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Abstract—This work deals with numerical techniques to com- « an electrostatic problem on a domain that only takes into

pute electrostatic fields in devices with rounded corners 2D account the shape of the rounded corner. The correspon-

situations. The _approach leads to the solution of two probles: ding solution will be used with an appropriate “scaling”.
one on the device where rounded corners are replaced by sharp

corners and the other on an unbounded domain representing This intuitive argument coincides with the mathematical re
the shape of the rounded corner after an appropriate rescatig.  sults proposed partially by Timouyaﬂ [1] in 2003 and regentl
Details are given on several ways to solve both problems and completed by Dauge and her collaboratcﬂs [2]. In addition to
numerical results are.prowded to assess the efficiency ande the predictable behavior of the solution, some error estima
accuracy of the techniques. . . . .
are also provided |n[[1],[[2] for the approximate solutions w
. INTRODUCTION consider.

The precise description of an object containirmynded This work is addressed to the community of engineers that
cornersleads to consider meshes with a large number of nodég€ numerical methods (as it was donefin [3]), and the aim is
when the finite element method (FEM) is straightforwardiip illustrate the finite element implementation of the tretioal
applied. Dealing with such meshes makes the computati&Ncepts _Wh'Ch are PFOVEd n qthgr referendgs (4], [2].
time- and resource-consuming. Moreover, these computatio In Section[l] are given the principles of the method. Then,
have to be repeated if the curvature radius of the roundiéds made explicit how the different problems, that enalole t
corner is modified. build the approximate solution, can be solved:

In order to avoid this computational cost, the rounded . the computation of the “singularity factor” of the solution
corners are usually replaced Bharp corners The obtained on the domain with the sharp angle, in Sect@\ 1,
computational results are then “globally correct” but lica « the problem on the unbounded domain taking only into
inaccurate in the neighborhood of the corners. account the shape of the rounded corner, in Sedtipn IV.

In this work, we are dealing with a 2D electrostatic problen, Sectionsﬂl,m andﬂ, numerical results are given toess

in a domain with a rounded comer (see Fg. 1(a)). Thee accuracy of the proposed techniques.
proposed method to approximate the electric scalar palenti

is based on two observations, which can be checked by simple I1. PRINCIPLES OF THE METHOD
numerical experiments:

« the exact solutionglose to the cornercomputed for
several values of the curvature radiysare quasi-similar,
up to a “scaling factor” (proportional te). It is also
noticed that the “shape” of the solutiortdose to the
corner (their “shape” but not their amplitude) WeaklyA
depend on other elements of the studied structure, such as
the distance to the boundaries: it is said that the dominant
term of the solutions close to the corner aedf-similar

« the exact solutionfar from the cornerare weakly influ-
enced by the change of the curvature radiuand they
converge to the solution on the domain with the sharp
corner where goes to zero.

It can be deduced that an accurate approximate solution of
the exact solution for any curvature radiusan be build from

the solutions of two problems: (@) Domain with a(b) Domain with a sharfc) Unbounded profile
. . rounded cornef.. corner{2. domain Q.
« an electrostatic problem on the real domain except that

the rounded corner is replaced by a sharp corner; Fig. 1. Considered domair®, Qoo and ..

For the sake of clarity, the method is explained on a specific
structure, see Figﬂ 1, but it can be straightforwardly edéshto
other structures, in particular including more than twactle
conductors.

Definitions of the considered problems

H
l‘(]




Letv. denote the solution of\v. = 0 in the domairtl,, see The “scaling” used to map a point of coordin&ted) in .
Fig. . The function. is enforced to be equal to zero orto a point inQ) is given by(r,0) = (r/e,8). This change
I'Y and toV! on T, andwv. verifies homogeneous Neumanrof coordinates applied ir[|(2) leads to:
conditions onI'V. The factore defines the true size of the o
rounded corner, starting from the profile domain, Hig.]1(c) e*5(roc, 0) = S(r, 0). (4)

where the characteristic size of the rounded corner is These considerations enable to understand the following ap

Let alsov denote the solution of\v = 0 in the domain proximate expressions, that are detailed[jn [2]:
Q with the sharp corner, see Fif. 4(b). The functioris
enforced to be equal to zero diff and to V! on T}, and  v:(r,0) & Ae®voo(roo, 0), for r < ke (usually k = 1), (5)
v verifies homogeneous Neumann conditionsIth. In the Ve (7,0) = (1, 0) + Ae® Voo (Too, ) — S (700, 0)], (6)
neighborhood of the sharp COI’HEID can be expanded in series for r > ke
as follows [b]: '

00 C. Remarks
. o . ™ . . . .
v(r,0) = Ar®sin(af) + Y apr*® sin(kab), (Oé = ;) . (1) The proposed expressions remain approximate, indeed:
k=2 . expressions[{5) and](6) are not equal for= ke, in

and the first term of this expansion is said singular because i particular when the geometry of the domdhn makes
makes the amplitude of the electric field go to the infinite at  the solution forr < ke to be not symmetric (in this first

the sharp corner. The factoris called thesingularity factor order approximation, the effect of the domdn close

in the following. Methods for the computation afare given to the corner is only related to the value the singularity
in Section[1]]. A specific notation will also be used for the  factor \. It is not sufficient: every problem with the same
first function of expansion[[l): anglew and the same will give the same approximate

0) — r® sin(ad 5 solution close to the corner).
S(r,0) = r® sin(ab). @ e in (f), (voo(7o0,0) — S(rs0,0)) is not exactly zero on
Finally, let v., denote the solution of\vs, = 0 in the I'l: thus, the conditions on this boundary, which are
unbounded domaifi2.. where the characteristic size of the  Satisfied byv, are not satisfied by approximatioff (6).
rounded corner ig, see Fig[1($). The rounded corner has the However, it can be seen, that whenevegoes to zero,

same shape as in the real dom&in the potential is zero on the remaining error becomes negligible: the scaling of the
%, and the behavior at infinity of the potential is given by ~ domain makes to send the boundaries further from the
the first term of the expansiofi] (1) up to the scalar origin in the dimensionless solutian, and the behavior
at infinity (3) can be used.
Tiigloo(voo(rooae) — S5(ros,0)) = 0. @) 1tis possible to compute complementary terms, to increase

_ the accuracy of the approximate solution. In particulag th
The FEM enables to compute the term whatever is the ¢4 10ing term in the expansion, which will vary a(2a6)

shape_ of the roupded corner (Seg Sedfidn IY)' Moreover, SOfitccomes from (L)), will be able to introduce an asymmetry of
analytic expressions can be built for,, for instance using {he approximation close to the rounded corner. Nonetheless
conformal maps, but it is restricted to particular shapes 8, nymerical experiments with the first terms of the expzmsi
the rounded corner enforced by these maps. show the relevance of this first order approach and illustrat

It is assumed in the remainder of this section that thfe theoretical estimates for the numerical erfr [2].
approximate finite element solutions foandv., have already | ot us also note that the method is generic and it could

been computed. be applied to other particular shapes which would not be
“rounded” (and even to a simple surface irregularity, on a

i ) ~surface plane).
Solutionv. can be computed by the FEM, using a “fine”

discretization close to the rounded corner. However, thix Application to the computation of the maximum field as a
computation has to be performed again for each “scalef function of the curvature radius

the rounded corner. With a reduced amount of numerical computations, a mesh
Our aim is to approximate the solutien by using only:  yjthout the rounded corner of the whole studied device and a
« the solutionv, that will approximatev. far from the mesh of the rounded corner but built independently from the
corner,i.e. whenr > ¢; rest of the structure, it is possible to determine the viarat
« the solutionv.,, after a proper scaling by and the sin- of the electric field close to the rounded corner as a function
gularity coefficient), that will approximate the solution of the curvature radius. Indeed, the electric figid(r, 0) in

B. Proposed approximate solution

close to the corner,e. whenr < e. any point close to the rounded corner depends only on:
T _ _ _ _ , « the singularity factor\ whose evaluation is introduced

It is valid on any intersection of a disc centeredOnwith the domain(2 in Secti nml . " h uti ith th h
which coincides with the intersection of the same disc withirdinite sector In Sectio starting fromv the solution with the sharp

whose corner is irO and whose angle is. corner,



« the field F(r, ) transferred to the domaife. (the I
solution may be analytic in some cases, see sen IV);
« the scale factoe.

The corresponding relation is given close to the corner by:
E.(r,0) = eV B (roo, 0). @)

For instance, if the statistical distribution of the cutvat radii
is known for a series ofV pieces used in a high-voltage
device, it will be possible to compute the statistical dlsttion
corresponding to the maximal electric field in these pieces.

vy Qs

Ill. COMPUTATION OF THE SINGULARITY FACTOR Fig. 2. Domain{s where§ — 0 is considered.
A. The Fourier method: weighted line integral of v

The Fourier method enables to compute an approximation, this computationy is the FEM solution of the problem

of the singularity facton\ from the solutionv of the problem ., o detailed in SubsectiA. The functiart is the same

With the sharp Corner.(see Fim(b)) given by the.FEM. As in ﬂ]. It is the sum of the “dual singular functio$™:
weighted integral ofv is computed on an arc of circle of

radiusr, centered orO, from one border of the angle to the S*(r,0) = r~*sin(ab), (11)
other. w and a more regular function;, computed on the domaif
A= Zraa/v(m@) sin(af) dé. (8) Which is the solution of the following problem:
w
0 Avp =0, on (),

When ¢ varies betweerd and w, af varies betweer) and vh =—8* onrPur!

e L . . ] X R ) ’ (12)
m; in this range of variation, the integration sifa(af) with s, vy N
sin(ka#) is zero for allk strictly greater than. Relation [B) is n - on’ onT™.

then obtained by considering expansiﬂn (1) in the line iratleg

. . .
There is no restriction in the choice of except that the ' OPe™ [2R) can be solved by the FEM. Thus it is obtained:

arc of circle must belong to the domaih vt =vg + 57, (13)

B. Dual solution method which is a singular non zero function. Moreover has the
The theoretical explanations concerning this method c&flowing properties:

be found in [|L, Subsubsection 2.3.8]. This approach enables Av* =0, on Q,

to compute the singularity factox from an integral on the

domain) with the sharp angle (see Figg. 4(b)) of a function U* =0, onr?uTY, (14)
v* to compute, weighted by a functighwhich is the laplacian I —0. onTV.
of a “regular lifting” functionw: On ’
Considering again the path integr@(lO) whérgoes to
A= [ fv"ds. (9) zero, the integrations are restrictedItd and Cs:
Q
It is proposed here not to construct this regular lifting the 0 = lim @v* _ v‘%* dl,
less regular lifting which is commonly (but often implig}l =0 Joq, On on (15)
used in the FEM. It is shown that this FEM lifting can be ~ _ ;| _vav* dl + lim @U* _vav* dl.
used in the same manner but first, a few elements are given =0 /1 On §—0 Jc, On on

to understand where this expression comes from.
Our explanations take place on a dom& see FigﬂZ. It
can be seen that when the radiusf the circle Cs goes to

It can be shown that the path integral 6 converges tarA
whené goes to zero X being the sought singular factor):

zero, (s converges td2, see Fig[1(h). im [ 2% 09— (16)
For two functionsv andv* of zero laplacian irQs, it can §—0 /¢, On on
be written: v v* Moreover, the integral ofr! in @) can be written:
0= 8—1}* — Ua— dl, (10) I o
90; IR " / w2l = —vl/ A (17)
wheren is the unitary outward normal on the boundary of r On r on

the domain. As in|]1], integraIO) can be made explicit ott is an integral only on the boundaries with non zero Diréthl
each boundary of the domain for a non zérand then take conditions (that are far from the corner), and it corressaiod
the limit whené goes to zero, by considering the particulathe flux on each of these boundaries of the dual solutitin
properties of the functions andv*. This is a “classical” computation in the FEM, that can be done



by asurfaceintegral, on a transition layerI'! (often limited This regular potentialz..s can be found with the FEM and
to one layer of elements in direct contact with the boundang classical “shell transformation” for taking into accotiné
of the scalar product of the gradients of the functiefisand unbounded domair[|[6]. Then,, is obtained by @1).

Viw, wherew is equal to 1 o' and goes to zero through

the layer: B. Method of conformal maps
1 ov* 1 . The method of conformal mapﬂ [7] allows to build ana-
-V - %dl =V /CF1 Vw - Vo ds. (18) lytically potentials with the properties requested fqg, i.e.

In fact, V'w is the FEM lifting and it can be seen as aneq_ua_l t_o zero on th_e cqnductor and with a prescribed pehawor
. . . 1 at infinity, on domains liké.,. However, only some particular
application of Kp), by taking the laplacian df'w as a

T ; . o shapes are reachable by these transformations.
distribution. Eventually, the singularity factor is givéy: 1) Example of transformation for a rounded cormnéret us

A= _lvl YV - Vo ds. (19) consider the two complex planes:
™ crt
IV. SOLUTION OF THE PROBLEM INQ 4, .
It was introduced in Subsectign T}A a potentigl, solution W =11V = Re'” wherev is the electric potential  (24)

z =z + iy = re'’ corresponding to the real geometr{23)

of the Laplace equation on the unbounded donsain. d the followi f | 8 320]:
In Subsectior] IV-p, the problem for,, is formulated as and the following conformal mar|[8, p. 320):
a classical Laplace problem with non homogeneous boundary z = k[(w+ a)l/“ + (w —a)¥/9], (25)

conditions, straightforwardly solved by the FEM. In Subsec
tion it is shown that conformal maps may give a solutioWith a =2°"" andk = 1/2.
for certain specific shapes of the rounded corner. In Sulosect The image of the straight line = 0 in the w-plane is
, the practical method used to obtain the approximatigiPmposed of (see Fif} 4):
) by combining the solution., with the solutionv on the « the half-liney =0, 2 > 1, foru > a (u—a > 0 and
domain with the sharp corner, is explained. u-+a > 0);

. . . . . N _li im/a —_ _
A. The equivalent problem with shifted singularity thi ha<|f g;ere ;7> 1 foru<—a(u-a<0and
u-+a :

Let us define a new functioﬂoc?, wi_th the correct behavior | 5 5nded line fromP,(z; = ei™/®) to Py(z = 1), for
at infinity (B) and whose laplacian is zero §b,,. Note that we[~a,a], (w—a<0andu+a>0).

S itself is not suitable, because its laplacian is not defimed Ibloreover for [w> |al Vo and S(w)
0] | to 0). W for inst : , w al, 2 & w v = 3(w) =

(v equal to 0). We propose for instance Rsin(¢) =~ r%*sin(ad), what is the expected behavior at
Soo(r,0) = 1§ sin(ad), (20) infinity. Then, this transformation gives the solutiog, for

wherer, is the distance between the observation point aff3e Particular shape given by {25).

any point inside the infinite conductor, typically the centé
curvature of the rounded corner (Fﬂ;. 3).

Fig. 3. Definition ofr; %

The behavior at infinite is obviously correct, but this func
tion is not zero on the surface of the conductor, will
be written as the sum of this functio$l,, and a corrective
potentialvgoos:

Voo = Soo + VRoos (21)
which is the solution of:
AVRoos = 0, 0N Qo
VRoos = —Ss0, ONTY, (22)

lim VRoos(Teo, 0) = 0.
Too—0

line efv=

Fig. 4. z(u = congtant) and z(v = constant) plotted in thez-plane for
the conformal map5)



2) Reference values of the electric fiel@he electric field 150

on the conductor, for any point on the right of the rounded. Estimated - rounded comer - unbounded domain—
o . £ 120 "i FEM - rounded corner - real domain o
corner ¢ =0, u > a) is: S 110 \
=]
dv —2« o 100 ¥
= T T T T (26) e 9
y g 0
For example, the modulus values Bf, are: g 710
S5 60
E
|Eoo (P)|= |Eoc(Pr)|= 027, @27) § 0 —
40 o]
g
at the ends of the rounded corner, and: 30
0O 2 4 6 8 10 12 14 16 18 20
042(170‘)2/0‘ Radius (mm) of rounded corner - real domain
|Eoo (Po)|= — 5~ (28)
Sm (E) Fig. 5. Comparison of the maximum electric field on the rouhderner

between results obtained by straightforward FEM compnatiand results

on the middle-point of the rounded corner. obtained by relation|[7).

For the right angledq = 2/3), the field is constant on the

rounded corner:
in Subsection IV-A and\ is computed by the method proposed
|Boo(a=2/3,e=1)|=2°/3=1,058267...  (29) in Subsectiof M-B.

even though it varies for other values of the conductingeorn It IS also shown on F'd] 6 .that_the knowledge oandv. i

The approximate field on the real structure at the sarﬂéov'des an accurate approximation of the n_ormal electld fi
points is deduced fronk., using [J): for this computation, on the conductor close to th_e corner (relatiph (5)) and m".ﬂ
only the scales and the singularity factok are required. provides an accurate approximation of the normal electld fi

We propose to use the reference fie@ (28), or its particulﬁp the conductor far from the corner (relati(ﬂ1 (6))-

value 1.06 for a right rounded angle, when the shape of the
rounding is not exactly known, and when an approximation of 45

the maximum field as function of the mean curvature of the 40 @’Wﬁx‘%
corner is the requested information. 23 Ff ‘1‘2

3) Remarks:Such conformal maps have the required bes 30 of i
havior (at infinite and on the straight parts of the condydtmr 3 25 e o5 s o
favorably replacing the shifted singular functisg,, @) used o 20 /:/// \*\\ Fenee
in Subsectioff IV-A: the condition is that the lime= 0 remains ~ § 15 - T
inside the real conductor (at the reference seale 1). By " 10 e T e W e
the way, the norm of the correctiark .. (@) will probably 5r FEM - rounded corner - real domain-o-- -
be reduced. 0 : ‘ ‘ : : : : ‘ :

50 -40 -30 -20 -10 0 10 20 30 40 50
Position along surface (mm)

C. Scaling bye: projection method

Whatever is the method used to build, in the domain Fig. 6. Comparison of the normal electric field on the condudbr ¢ =
Q. by the FEM, by conformal maps or by another method? ™™
this potential is not directly constructed in the mesh where
is computed on the domaii with the sharp angle. V. CONCLUSION AND PERSPECTIVES

Moreover, the computation of the surf] (5) arldl (6) for In this work, a set of practical techniques was proposed
a particulare, on a domain(., see Fig.[ 1(@), requires toto enable the implementation of new methods to estimate the
make a projection ob,, on the mesh of the final domain,electric field in the neighborhood of conductors containing
with a scaling factor different for each value ef For this rounded angles, in the 2D case.
purpose, the projection is performed by a continuous least-The computation on the whole studied structure can be done
square approacf[l[9]. by replacing rounded corners by sharp corners. A generic

When only the results in some particular points is of interesauto-similar solution enables to estimate the electricdfiel
such as the amplitude of the electric field in the middle of thdose to the corner by post-processing for several values of
rounded corner, this step requires no particular comprtati the curvature radius. Some numerical tests have assessed th
relevance of the proposed approach.

It has been also shown that forgotten techniques, as con-
It is shown on Fig| b, the good agreement between resultsmal maps, enable, in some cases, to build exactly the
obtained by formuIaHE;) and results obtained by straightfogeneric solution and in every case, to approximate it. They
ward FEM computations. In order to plot these results, tlwan be coupled with more computationally intensive nunaéric
solutionwv,, is computed by considering the method proposadethods as the FEM, by providing speed and accuracy.

D. Numerical results



We are currently working to the extension of these tech-

nigues to:

(1]

(2]

(3]

[4]

(5]
(6]

[7]
(8]
[9]

« cases with several angles (such as some MEMs applica-
tions),

« 3D cases which is our real aim,

« singularity treatment (with sharp corners) for eddy-
current problems, that lead also to self-similar solutjons
with the penetration depth playing the same role as the
scaling factore in the present study.
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