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Hypoelastic, hyperelastic, discrete and semi-discrete approaches 
for textile composite reinforcement forming

Philippe Boisse & Yamina Aimène & Abdelwaheb Dogui & Samia Dridi &

Sébastien Gatouillat & Nahiene Hamila & Muhammad Aurangzeb Khan &

Tarek Mabrouki & Fabrice Morestin & Emmanuelle Vidal-Sallé

Abstract The clear multi-scale structure of composite

textile reinforcements leads to develop continuous and

discrete approaches for their forming simulations. In this

paper two continuous modelling respectively based on a

hypoelastic and hyperelastic constitutive model are pre-

sented. A discrete approach is also considered in which

each yarn is modelled by shell finite elements and where

the contact with friction and possible sliding between the

yarns are taken into account. Finally the semi-discrete

approach is presented in which the shell finite element

interpolation involves continuity of the displacement field

but where the internal virtual work is obtained as the sum of

tension, in-plane shear and bending ones of all the woven

unit cells within the element. The advantages and draw-

backs of the different approaches are discussed.

Keywords Textile composites . Forming simulations .

Continuous/discrete approaches . Hyperelasticity .

Hypoelasticity . Semi-discrete finite element

Introduction

Forming composite reinforcements is a common process in

composite manufacturing. In case of structural applications

the reinforcements are usually made of continuous fibres.

The achievement of a double curved shape can be obtained

by the deformation of an initially flat fibrous reinforcement.

This reinforcement can be dry (i.e. without resin) in the

case of the preforming stage of LCM processes (Liquid

Composite Moulding) [1, 2]. In these processes, the resin

will be injected in a second stage on the so called preform.

In the case of thermoset or thermoplastic prepregs the resin

is present within the reinforcement during the forming stage

but it is in a weak state (because it is not yet polymerized in

case of thermoset prepregs, because the process is

performed at high temperature in case of thermoplastic

prepregs). In these last cases the resin is not hardened and

the forming is mainly led by the reinforcement. The present

paper mainly concerns the deformation of preforms for

LCM processes. Nevertheless the deformation modes of a

prepreg during draping are not fundamentally different. The

material mechanical behaviour remains of same nature but

some properties (such as in-plane shear stiffness) are

increased.

The continuous reinforcements are textile materials

made of continuous fibres. They can be 2D woven fabrics

(plain, twill or satin weave), interlock fabrics where the

different interlock layers are jointed by the weaving [3, 4],

3D fabrics [3, 5] or Non Crimp Fabrics (NCF) [6]. The

standard fibres used in composite applications are made of

carbon, glass or aramid. These fibres have a very small

diameter (5 to 25 μm) in comparison to their length (the

length of the part). Their assembly to the textile material

leads to a very specific mechanical behaviour because some

relative displacements between the fibres and the yarns are
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possible. Consequently the particular mechanical behaviour

is strongly led by the fibre directions. The stiffness in the

fibre direction is high, especially in comparison to their

density. The other rigidities of the reinforcement are due to

transverse contact and friction between fibres and yarns.

They are weak in comparison to the tensile stiffness.

Nevertheless these mechanical properties (in plane shear,

bending, transverse compression rigidities) are important to

describe some aspects of the forming process, especially

wrinkles. The in-plane shear behaviour prescribes the

maximum shear angle i.e. the maximum change of angle

between warp and weft yarns that is possible in the textile

reinforcement without wrinkles.

The approaches to model the forming of textile com-

posite reinforcements belong to two main families that are

related to the scale at which the analysis is made. The

textile reinforcement is a set of yarns (or fibres). The

analysis of the deformation can be made considering and

modelling each of these yarns (or fibres) and their

interactions (contact with friction). In this case the approach

is called discrete or mesoscopic. Of course the number of

yarns is high and the interactions are complex. On the

opposite, the continuous approaches consider a continuous

medium juxtaposed with the fabric and the mechanical

behaviour of which is equivalent to those of the textile

reinforcement. This mechanical behaviour is complex

because it concerns large strains and strong anisotropy.

Furthermore, it strongly changes during the forming.

The present paper aims to present continuous and

discrete approaches for thin (2D) composite reinforcements

forming simulations. First, two continuous approaches are

described within a membrane assumption. The first one is

based on a hypoelastic model and the second on a

hyperelastic one. Then simulations of woven fabric forming

based on a discrete approach are presented. Finally a semi-

discrete approach which is an intermediate method between

continuous and discrete ones is presented. The advantages

and drawbacks of the different approaches are discussed.

Specificities of the textile composite reinforcement

mechanical behaviour

Internal structure

Textiles are made up of thousands of fibres combined in

interlacing warp and weft tows (Figs. 1 and 2). This internal

structure makes relative motion possible between fibres and

between yarns, and this leads to very specific mechanical

behaviour. The only high stiffness is the tensile stiffness in

the fibre direction; all other rigidities (shear, bending,

compaction) are much weaker. A woven fabric is intrinsi-

cally a multiscale material and, depending on the specific

application of interest, one or more scales of the woven

fabric have to be explored.

Three scales can be distinguished. The macroscopic scale

refers to the whole component level, with dimensions in the

order of some centimeters to several meters (Fig. 1a). At the

mesoscopic scale, the woven reinforcement is seen as a set of

yarns, respectively the warp and the weft (or fill) yarns in

case of a woven fabric . Consequently, the corresponding

working scale is the one of the yarn dimension, typically one

to several millimetres. For periodic materials, mesoscopic

models consider the smallest elementary pattern which can

represent the whole fabric by several translations. That

domain is called the Representative Unit Cell (RUC). Each

yarn is made up of thousands of continuous fibres which

interact (Fig. 2), and thus the interactions of the reinforce-

ment can be analyzed at the microscopic scale. At the

microscopic level, the characteristic dimension is about one

to several micrometers. This is the only scale at which the

material is actually continuous.

Continuous and discrete approaches

The deformation analysis of a textile composite reinforce-

ment can be addressed at the three scales (macro-meso-

micro) defined above.

a Macroscopic scale b Mesoscopic scale

10 cm 

1 cm

Fig. 1 Macroscopic and meso-

scopic scales of textile compo-

sites reinforcements
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At macroscopic level, a woven fabric can be seen as a

continuous material with a very specific mechanical

behaviour, including high anisotropy and the ability to

exhibit very large shearing and bending deformations.

Investigation at the macroscopic level is the most popular

for reinforcement forming simulations, as it allows using

finite element codes with standard shell or membrane

elements and does not ask the description of the internal

textile material structure. Unfortunately, despite the large

amount of work in this field [7–14] there is no widely

accepted model that accurately describes all aspects of the

mechanical behaviour of fabrics. Two continuous

approaches are described in the present work in “Continuous

approach 1: a hypoelastic model”.

In discrete approaches, each yarn is modelled as a simple

element such as a beam or spring and the interaction

between warp and weft directions are taken into account

explicitly by considering contact behaviour [6, 15–17].

Because this approach concerns the yarns it is also call

meso-modelling. The main difficulty comes from the great

number of yarns and of contacts that have to be taken into

account. This is even more critical when the modelling is

done at the microscopic level where each fibre is described

as a beam [18–21]. For this reason, only very small

fragment of the fabric can be modelled and this level is

generally not suitable for forming simulations.

Continuous approach 1: a hypoelastic model

Hypoelastic models have been proposed for material at

large strain [22, 23]:

s
r ¼ C : D ð1Þ

where D and C are the strain rate tensor and the constitutive

tensor, respectively. sr called the objective derivative of

the stress tensor, is the time derivative for an observer who

is fixed with respect to the material.

s
r ¼ Q:

d

dt
QT:s:Q

� �

� �

:QT ð2Þ

Q is the rotation from the initial orthogonal frame to the

so-called rotating frame where the objective derivative is

made. The most common objective derivatives are those of

Green-Naghdi and Jaumann. They use the rotation of the

polar decomposition of the deformation gradient tensor

F ¼ R:U, (standard in Abaqus explicit), and the corota-

tional frame, respectively. These are routinely used for

analyses of metals at finite strains [24, 25].

It has been shown that, in the case of a material with one

fibre direction the proper objective rotational derivative is

based on the rotation of the fibre [26].

A membrane assumption is used. The Green-Naghdi’s

frame (GN) is the default work basis of ABAQUS/Explicit.

Its unit vectors e1; e2 in the current configuration are

updated from the initial orientation axes, (e01; e
0
2) using the

proper rotation R:

e1 ¼ R:e01 e2 ¼ R:e02 ð3Þ

In the current configuration, the unit vectors in the warp

and weft fibre directions are respectively:

f1 ¼
F:f01

F:f01

�

�

�

�

�

�

f2 ¼
F:f02

F:f02

�

�

�

�

�

�

ð4Þ

Where (e01; e
0
2) and (f01; f

0
2) are assumed to coincide

initially (Fig. 3). Two orthonormal frames based on the

two fibre directions are defined: g g
1
; g

2

� �

with g
1
¼ f1

and h h1; h2ð Þ with h2 ¼ f2 (Fig. 3).

The strain increment de is given as a code’s output in

calculation loop from time tn to time tn+1. (The matrix of the

components of this strain increment is given in the GN

frame in the case of ABAQUS/Explicit, but it could be any

other frame). The components of the strain increment in the

two frames g and h are considered (α and β are indexes

taking value 1 or 2):

de ¼ d"gabga � g
b
¼ d"habha � hb ð5Þ

The fibre stretching strain and the shear strain are

calculated for the two frames g and h.

d"g11 ¼ g
1
� de � g

1
d"g12 ¼ g

1
� de � g

2
ð6Þ

d"h22 ¼ h2 � de � h2 d"h12 ¼ h1 � de � h2 ð7Þ

Fig. 2 Yarn made of thousands of fibres
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From these strain components the axial stress component

and shear stress components are calculated in each frame g

and h:

ds
g
11 ¼ Egd"g11 ds

g
12 ¼ Gd"g12 ð8Þ

dsh
22 ¼ Ehdeh22 dsh12 ¼ Gdeh12 ð9Þ

Eg and Eh are the stiffness in the warp and weft fibre

directions respectively and G the in-plane shear stiffness of

the fabric (They are not constant, especially G depends

strongly on the in plane shear). Following the scheme of

Hughes and Winget [26, 27], the stresses are then integrated

on the time increment from time tn to time tn+1:

s
g
11

� �nþ1 ¼ s
g
11

� �n þ ds
gnþ1=2

11 s
g
12

� �nþ1 ¼ s
g
12

� �n þ ds
gnþ1=2

12

ð10Þ

sh
11

� �nþ1 ¼ sh
11

� �n þ dshnþ1=2

11 sh
12

� �nþ1 ¼ sh
12

� �n þ dshnþ1=2

12

ð11Þ

The stress at time tn+1 in the fabric is the addition of the

stresses in the two fibre frames:

s
nþ1 ¼ s

g
� �nþ1

þ s
h

� �nþ1

ð12Þ

For instance, denoting s ¼ se
abea � eb and omitting the

superscript n+1 because all the quantities are at time tn+1,

the components of the Cauchy stress tensor in the GN

frame (that are requested in the Abaqus Explicit code) are:

se
ab ¼ s

g
11 ea:g1

� �

eb:g1

� �

þ sh
22 ea:h2ð Þ eb:h2

� �

þ s
g
12 ea:g1

� �

eb:g2

� �

þ sh
12 ea:h1ð Þ eb:h2

� �

ð13Þ

Remark It is shown in Appendix A. that a shear angle

increment dγ gives stresses proportional to Gdγ. (γ is the

shear angle, γ = θ1–θ2 (Fig. 3)). That is important because

the in-plane shear behaviour of a textile material is function

of the shear angle (G is not constant and depends on γ).

More detail on this approach can be found in [28, 29].

This approach was used to simulate the forming of a double

dome shape corresponding to an international benchmark

[30]. An experimental device has been realised in INSA

Lyon in order to perform this forming (Fig. 4). The woven

e20 20 

e10=f10 

e10 

e20 
f2=h2 

e1 

e2
g2 

h1 

θ1 

θ2 

f1=g1 

e20=f20 

e10=f10 

Fig. 3 Fibres axes and GN axes

after deformation. Initially

these axes are superimposed

Fig. 4 Double dome forming:

experimental device
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fabric is a commingled glass/polypropylene plain weave

that has been tested in the material benchmark study

conducted recently [31]. The computed and experimental

geometries after forming are compared Figs. 5 and 6. The

shear angles have been measured using a 3D stereoscopic

device [32]. The measured and numerical geometries and

shear angles are in good agreement.

Continuous approach 2: a hyperelastic model

In this approach a potential is defined which aims to

reproduce the non linear mechanical behaviour of textile

composite reinforcements. The proposed potential is a

function of the right Cauchy Green and structural tensor

invariants defined from the fibre directions. This potential

is based on the assumption that tensile and shear strain

energies are uncoupled. It is the sum of three terms.

W ¼ W1 I1ð Þ þW2 I2ð Þ þWS I12ð Þ ð14Þ

This assumption (tensile and shear strain energies are

uncoupled) are made for sake of simplicity. The indepen-

dence of tensile behaviour relatively to in plane shear has

been shown experimentally [33]. The other hypotheses are

probably less true, but there are very few data available on

the couplings.

The structural tensors L
ab

are defined from the two unit

vectors in the warp and weft directions f10 and f20 in the

reference configuration C0 (Fig. 3) [34]:

L
ab

¼ fa0 � f b0 ð15Þ

The two first terms W1 and W2 are the energies due to

the tensions in the yarns. They are function of invariants I1
and I2 respectively, themselves depending on the right

Cauchy Green strain tensor C ¼ FT � F and the structural

tensors L
aa
:

I1 ¼ Tr C � L
11

� �

¼ l21 I2 ¼ Tr C � L
22

� �

¼ l22 ð16Þ

la is the deformed length of on initially unit fibre in the

direction α.

The third term WS in (14) is a function of the second

mixed invariants of C.

I12 ¼
1

I1I2
Tr C � L

11
� C � L

22

� �

¼ cos2q ð17Þ

The second Piola Kirchhoff stress tensor is derived from

this potential [35–37]:

S ¼ 2
@W

@C
ð18Þ

And in the case of the present potential (14):

S ¼ 2
@W

@I1
� I12

I1

@W

@I12

	 


L
11
þ 2

@W

@I2
� I12

I2

@W

@I12

	 


L
22

þ 2

ffiffiffiffiffiffiffiffi

I12

I1I2

r

@W

@I12

	 


L
12
þ L

21

� �

ð19Þ

In order to define the form of the potential two

complementary assumptions are made taking into account

the specific woven fabric behaviour and its deformation

modes. As assumed above, i/ The tensions in the yarns and

0
5
10
15
20
25
30
35
40
45
50

1 3 5 7 9 10

Shear Angle Locations

S
h

e
a
r 

A
n

g
le

 (
d

e
g

.)

Numerical Experimental (OSM)

2 4 6 8

Fig. 6 Comparison between numerical and experimental shear angles

at the locations shown in Fig. 5

Fig. 5 Experimental and numerical outputs of double dome forming test
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the in-plane shear are independent. ii/ The tensions in the

warp and weft directions are uncoupled.

The potential has to vanish in a stress free configuration.

Polynomial functions of the invariants are considered in the

present work. The global form of the proposed potential

energy is given by:

W C
� �

¼
X

r

i¼0

1

iþ 1
Ai I

iþ1
1 � 1

� �

þ
X

s

j¼0

1

jþ 1
Bj I

jþ1
2 � 1

� �

þ
X

t

k¼1

1

k
CkI

k
12 ð20Þ

The resulting second Piola Kirchhoff tensor is:

S ¼ 2
X

r

i¼0

AiI
i
1 �

1

I1

X

t

k¼1

CkI
k
12

!

L
11

þ 2
X

s

j¼0

BjI
j
2 �

1

I2

X

t

k¼1

CkI
k
12

!

L
22

þ 2
1
ffiffiffiffiffiffiffi

I1I2
p

X

t

k¼1

CkI
k�1=2
12

!

L
12
þ L

21

� �

ð21Þ

For strain-free configuration, stresses have to vanish.

This condition imposes:

X

r

i¼0

Ai ¼ 0 ;
X

s

j¼0

Bj ¼ 0 ð22Þ

To determine the constants Ai, Bj and Ck, three

experimental tests are necessary: two tensile tests in the

warp and weft directions and one in-plane pure shear test.

The details of the calculations to obtain Eqs. 19 to 21 are

given in [38]. In this paper it is also shown that the form of

the potential given above gives correct results concerning

the direction of the loads on the boundary of a picture frame

while other forms of the potential lead to boundary loads

that are not correct for a woven fabric.

The proposed hyperelastic model is implemented in a

user routine VUMAT of ABAQUS/Explicit and it is applied

to membrane elements. The simulation of a hemispherical

punch forming process is performed in the case of a

strongly unbalanced twill [39]. The warp rigidity is 50 N/yarn

and the weft rigidity is 0.2 N/yarn. The shear behaviour

of this fabric has been experimentally analysed by the

picture frame test [40]. The experimental results in terms

of deformed shape are shown Fig. 7a together with the

results of the simulation Fig. 7b. The computed deformed

shape (made using the hyperelastic model proposed

above) is in correct agreement with the experimental

one. Especially the strong difference of the deformation in

warp and weft directions is well verified. Another

hyperelastic model applied to garment textile have been

developed in [41].

A discrete approach for the composite reinforcement

forming

In discrete modelling (also called meso-modelling in the

case of textile material), the modelling does not directly

concern the textile material but each fibre bundle. This one

is modelled by elements simple enough to render the

computation possible because it concerns the forming of the

whole composite reinforcement and the number of yarns

and contacts between these yarns is very large. The

interactions between warp and weft directions are taken

into account explicitly by considering contact behaviour

and relative motions between the yarns are possible [15–

17]. At the microscopic level, each fibre is satisfactorily

described as a beam but this approach is time consuming.

ba
Fig. 7 Hemispherical forming

of a very unbalanced woven

fabric a experiment, b simula-

tion using a hyperelastic model
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The main difficulty is the great number of contacts with

friction that have to be taken into account, especially for a

woven fabric. For this reason, only very small elements of

the fabric have been modelled to date [18, 20, 21].

Nevertheless, this approach is promising because it does

not necessitate any assumptions regarding the continuity of

the material, the specific mechanical properties resulting at

the macroscopic level naturally follow the displacements

and deformations of the yarns and it provides an interesting

way of taking the weaving operation into account. The

fibres constituting the yarns can be modelled directly, but

their very large number (3K to 48K per yarn) requires that

the computations are made for a number of fibres per yarn

significantly smaller than in reality. An alternative possi-

bility is to use a continuous behaviour for each yarn (meso-

modelling). This implies that the fibrous nature of the yarn

is taken into account in this model especially in order to

have rigidities in bending and transverse compression very

small in comparison to the tensile stiffness. In any case, a

compromise must be found between a fine description

(which will be expensive from the computation time point

of view) and a model simple enough to compute the entire

forming process. Figure 8b show the finite element model

used for discrete simulations of forming processes (216 dof

(degrees of freedom)). It is compared to another FE model

of the unit cell used in [42] (Fig. 8a) to analyze the local in

plane shear of a plain weave unit cell (47214 dof). It cannot

be considered (at least today) to use this last FE model to

simulate the forming of a composite reinforcement that is

made of several thousands of woven cells. In the simplified

unit cell (Fig. 8b) each yarn is described by few shell

elements and the contact friction and possible relative

displacement of the yarns are considered. The in-plane

mechanical behaviour is the same as the one defined in [42]

and is close of the one described in “Continuous approach

1: a hypoelastic model” (but for a single fibre direction).

The bending stiffness is independent of the tensile one and

very much reduced in comparison to the one given by plate

theories.

Two examples are presented in Figs. 9 and 10 based on

a discrete modelling using the unit cell of Fig. 8b. The first

one is a picture frame test for which the wrinkles appear

naturally in the simulation when the shear angle is

reached. It must be noticed that the in-plane shear

behaviour of the fabric is not an input data of the analysis

and does not need to be known. It results at the

macroscopic level of contact and friction between the

yarns and lateral compression of the yarns. Figure 10

shows the results of a hemispherical forming simulation. It

must be said that this study concerning forming simulation

at the meso-scopic scale is beginning at INSA Lyon. If the

discrete or mesoscopic modelling is a promising approach

because a large part of the mechanical specificity of fabric

behaviour is due to yarn and fibre interactions, and

following fibre directions is simpler than for continuous

models, it must be recognized that the forming simulations

made with approaches that permits the relative sliding of

the yarns in contact are not many. The simulation of

impact in textile and textile composite may be more

advanced but the physics of the deformation is somewhat

different [43–45].

The semi-discrete finite elements for the composite

reinforcement forming

This approach takes into account the difficulties to describe

the textile material as a continuum in one hand (continuous

approach) and the difficulties to model all the yarns and their

contacts in the other hand (discrete approach). In this approach

that is more or less intermediate, the textile composite

reinforcement is seen as a set of a discrete number of unit

woven cells submitted to membrane loadings (i.e. biaxial

tension and in-plane shear) and bending (Fig. 11) [46, 47].

In any virtual displacement field h such as h ¼ 0 on the

boundary with prescribed loads, the virtual work theorem

relates the internal, exterior and acceleration virtual works:

Wext h
� �

�Wint h
� �

¼ Wacc h
� �

ð23Þ

with

Wint h
� �

¼ Wt
int h
� �

þWs
int h
� �

þWb
int h
� �

ð24Þ

Fig. 8 Meso-modelling of a

unit cell of a plain weave. (a) FE

model for the analysis of the

behavior of the unit cell. 47214

Dof. (b) FE model for simula-

tions of the whole composite

reinforcement forming. 216 Dof
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Wt
int h
� �

, Ws
int h
� �

, Wb
int h
� �

are the internal virtual works of

biaxial tension, in-plane shear and bending respectively with:

Wt
int h
� �

¼
X

ncell

p¼1

p"11 h
� �

pT11pL1 þ p"22 h
� �

pT22pL2 ð25Þ

Ws
int h
� �

¼
X

ncell

p¼1

pg h
� �

pMs ð26Þ

Wt
int h
� �

¼
X

ncell

p¼1

pc11 h
� �

pM11pL1 þ pc22 h
� �

pM22pL2 ð27Þ

where ncell is the number of woven cell. L1 and L2 are the

length of unit woven cell in warp and weft directions.

"11 h
� �

and "22 h
� �

are the virtual axial strains in the warp

and weft directions. g h
� �

is the virtual angle between warp

and weft directions. c11 h
� �

and c22 h
� �

are the virtual

curvatures of warp and weft yarns. "11 h
� �

, "22 h
� �

, g h
� �

,

c11 h
� �

and c22 h
� �

are function of the gradient of the

virtual displacement field. T11 and T22 are the tensions on

the unit woven cell in warp and weft directions. M11 and

M22 are the bending moments on the woven cell respec-

tively in warp and weft directions. Ms is the in-plane shear

moment. The mechanical behaviour of the textile reinforce-

ment defines a relation between the loads Taa, Ms, Maa and

the strain field. Experimental tests specific to textile

composite reinforcements are used to obtain these mechanical

properties. The biaxial tensile test gives the tensions T11 and

T22 in function of the axial strain ε11 and ε22 [33], the picture

frame or the bias extension test gives the shear moment Ms in

function of the angle change γ between warp and weft yarns

[31, 48] and the bending tests give the bending moments

M11and M22 in function respectively of χ11 and χ22 [49].

The tensions T11 and T22 simultaneously depend on the

warp and weft strains because of the weaving i.e., they are

in the form T11(ε11, ε22), T
22(ε11, ε22). The in-plane shear

moment is assumed to depend only on the shear angle i.e.

Ms (γ). Bending moments are supposed to be in the form

M11(χ11) and M22(χ22). The above forms of the loads Taa,

Ms, Maa in function of the strains in the unit woven cell are

used because they account for the main phenomena,

because other data are usually not available and also in

order to keep the approach simple enough. Some studies

have shown that these simplifications can be questionable

in some cases [50, 51]. Nevertheless it is possible to extend

the approach to the cases where each load Taa, Ms, Maa

depends on more strain components.

The three node triangle shown Fig. 11 is composed of

ncelle woven cells. The virtual generalized strains "11 h
� �

,

"22 h
� �

, g h
� �

, c11 h
� �

and c22 h
� �

can be related to the

virtual nodal displacements of the nodes of the element

taking into account the interpolation of the geometric and

kinematic conditions within the element. Especially, using

a rotation free approach [52, 53], the curvatures c11 h
� �

,

c22 h
� �

are related to the virtual nodal displacement of the

nodes 1, 2, 3 of the element and to those of the node 4, 5, 6

of the neighbouring triangles. This permits to define a shell

element without rotation degrees of freedom. Using these

strain interpolations in the internal virtual works defined

Eqs. 23, 24 and 25 lead to the internal nodal loads of

tensions, in-plane shear and bending respectively. Details of

the expressions of these nodal loads can be found in [47].

The hemispherical forming of the very unbalanced twill

(analysed in “Continuous approach 2: a hyperelastic

model”) is simulated using the semi-discrete elements

defined above. The blank holder is a 6 kg ring submitted

to its own weight. This final shape is well obtained by the

simulation (Fig. 12). The ratio of the lengths after

deformation lweft/lwarp is equal at the top of the

hemisphere to 1.8 in experiments and in simulation as

well. There are many wrinkles, especially along the vertical

axis. They are fairly well obtained by the simulation.

Discussion and conclusion

Four different approaches have been presented in the paper.

The two first ones (“Continuous approach 1: a hypoelastic

Fig. 9 Simulation of a picture frame test using the unit cell model of

Fig. 8(b)

Fig. 10 Simulation of hemispherical forming test using the unit cell

model of Fig. 8b
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model” and “Continuous approach 2: a hyperelastic

model”) are continuous approaches, the third one is a

discrete modelling where each yarn is modelled as a set

of shell elements (“A discrete approach for the composite

reinforcement forming”) and the fourth one is intermedi-

ate since the material is composed of a discrete number

of unit woven cells but a continuity is due to the finite

element interpolation (semi-discrete element, “The semi-

discrete finite elements for the composite reinforcement

forming”).

The continuous approaches are made within membrane

assumption while the two last one use shell finite

elements. But this is not specific and all the presented

approach can be made within membrane and shell

assumption. The bending stiffness must be uncoupled

with regard to the tensile rigidities. This stiffness is

necessary to obtain correct shapes of the wrinkles.

Nevertheless the membrane assumption is correct for

most thin woven textile reinforcements. The appearance

of wrinkles is due to compressive and above all to in-

plane shear rigidities [46].

The discrete approach is attractive and promising. The

very specific mechanical behaviour of the textile material

due to the contacts and friction between the yarns and to

the change of direction is implicitly taken into account. If

some sliding occurs between warp and weft yarns, it can

be simulated. This is not possible by the continuous

approaches that consider the textile material as a continu-

um. This is an important point because it can be necessary

to prevent such a sliding in a process. Nevertheless, the

main drawback of the discrete approach is the necessary

compromise that must be done between the accuracy of the

ba
Fig. 12 Hemispherical forming

of an unbalanced fabric. Exper-

iment (a) and simulation using

semi-discrete elements (b)

a b

Fig. 11 Triangular finite element (a) made of unit woven cells submitted to tension, in-plane shear and bending (b)
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model of the unit woven cell and the total number of

degrees of freedom. The modelling of the unit cell must be

accurate enough to obtain a correct macroscopic mechan-

ical behaviour, but the number of degrees of freedom of

each cell must remain small in order to compute a forming

process for which there will be thousands of woven cells.

To our knowledge this discrete approach is not yet used in

composite forming process simulations. There are a lot of

improvements to achieve in the meso-modelling of different

textile reinforcements. The continuous increase of the

computer power is a strong argument in favour of this

approach.

The continuous approach is the most commonly used in

composite reinforcement forming today. The main advan-

tage is to use standard shell or membrane finite element.

The only mechanical behaviour has to be specified in order

to take the very particular behaviour of textile materials into

account. Many models exist, but none of them is clearly

admitted. The modelling of a textile material at large strain

is very difficult. We believe that one reason of this

difficulty is due to the bad adequacy of the stress notion

to the textile materials. A stress tensor associates an

elementary surface load to a normal to an elementary

surface. This is not clearly defined in the case of textile

materials.

The semi-discrete approach aims to avoid the use of

stress tensors and directly define the loading on a woven

unit cell by the warp and weft tensions and by in-plane

shear and bending moments. These quantities are simply

defined on a woven unit cell and above all they are

directly measured by standard tests on composite rein-

forcements (biaxial tension, picture frame, bias extension

and bending tests). The virtual internal works within a

fabric are obtained from these loads and moments and

the dual virtual strains. This leads to simple and efficient

elements. Among the different approach the best results

have always been obtained in our lab by this semi-

discrete approach, in particular on the tests that have

been performed in comparison to experimental ones [54,

55]. An extension of the semi-discrete approach has been

performed to the case of 3D interlock reinforcements used

in aero engine fan blades [4].

Appendix A

γ is the shear angle, γ = θ1–θ2 (Fig. 3). It is shown that a

shear angle increment dγ gives stresses proportional to Gdγ

in the stress computation scheme presented “Continuous

approach 1: a hypoelastic model” (Eq. 3 to 11). That is

important because the in-plane shear behaviour of a textile

material is function of the shear angle (G is not a constant

and depends on γ).

The polar rotation tensor and deformation gradient

tensor are respectively:

R ¼ ea � ea0 F ¼ lbfb � eb0 ð28Þ

lb is the deformed length of an initially unit fibre in the

direction β. The right stretch tensor U is given by the polar

decomposition:

U ¼ RT � F ¼ ea0 � eað Þ � lbfb � eb0
� �

¼ lbfb � ea
� �

ea0 � eb0
� �

ð29Þ

The symmetry of U imposes

l1f2 � e1 ¼ l2f1 � e2 ð30Þ

In the case of pure in plane shear (λ1=λ2=1) or in the

case of equal fibre elongations in warp weft directions, this

equation becomes

f2 � e1 ¼ f1 � e2 or h2 � e1 ¼ g
1
� e2 ð31Þ

In the case of most of the composite reinforcements, the

fibre elongations are small and (31) can be considered.

Because the frames (e1; e2), (g1; g2), (h1; h2) are ortho-

normal

g
1
� e1 ¼ g

2
� e2 g

1
� e2 ¼ �g

2
� e1 ð32Þ

h1 � e1 ¼ h2 � e2 h1 � e2 ¼ �h2 � e1 ð33Þ

Considering a shear increment dg ¼ dq1 � dq2 ¼ d"g12�
d"h12, the Eqs. 31, 32, 33 lead to the specific form of the

stress calculation Eq. 13:

dse
ab ¼ G d"g12 � d"h12

� �

ea:g1

� �

eb:g2

� �

¼ Gdg ea:g1

� �

eb:g2

� �

ð34Þ
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