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Abstract—This work deals with numerical techniques to com- « an electrostatic problem on a domain that only takes into

pute electrostatic fields in devices with rounded corners 2D account the shape of the rounded corner. The correspon-

situations. The approach leads to the solution of two probles: ding solution will be used with an appropriate “scaling”.
one on the device where rounded corners are replaced by sharp __ . 7 L. . .
comers and the other on an unbounded domain representing This intuitive argument coincides with the mathematical re

the shape of the rounded corner after an appropriate rescatig.  sults proposed partially by Timouyaﬂ [1] in 2003 and regentl

Details are given on several ways to solve both problems. completed by Dauge and her collaboratdts [2]. In addition to
the predictable behavior of the solution, some error eséma
. INTRODUCTION are also provided in[[l],[[Z] for the approximate solutions w
consider.

The precise description of an object containireginded  This work is addressed to the community of engineers that
cornersleads to consider meshes with a large number of nodgse numerical methods (as it was doneﬂn [3]), and the aim is
when the finite element method (FEM) is straightforwardly, jllystrate the finite element implementation of the theizal
gpphed. Dealing with such. meshes makes the computatighncepts which are proved in other referendés [4], [2].
time- and resource-consuming. Moreover, these compugtio |n section[]} are given the principles of the method. Then,
have to be repeated if the curvature radius of the roundgds made explicit how the different problems, that enalole t
corner 1S mOd'f'ed-_ . . build the approximate solution, can be solved:

In order to avoid this computational cost, the rounded , the computation of the “singularity factor” of the solution
corners are usually replaced Bharp corners The obtained on the domain with the sharp angle, in Sectjoh IIi;
computational results are then “globally correct” but lgca | the problem on the unbounded domain taking only into

inaccurate in the neighborhood of the corners. account the shape of the rounded corner, in Sedtipn IV.
In this work, we are dealing with a 2D electrostatic problem

in a domain with a rounded corner (see Flg. JL(a)). The Il. PRINCIPLES OF THE METHOD

proposed method to approximate the electric scalar palenti For the sake of clarity, the method is explained on a specific
is based on two observations, which can be checked by simpteucture, see Fid] 1, but it can be straightforwardly estéghto
numerical experiments: other structures, in particular including more than twactle

. the exact solutionglose to the comercomputed for conductors.
several values of the curvature radiysare quasi-similar, A Definitions of the considered problems
up to a “scaling factor” (proportional te). It is also
noticed that the “shape” of the solutiortdose to the
corner (their “shape” but not their amplitude) weakly| r
depend on other elements of the studied structure, suc

. .. Tt
term of the solutions close to the corner amdf-similar.

« the exact solutionfar from the cornerare weakly influ-
enced by the change of the curvature radiyand they

converge to the solution on the domain with the sharg _ _ o _
(@ Domain with a(b) Domain with a shargc) Unbounded profile
corner where goes to zero.

rounded cornef.. corner(. domain Qo

It can be deduced that an accurate approximate solution of
the exact solution for any curvature radiusan be build from
the solutions of two problems:

Fig. 1. Considered domaing, Q.. and ..

Letv. denote the solution af\v. = 0 in the domairl,, see
« an electrostatic problem on the real domain except the&ig. . The functiorv. is enforced to be equal to zero on
the rounded corner is replaced by a sharp corner; I'? and toV! onT'!, andwv. verifies homogeneous Neumann



conditions onI'V. The factore defines the true size of theThese considerations enable to understand the following ap
rounded corner, starting from the profile domain, FIEl(quoximate expressions, that are detailed[ln [2]:
where the characteristic size of the rounded cornér. is

Let alsow denote the solution of\v — 0 in the domain V=7 0) & Ac%voo (7o, 0), for r < ke (usually k = 1), (5)
Q with the sharp corner, see Fi. J(b). The functioris  v=(,0) = v(r,0) + Ae®[voo (roc, ) — S(ro, 0)]; (6)
enforced to be equal to zero df and toV'! on I'!, and for r > ke.
v verifies homogeneous Neumann conditionsIth. In the

neighborhood of the sharp corﬂfm can be expanded in seriesC: Remarks

as follows [b]: The proposed expressions remain approximate, indeed:
) - . expressions[[S) ancﬂ(G) are not equal for= ke, in
v(r,0) = Ar® sin(a9)+z aprt® sin(kad), (a = —) , (1) particular when the geometry of the domdn makes
k=2 v the solution forr < ke to be not symmetric (in this first

and the first term of this expansion is said singular because i order approximation, the effect of the doman close
makes the amplitude of the electric field go to the infinite at  to the corner is only related to the value the singularity

the sharp corner. The factoris called thesingularity factor factor A. It is not sufficient: every problem with the same
in the following. Methods for the computation afare given anglew and the same\ will give the same approximate
in Section[1]]. A specific notation will also be used for the  solution close to the corner).

first function of expansion[]1): e in (B), (voo(7o0,0) — S(ro0,0)) is ot exactly zero on

o . I'l: thus, the conditions on this boundary, which are
5(r,0) = r®sin(ad). @ satisfied bywv, are not satisfied by approximatioﬂ (6).

Finally, let v, denote the solution ofAv,, = 0 in the However, it can be seen, that whenevegoes to zero,
unbounded domaifl., where the characteristic size of the  the remaining error becomes negligible: the scaling of the
rounded corner ig, see Fig[1($). The rounded corner has the ~domain makes to send the boundaries further from the
same shape as in the real dom@in the potential is zero on origin in the dimensionless solutian, and the behavior
I, and the behavior at infinity of the potential is given by  at infinity ) can be used.
the first term of the expansiof] (1) up to the scalar It is possible to compute complementary terms, to increase

. . the accuracy of the approximate solution. In particulag th
rilgoo(voo(roo’ 6) = 5(rec, 8)) = 0. ®) following ter?/n in the efr?ansion, which will varypam(2a9)

The FEM enables to compute the term whatever is the (it comes from [f1)), will be able to introduce an asymmetry of
shape of the rounded corner (see Sedfign IV). Moreover, sofi€ approximation close to the rounded corner. Nonetheless
analytic expressions can be built for,, for instance using our numerical experiments with the first terms of the expamsi
conformal maps, but it is restricted to particular shapas fghow the relevance of this first order approach and illustrat
the rounded corner enforced by these maps. the theoretical estimates for the numerical erﬂ)r [2].

It is assumed in the remainder of this section that thelet us also note that the method is generic and it could
approximate finite element solutions foanduv., have already be applied to other particular shapes which would not be
been computed. “rounded” (and even to a simple surface irregularity, on a

. . surface plane).
B. Proposed approximate solution

Solution v. can be computed by the FEM, using a “fine’D- Application to the comquation of the maximum field as a
discretization close to the rounded comer. However, tHidnction of the curvature radius
computation has to be performed again for each “scalef With a reduced amount of numerical computations, a mesh
the rounded corner. without the rounded corner of the whole studied device and a
Our aim is to approximate the solutian by using only:  mesh of the rounded corner but built independently from the
« the solutionwv, that will approximatev. far from the rest of the structure, it is possible to determine the viamat
corner,i.e. whenr > ¢; of the electric field close to the rounded corner as a function
« the solutionv,,, after a proper scaling by and the sin- of the curvature radius. Indeed, the electric figld(r, 6) in
gularity coefficient), that will approximate the solution any point close to the rounded corner depends only on:

close to the corner,e. whenr < e. « the singularity factorA whose evaluation is introduced
The “scaling” used to map a point of coordinted) in . in Section[ 1] starting fromv the solution with the sharp
to a point inQ, is given by(r..,8) = (r/e,0). This change corner;
of coordinates applied i) leads to: « the field F (r, ) transferred to the domaife. (the

solution may be analytic in some cases, see sen IV);
« the scale factoe.
11t is valid on any intersection of a disc centeredGnwith the domain® ~ The corresponding relation is given close to the corner by:

which coincides with the intersection of the same disc withrdinite sector 1
whose corner is irO and whose angle is. E.(r,0) = el )Eoo(roo, 0). @)

€S (7o, 0) = S(r,0). (4)



For instance, if the statistical distribution of the curvatradii For two functionsy andv* of zero laplacian irf2s, it can
is known for a series ofV pieces used in a high-voltagebe written: .

device, it will be possible to compute the statistical digttion 0= @v* _ Uai dl (10)
corresponding to the maximal electric field in these pieces. a0, On on

wheren is the unitary outward normal on the boundary of
the domain. As in[]1], integral (10) can be made explicit on
A. The Fourier method: weighted line integral of v each boundary of the domain for a non zérand then take

The Fourier method enables to compute an approximatiE)hne limit whend goes to zero, by considering the particular

of the singularity factor\ from the solutionv of the problem propert.|es of the fgnctlo_nﬁ andv". :

with the sharp corner (see Fim(b)) given by the FEM. A In this computationyp is the FEM solution of the problem
. : : . "“.on Q detailed in Subsectidn II}A. The functiari is the same

weighted integral ofv is computed on an arc of circle of

radiusry centered orO, from one border of the angle to the®® " (1. 1tis the sum of the "dual singular functioss™:

IIl. COMPUTATION OF THE SINGULARITY FACTOR

other: . S*(r,0) = r~“sin(ad), (11)
2 . .
A= —rgo‘/v(ro,e) sin(af) db. (8) and a more regular function;, computed on the domaif
“ ) which is the solution of the following problem:
When ¢ varies betweer) and w, af varies betweerd and Avp =0, on (),
m; in this range of variation, the integration sif(af) with vh =-S5 onI°UT!, (12)

sin(ka#) is zero for allk strictly greater than. Relation [B) is
then obtained by considering expansiﬂn (1) in the line irteg

There is no restriction in the choice of except that the
arc of circle must belong to the domaih

* *
oy _5)11R

on  On
Problem [(1R) can be solved by the FEM. Thus it is obtained:

,onT%,

B. Dual solution method v =uvp+t5, (13)

which is a singular non zero function. Moreover has the

The theoretical explanations concerning this method c ) X
fggowmg properties:

be found in [IL Subsubsection 2.3.8]. This approach enab
to compute the singularity factox from an integral on the Av* =0, onQ,
domain) with the sharp angle (see Fig. 4(b)) of a function

* 0 1
v* to compute, weighted by a functighwhich is the laplacian v 0, onITUIY, (14)
of a “regular lifting” functionw: %U =0, onTV.
n
A= / fu*ds. 9) Considering again the path integr@(lO) whérgoes to
Q zero, the integrations are restrictedItb and Cs:

It is proposed here not to construct this regular lifting the v Ov*
less regular lifting which is commonly (but often impligi}l 0= lim %v* U dl,
used in the FEM. It is shown that this FEM lifting can be 9425 Sv* P . (15)
used in the same manner but first, a few elements are given = lim v ar + lim T o* — vai dl.
to understand where this expression comes from. 00/ on 6=0 /g, On on

Our explanations take place on a domé¥s see Fig[2. It It can be shown that the path integral 6 converges tar\
can be seen that when the radiuf the circleCs goes to when ¢ goes to zero X being the sought singular factor):

zero, Q5 converges tdY, see Fig[1(h). 50 50

;li)I%) o, %U — ’Ua—n dl = mA. (16)

Fl

Moreover, the integral ofi! in (13) can be written:

ov* ov*
- dl = -V?! —dl. 17
/Pl v 5)n V /Pl 5)n ( )

It is an integral only on the boundaries with non zero Diréthl
conditions (that are far from the corner), and it correspsaod
the flux on each of these boundaries of the dual solutitn
This is a “classical” computation in the FEM, that can be done
by asurfaceintegral, on a transition layetT! (often limited

to one layer of elements in direct contact with the boundary)
Fig. 2. Domain(2s whered — 0 is considered. of the scalar product of the gradients of the functiehsand




V1w, wherew is equal to 1 o™ and goes to zero throughB. Method of conformal maps

the layer: The method of conformal map§][7] allows to build ana-
_ Vl/ @dl ~ Vl/ YV - Vo ds. (18) lytically potentials with the properties_ requested_ig[;, ie. _
r1 On ort equal to zero on the conductor and with a prescribed behavior
At infinity, on domains liké2.,. However, only some particular
shapes are reachable by these transformations.
1) Example of transformation for a rounded cornéret us
consider the two complex planes:

In fact, V1w is the FEM lifting and it can be seen as a
application of [p), by taking the laplacian df'w as a
distribution. Eventually, the singularity factor is givéy:

1 1 * .
A= _;V o Vuw - Vo ds. 19 . _, 4 iy = re'? corresponding to the real geometr§23)

IV. SOLUTION OF THE PROBLEM IN§)oo w =u + iv = Re!® wherev is the electric potential (24)

It was introduced in Subsectign Il-A a potential, solution and the following conformal mag][8, p. 320]:
of the Laplace equation on the unbounded don§ain.

In Subsectior] V2R, the problem for,, is formulated as 2= kl(w+a)/* + (w—a)/?], (25)
a classical Laplace problem with non homogeneous bound@fyn , — 2¢-1 andk — 1/2.
conditions, straightforwardly solved by the FEM. In Subsec Tpe image of the straight line = 0 in the w-plane is
tion [[V-B} it is shown that conformal maps may give a SO'““‘)Eomposed of (see Fiﬁl 4):

for certain specific shapes of the rounded corner. In Suiosect . half-liney = 0, z > 1, foru > a (u—a > 0 and

, the practical method used to obtain the approximation .
b bining th uti ith th luti h uta>0);
) y combining the solutiom.. with the solutionv on the « the half-linerei™®, + > 1, for u < —a (u — a < 0 and
domain with the sharp corner, is explained. u+a < 0);
A. The equivalent problem with shifted singularity « a rounded line fromP,(z; = ¢'™/®) to P.(z. = 1), for
Let us define a new functiofi.., with the correct behavior u € [~a,a], (w—a<0andu+a>0).

at infinity @) and whose laplacian is zero §.,. Note that Moreover, for [w[> |a], 2 = wl/e andv = J(w) =
S itself is not suitable, because its laplacian is not defimed Rsin(¢) ~ r*sin(af), what is the expected behavior at

O (r equal to 0). We propose for instance: infinity. Then, this transformation gives the solutior, for
Soo(r,0) = 19 sin(af), (20) the particular shape given bﬂ25).

where r; is the distance between the observation point ai v ..

any point inside the infinite conductor, typically the ceré T " Aa

curvature of the rounded corner (F[g. 3). |ln: 2u=a) - ? \ . ate= v

N

Au=0)~, 6‘}‘
_ X 0' > , /."\’/j\r/if-,
2(u --\a) 4 <7 g&,{&l St
Vil e
i 45 -40 -3§ —3 e o l-v'l.‘." i":-%" 5 20 25 30 35 40 45 5L
’ %‘?‘:}%&" P, " *
Fig. 3. Definitign ofr ‘04 0, f i

A

1 I ,\;TIT P e

The behavior at infinite is obviously correct, but this func

. . ST Hff"’w m
tion is not zero on the surface of_the conductog;, W|I_I /H;Lfll
be written as the sum of this functio$l,, and a corrective H
potentialvgoos:
Voo = Soo + VRoos (21) line eive
which is the solution of: ) _
Fig. 4. z(u = congtant) and z(v = constant) plotted in thez-plane for
AVRoos = 0, 0N Qe the conformal map| (25)
VURoos = —Soc, ONTY, 22 L L
I O;S —0 ~ - (22) 2) Reference values of the electric fielflhe electric field
T;IEO URoos (oo, 0) = 0. on the conductor, for any point on the right of the rounded

This regular potentialz..s can be found with the FEM and ¢0rner 0=0,u>a)is:
a classical “shell transformation” for taking into accouhé Cdv —2a (26)

unbounded domairf][6]. Then,, is obtained by[(21). dy ~ (uta)-o/e 1 (ua)l-aja’



For example, the modulus values Bf,, are:
|Eoo (P)|= | Ewo(Pr)|= a2, (27)

at the ends of the rounded corner, and:

generic solution and in every case, to approximate it. They
can be coupled with more computationally intensive nunagric
methods as the FEM, by providing speed and accuracy.

At the conference, numerical results will be provided to
assess the efficiency and the accuracy of the proposed tech-

a2(l-a)?/a
on the middle-point of the rounded corner.

For the right angledq = 2/3), the field is constant on the
rounded corner:

|Eso(a =2/3,6 = 1)|=2°/3/3 = 1,058267...

|EOO(PO)|:

(28)

T

sin (2a

(29)

even though it varies for other values of the conductingeorn

The approximate field on the real structure at the same
points is deduced fronk., using [’y): for this computation,
only the scales and the singularity factok are required.

We propose to use the reference fidE (28), or its particul[é}
value 1.06 for a right rounded angle, when the shape of the
rounding is not exactly known, and when an approximation &
the maximum field as function of the mean curvature of the
corner is the requested information.

3) Remarks:Such conformal maps have the required bé3l
havior (at infinite and on the straight parts of the condydtar
favorably replacing the shifted singular functisSg,, @) used
in Subsectioff IV-A: the condition is that the lime= 0 remains
inside the real conductor (at the reference secale 1). By
the way, the norm of the correctiank . (@) will probably
be reduced.

(4]

(5]

(6]

C. Scaling bye: projection method

Whatever is the method used to build, in the domain
Q.. by the FEM, by conformal maps or by another metho L
this potential is not directly constructed in the mesh where!®!
is computed on the domain with the sharp angle. [9]

Moreover, the computation of the sum| (5) arﬂi (6) for
a particulare, on a domain(., see Fig.[ 1(), requires to
make a projection of,, on the mesh of the final domain,
with a scaling factor different for each value of For this
purpose, the projection is performed by a continuous least-
square approach][9].

When only the results in some particular points is of intgres
such as the amplitude of the electric field in the middle of the
rounded corner, this step requires no particular compurtati

[7]
d

V. CONCLUSION AND PERSPECTIVES

In this work, a set of practical techniques was proposed
to enable the implementation of new methods to estimate the
electric field in the neighborhood of conductors containing
rounded angles, in the 2D case.

The computation on the whole studied structure can be done
by replacing rounded corners by sharp corners. A generge aut
similar solution enables to estimate the electric field €los
to the corner by post-processing for several values of the
curvature radius.

It has been also shown that forgotten techniques, as con-
formal maps, enable, in some cases, to build exactly the

nigues, and to make them easier to grasp. We are currently
working to the extension of these techniques to:

cases with several angles (such as some MEMs applica-
tions),
3D cases which is our real aim,

« singularity treatment (with sharp corners) for eddy-

current problems, that lead also to self-similar solutjons
with the penetration depth playing the same role as the
scaling factore in the present study.
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