep, dp) is a complete metric space. We then
introduce the mapping T defined on Ep by:

(Tσ)i = σ(γ +Xi − β
i−1∑

k=−∞

e−α(i−k)σkǫk). (6.1)

For each element (σi)i∈Z, the sequence (σi, Xi, ǫi)i∈Z is stationary. It is plain to
deduce that ((Tσ)i, Xi, ǫi)i∈Z is stationary. Provided that E(|Xi|p)+E(|ǫi|p) < +∞,
we deduce that T maps Ep into Ep.

In the case p = 2, the mapping T is strictly contractive if and only if σ2β2

e2α−1
< 1.

This can be seen by expanding:

E
[
((Tσ)i − (Tσ′)i)

2
]

= E
[(
σβ

i−1∑

k=−∞

e−α(i−k)(σk − σ′

k)ǫk

)2]

= σ2β2

i−1∑

k=−∞

i−1∑

q=−∞

e−α(i−k)e−α(i−q)E
[
(σk − σ′

k)(σq − σq)ǫkǫq

]

The last double sum reduces to

σ2β2

i−1∑

k=−∞

e−2α(i−k)E
[
(σk − σ′

k)
2
]
E[ǫ2k]

because of the independence of (ǫi)i > n from Fn. It is then plain to deduce that

E
[
((Tσ)i − (Tσ′)i)

2
]

6
σ2β2

e2α − 1
d2(σ, σ

′)2.

Therefore T is a contractive map if σ2β2

e2α−1
< 1. By the fixed point theorem, there is

therefore a unique solution to the equation T (σ) = σ. Conversely, if there exists a
square integrable non anticipative solution (σ, r) to (2.1) and (2.2), we can compute
E[σ2

i ]. By expanding the square as above, we obtain

E[σ2
i ] =σ2(γ2 + E[X2

i ] + β2

i−1∑

k=−∞

e−2α(i−k)E[σ2
k])

=σ2(γ2 + E[X2
i ] +

β2

e2α − 1
E[σ2

i ]).

Therefore we get

E[σ2
i ]

(
1 − σ2β2

e2α − 1

)
= σ2(γ2 + E[X2

i ]) (6.2)

and we deduce σ2β2

e2α−1
< 1 (the process (Xi)i is assumed to be non trivial). Note that

we have also proved that such a solution satisfies E[σ2
i ] = σ2.



FORECASTING VOLATILITY IN THE PRESENCE OF LEVERAGE EFFECT 9

Remark: In the case when the processes (ǫi)i∈Z and (Xi)i∈Z are of p-th power
integrable for p ∈ [1,+∞[, by using the Hölder inequality instead of expanding the
square, we can show that for p ∈ [1,+∞[ the mapping T is strictly contractive for
the metric dp if

σpβpE[|ǫ0|p]
( 1

eα − 1

)p

< 1.

6.2. Proof of theorem 3.2. The proof is a simple adaptation of the proof in the
discrete setting. For 1 6 p < +∞, we introduce the metric space (E, dp) where
E is the set of all random progressively measurable processes (σt)t∈R such that
dp(0, (σt)) < +∞ and (σt, Xt, (Bt+h−Bt))t∈R is stationary for each h > 0 and where
dp is the distance

dp((σt), (σ
′

t)) = sup
t∈R

E[(σt − σ′

t)
p]1/p

(E, dp) is a complete metric space. We define the mapping Tc : Ep → Ep by

(Tcσ)t = σ
(
γ +Xt − β

∫ t

−∞

e−α(t−r)σr dBr

)
. (6.3)

In the case p = 2, it is straightforward to check that the mapping Tc is strictly

contractive if and only if σ2β2

2α
< 1. In that case, existence and uniqueness of a

solution to (3.1) and (3.2) results from the Picard fixed point theorem.

6.3. Proof of theorem 4.1. We define the sequence (σn)n > 0 of elements of E
obtained by iterating the mapping T from 0, that is σ0 = (0)i∈Z and

∀n > 1, σn = T (σn−1)

and we set C = σ2β2

e2α−1
. From classical arguments of fixed point theorem, we have the

estimates

d2(σ, σ
n)2

6 Cnd2(σ, 0)2. (6.4)

Now we consider the mapping TN : (E, d2) → (E, d2) defined in section 4. Given
a sequence u ∈ E, we can estimate the quantity d2(Tu, T

Nu) as in the proof of
Theorem 2.2 to obtain

d2(Tu, T
Nu)2

6 Ce−2αNd2(u, 0)2, (6.5)

d2(T
Nu, TNu′)2

6 Cd2(u, u
′)2. (6.6)

Furthermore, by using (6.5) and (6.6), we have

d2(σ
n, σN,n) =d2(Tσ

n−1, TNσN,n−1)

6 d2(Tσ
n−1, TNσn−1) + d2(T

Nσn−1, TNσN,n−1)

6 C1/2e−αNd2(σ
n−1, 0) + C1/2d2(σ

n−1, σN,n−1),

so that we get

d2(σ
n, σN,n) 6

n−1∑

k=0

Ck/2e−αNd2(σ
n−1−k, 0). (6.7)
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It remains to estimate d2(σ
k, 0). We use the recursive relation

d2(σ
n, 0)2 =σ2(γ2 + E[X2

0 ]) + Cd2(σ
n−1, 0)2

=σ2(1 − C) + Cd2(σ
n−1, 0)2,

which is easily derived from the definition of T . We deduce

d2(σ
k, 0)2

6 σ2. (6.8)

By gathering (6.4), (6.7) and (6.8), we complete the proof. �

6.4. Proof of theorem 5.1. Since for all i, j E[Xirj] = 0, we have:

σi = E[σi] + σ

0∑

j=−∞

αi(j)Xj − β

0∑

k=−∞

e−α(i−k)rk.

Since we have Xj =
σj

σ
− γ + β

∑j−1
k=−∞

e−α(j−k)rk, we get:

σ
0∑

j=−∞

αi(j)Xj

=
0∑

j=−∞

αi(j)(σj − E[σj]) + βσ
0∑

j=−∞

αi(j)(

j−1∑

k=−∞

e−α(j−k)rk)

=
0∑

j=−∞

αi(j)(σj − E[σj]) + βσ
−1∑

k=−∞

(
0∑

j=k+1

αi(j)e
−α(j−k))rk

Finally, we get the prediction formula:

σi = E[σi] +
0∑

j=−∞

αi(j)(σj − E[σj]) + βσ
0∑

k=−∞

α̃i(k)rk

where α̃i(0) = −e−αi and for k 6 − 1, α̃i(k) = (
∑0

j=k+1 αi(j)e
−α(j−k)) − e−α(i−k).

6.5. The prediction formulas for fractional brownian motion and for the
1/f noise. We remind in this subsection the prediction formula for fractional gauss-
ian noise dBH with Hurst index H ∈]0.5, 1[. Let S(R) denote the Schwartz space
of C∞ rapidly decreasing functions. We remind that the fractional gaussian noise
is a centered Gaussian mesure in S ′(R) (the space of tempered distributions) with
covariance formally given by:

E[dBH(s)dBH(t)] = H(2H − 1)
dsdt

|t− s|2(1−H)
.

We restate the main theorem of [11] (theorem 3.1):

Theorem 6.1. We get the following prediction formulas (L¿0):

E[dBH(t)|(dBH(s))−L<s<0] =

∫ 0

−L

gH,L(s, t)dBH(s)
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where the kernel gH,L(s, t) is given by:

gH,L(s, t) =
sin(π(H − 1

2
))

π

tH−
1

2 (L+ t)H−
1

2

(−s)H−
1

2 (L+ s)H−
1

2 (t− s)
.

To define the 1/f noise, one must introduce the space S0(R) of functions ϕ in
S(R) such that

∫
R
ϕ = 0. The 1/f -noise X is then the centered Gaussian measure

in the quotient space S ′(R)/R defined by (ϕ, ψ ∈ S0(R)):

E[

∫

R

ϕ(s)Xsds

∫

R

ψ(t)Xtdt] =

∫

R

∫

R

ϕ(s)ψ(t) ln
1

|t− s|dsdt.

Since for all ϕ, ψ ∈ S0(R):

E[
∫

R
ϕ(s)dBH(s)

∫
R
ψ(t)dBH(t)]

2(1 −H)
→ E[

∫

R

ϕ(s)Xsds

∫

R

ψ(t)Xtdt]

as H → 1, we can therefore recover the following prediction formula of [9] by letting
H → 1:

Theorem 6.2. We get the following prediction formula for the 1/f -noise X:

E[Xt|(Xs)−L<s<0] =

∫ 0

−∞

gL(s, t)Xsds (6.9)

where the kernel g(s, t) is given by:

gL(s, t) =
1

π

√
t
√

(L+ t)
√
−s

√
(L+ s)(t− s)

.

We can finally recover formula (5.3) by discretization of formula (6.9).
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