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e-mail: patrick.dular@ulg.ac.be
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Université de Bordeaux, France

e-mail: clair.poignard@inria.fr

Abstract—This work deals with numerical techniques to com-
pute electrostatic fields in devices with rounded corners in 2D
situations. The approach leads to the solution of two problems:
one on the device where rounded corners are replaced by sharp
corners and the other on an unbounded domain representing
the shape of the rounded corner after an appropriate rescaling.
Details are given on several ways to solve both problems and
numerical results are provided to assess the efficiency and the
accuracy of the techniques.

I. INTRODUCTION

The precise description of an object containing rounded

corners leads to consider meshes with a large number of nodes

when the finite element method (FEM) is straightforwardly

applied. Dealing with such meshes makes the computation

time- and resource-consuming. Moreover, these computations

have to be repeated if the curvature radius of the rounded

corner is modified.

In order to avoid this computational cost, the rounded

corners are usually replaced by sharp corners. The obtained

computational results are then “globally correct” but locally

inaccurate in the neighborhood of the corners. We aim at

remedying this drawback.

In this work, we are dealing with a 2D electrostatic problem

in a domain with a rounded corner (see Fig. 1(a)). The

proposed method to approximate the electric scalar potential

is based on two observations, which can be checked by simple

numerical experiments:

• the exact solutions close to the corner, computed for

several values of the curvature radius ε, are quasi-similar,

up to a “scaling factor” (related to ε). It is also noticed

that the “shape” of the solutions close to the corner (their

“shape” but not their amplitude) weakly depend on other

elements of the studied structure, such as the distance to

the boundaries: it is said that the dominant term of the

solutions close to the corner are self-similar.

• the exact solutions far from the corner are weakly influ-

enced by the change of the curvature radius ε, and they

converge to the solution on the domain with the sharp

corner when ε goes to zero.

It can be deduced that an accurate approximate solution of

the exact solution for any curvature radius ε can be build from

the solutions of two problems:

• an electrostatic problem on the real domain except that

the rounded corner is replaced by a sharp corner;

• an electrostatic problem on a domain that only takes the

shape of the rounded corner into account. The correspon-

ding solution will be used with an appropriate “scaling”.

This intuitive argument coincides with the mathematical re-

sults proposed partially by Timouyas [1] in 2003 and recently

completed by Dauge and her collaborators [2]. In addition to

the predictable behavior of the solution, some error estimates

are also provided in [1], [2] for the approximate solutions we

consider.

This work is addressed to the community of engineers that

use numerical methods (as it was done in [3]), and the aim is

to illustrate the finite element implementation of the theoretical

concepts which are proved in other references [4], [2].

In Section II are given the principles of the method. Then,

we provide explicitly how to solve the different problems, that

enable to build the approximate solution:

• the computation of the “singularity factor” of the solution

on the domain with the sharp angle, in Section III;

• the problem on the unbounded domain taking only into

account the shape of the rounded corner, in Section IV.

In Sections II, III and IV, numerical results are given to assess

the accuracy of the proposed techniques.

II. PRINCIPLES OF THE METHOD

For the sake of clarity, the method is explained on a specific

structure, see Fig. 1, but it can be straightforwardly extended to

other structures, in particular including more than two electric

conductors.

A. Definitions of the considered problems

Denote by vε the harmonic function –△vε = 0– in the

domain Ωε equal to zero on Γ0
ε, to V 1 on Γ1 and satisfying

homogeneous Neumann conditions on ΓN ; see Fig.1(a). The

factor ε defines the true size of the rounded corner, starting

from the profile domain, Fig. 1(c) where the characteristic size

of the rounded corner is 1.

Let also v denote the solution of △v = 0 in the domain

Ω with the sharp corner, see Fig. 1(b). The function v is

enforced to be equal to zero on Γ0 and to V 1 on Γ1, and

v verifies homogeneous Neumann conditions on ΓN . In the
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Fig. 1. Considered domains Ω, Ω∞ and Ωε.

neighborhood of the sharp corner1, v can be expanded in series

as follows [5]:

v(r, θ) = λrα sin(αθ)+

∞
∑

k=2

akr
kα sin(kαθ),

(

α =
π

ω

)

, (1)

and the first term of this expansion is said singular because it

makes the amplitude of the electric field go to the infinite at the

sharp corner for α < 1. The factor λ is called the singularity

factor in the following. Methods for the computation of λ are

given in Section III. A specific notation will also be used for

the first function of expansion (1):

S(r, θ) = rα sin(αθ). (2)

Finally, let v∞ denote the solution of △v∞ = 0 in the

unbounded domain Ω∞ where the characteristic size of the

rounded corner is 1, see Fig. 1(c). The rounded corner has the

same shape as in the real domain Ωε, the potential is zero on

Γ0
∞

, and the behavior of the potential at infinity is given by

the first term of the expansion (1) up to the scalar λ:

lim
r∞→∞

(v∞(r∞, θ)− S(r∞, θ)) = 0. (3)

The FEM enables to compute the term v∞ whatever rounded

corner shape (see Section IV). Note that for particular shapes

analytic expressions of v∞ can be obtained, for instance using

conformal maps.

It is assumed in the remainder of this section that the

approximate finite element solutions for v and v∞ have already

been computed.

B. Proposed approximate solution

Solution vε can be computed by the FEM, using a “fine”

discretization close to the rounded corner. However, this

computation has to be performed for each corner “scale” ε.

Our aim is to approximate the solution vε by using only:

• the solution v, that will approximate vε far from the

corner, i.e. when r ≫ ε;

• the solution v∞, after a proper scaling by ε and the sin-

gularity coefficient λ, that will approximate the solution

close to the corner, i.e. when r ≤ ε.

1It is valid on any intersection of a disc centered in O with the domain Ω
which coincides with the intersection of the same disc with an infinite sector
whose corner is in O and whose angle is ω.

The “scaling” used to map a point of coordinate (r, θ) in Ωε

to a point in Ω∞ is given by (r∞, θ) = (r/ε, θ). This change

of coordinates applied in (2) leads to:

εαS(r∞, θ) = S(r, θ). (4)

These considerations enable to understand the following ap-

proximate expressions, that are detailed in [2]:

vε(r, θ) ≈ λεαv∞(r∞, θ), for r < kε (usually, k = 1), (5)

vε(r, θ) ≈ v(r, θ) + λεα[v∞(r∞, θ)− S(r∞, θ)], (6)

for r > kε.

C. Remarks

The proposed expressions remain approximate, indeed:

• expressions (5) and (6) are not equal for r = kε, in

particular when the geometry of the domain Ωε makes

the solution for r < kε to be not symmetric (in this first

order approximation, the effect of the domain Ωε close to

the corner is only related to the value of the singularity

factor λ. It is not sufficient: every problem with the same

angle ω and the same λ will give the same approximate

solution close to the corner).

• in (6), (v∞(r∞, θ) − S(r∞, θ)) is not exactly zero on

Γ1
ε: thus, the conditions on this boundary, which are

satisfied by v, are not satisfied by approximation (6).

However, it can be seen, that whenever ε goes to zero,

the remaining error becomes negligible: the scaling of the

domain makes to send the boundaries further from the

origin in the dimensionless solution v∞ and the behavior

at infinity (3) can be used.

It is possible to compute complementary terms, to increase

the accuracy of the approximate solution. In particular, the

following term in the expansion, which will vary as sin(2αθ)
(it comes from (1)), will be able to introduce an asymmetry of

the approximation close to the rounded corner. Nonetheless,

our numerical experiments with the first terms of the expansion

show the relevance of this first order approach and illustrate

the theoretical estimates for the numerical error [2].

We emphasize that the method is generic and could be ap-

plied to other particular shapes which would not be “rounded”

(and even to a simple surface irregularity, on a surface plane).

D. Application to the computation of the maximum field as a

function of the curvature radius

With a reduced amount of numerical computations, a mesh

without the rounded corner of the whole studied device and a

mesh of the rounded corner but built independently from the

rest of the structure, it is possible to determine the variation

of the electric field close to the rounded corner as a function

of the curvature radius. Indeed, the electric field Eε(r, θ) in

any point close to the rounded corner depends only on:

• the singularity factor λ whose evaluation is introduced

in Section III starting from v the solution with the sharp

corner;

• the field E∞(r∞, θ) transferred to the domain Ωε (the

solution may be analytic in some cases, see section IV);



• the scale factor ε.

The corresponding relation is given close to the corner by:

Eε(r, θ) = λε(α−1)E∞(r∞, θ). (7)

For instance, if the statistical distribution of the curvature radii

is known for a series of N pieces used in a high-voltage

device, it will be possible to compute the statistical distribution

corresponding to the maximal electric field in these pieces.

III. COMPUTATION OF THE SINGULARITY FACTOR

A. The Fourier method: weighted line integral of v

The Fourier method enables to compute an approximation

of the singularity factor λ from the solution v of the problem

with the sharp corner (see Fig. 1(b)) given by the FEM. A

weighted integral of v is computed on an arc of circle of

radius r0 centered on O, from one border of the angle to the

other:

λ =
2

ω
r−α
0

ω
∫

0

v(r0, θ) sin(αθ) dθ. (8)

When θ varies between 0 and ω, αθ varies between 0 and

π; in this range of variation, the integration of sin(αθ) with

sin(kαθ) is zero for all k strictly greater than 1. Relation (8) is

then obtained by considering expansion (1) in the line integral.

There is no restriction in the choice of r0 except that the

arc of circle must belong to the domain Ω.

B. Dual solution method

The theoretical explanations concerning this method can

be found in [1, Subsubsection 2.3.8]. This approach enables

to compute the singularity factor λ from an integral on the

domain Ω with the sharp angle (see Fig. 1(b)) of a function

v∗ to compute, weighted by a function f which is the laplacian

of a “regular lifting” function w:

λ =

∫

Ω

fv∗ ds. (9)

It is proposed here not to construct this regular lifting but the

less regular lifting which is commonly (but often implicitly)

used in the FEM. It is shown that this FEM lifting can be

used in the same manner but first, a few elements are given

to understand where this expression comes from.

Our explanations take place on a domain Ωδ , see Fig. 2. It

can be seen that when the radius δ of the circle Cδ goes to

zero, Ωδ converges to Ω, see Fig. 1(b).

For two functions v and v∗ of zero laplacian in Ωδ , it can

be written:

0 =

∫

∂Ωδ

(

∂v

∂n
v∗ − v

∂v∗

∂n

)

dl, (10)

where n is the unitary outward normal on the boundary of

the domain. As in [1], integral (10) can be made explicit on

each boundary of the domain for a non zero δ and then take

the limit when δ goes to zero, by considering the particular

properties of the functions v and v∗.
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Fig. 2. Domain Ωδ where δ → 0 is considered.

In this computation, v is the FEM solution of the problem

on Ω detailed in Subsection II-A. The function v∗ is the same

as in [1]. It is the sum of the “dual singular function” S∗:

S∗(r, θ) = r−α sin(αθ), (11)

and a more regular function v∗R computed on the domain Ω
which is the solution of the following problem:















△v∗R = 0, on Ω,

v∗R = −S∗, on Γ0 ∪ Γ1,

∂v∗R
∂n

= −
∂S∗

∂n
, on ΓN .

(12)

Problem (12) can be solved by the FEM. Thus it is obtained:

v∗ = v∗R + S∗, (13)

which is a singular non zero function. Moreover v∗ has the

following properties:














△v∗ = 0, on Ω,

v∗ = 0, on Γ0 ∪ Γ1,

∂v∗

∂n
= 0, on ΓN .

(14)

Considering again the path integral (10) when δ goes to

zero, the integrations are restricted to Γ1 and Cδ:

0 = lim
δ→0

∫

∂Ωδ

(

∂v

∂n
v∗ − v

∂v∗

∂n

)

dl,

= lim
δ→0

∫

Γ1

−v
∂v∗

∂n
dl + lim

δ→0

∫

Cδ

(

∂v

∂n
v∗ − v

∂v∗

∂n

)

dl.

(15)

It can be shown that the path integral on Cδ converges to πλ
when δ goes to zero (λ being the sought singular factor):

lim
δ→0

∫

Cδ

(

∂v

∂n
v∗ − v

∂v∗

∂n

)

dl = πλ. (16)

Moreover, the integral on Γ1 in (15) can be written:
∫

Γ1

−v
∂v∗

∂n
dl = −V 1

∫

Γ1

∂v∗

∂n
dl. (17)

It is an integral only on the boundaries with non zero Dirichlet

conditions (that are far from the corner), and it corresponds to

the flux on each of these boundaries of the dual solution v∗.



This is a “classical” computation in the FEM, that can be done

by a surface integral, on a transition layer CΓ1 (often limited

to one layer of elements in direct contact with the boundary),

of the scalar product of the gradients of the functions v∗ and

V 1w, where w is equal to 1 on Γ1 and goes to zero through

the layer:

−V 1

∫

Γ1

∂v∗

∂n
dl ≈ V 1

∫

CΓ1

∇w · ∇v∗ ds. (18)

In fact, V 1w is the FEM lifting and it can be seen as an

application of (9), by taking the laplacian of V 1w as a

distribution. Eventually, the singularity factor is given by:

λ = −
1

π
V 1

∫

CΓ1

∇w · ∇v∗ ds. (19)

C. Numerical comparison of both methods

The singularity factor λ is computed on a geometry similar

to this on Fig. 1(b), where the length of each straight part of

Γ0 is equal to 50 mm, the length of each straight part of ΓN

is equal to 50 mm and finally the length of each straight part

of Γ1 is equal to 100 mm. The boundary conditions are also

the same as these described in Subsection II-A. The potential

V 1 is chosen equal to 1.

It is shown on Fig. 3 that for the method proposed in

Subsection III-A, the computed result for λ is dependent on

the choice of r0. As r0 increases, the computed value for λ
quickly coincides for both methods.
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Fig. 3. Value of λ computed by the method described in Subsection III-A as
a function of r0. The dotted line indicates the value computed by the method
described in Subsection III-B.

IV. SOLUTION OF THE PROBLEM IN Ω∞

It was introduced in Subsection II-A a potential v∞ solution

of the Laplace equation on the unbounded domain Ω∞.

In Subsection IV-A, the problem for v∞ is formulated as

a classical Laplace problem with non homogeneous boundary

conditions, straightforwardly solved by the FEM. In Subsec-

tion IV-B, it is shown that conformal maps may give a solution

for certain specific shapes of the rounded corner. In Subsection

IV-C, the practical method used to obtain the approximation

(6) by combining the solution v∞ with the solution v on the

domain with the sharp corner, is explained.

A. The equivalent problem with shifted singularity

Let us define a new function S∞, with the correct behavior

at infinity (3) and whose laplacian is zero in Ω∞. Note that

S itself is not suitable, because its laplacian is not defined in

O (r equal to 0). We propose for instance:

S∞(r, θ) = rαs sin(αθ), (20)

where rs is the distance between the observation point and

any point inside the infinite conductor, typically the center of

curvature of the rounded corner (Fig. 4).

O
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r∞
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Fig. 4. Definition of rs

The behavior at infinite is obviously correct, but this func-

tion is not zero on the surface of the conductor: v∞ will

be written as the sum of this function S∞ and a corrective

potential vR∞s:

v∞ = S∞ + vR∞s (21)

which is the solution of:














△vR∞s = 0, on Ω∞,

vR∞s = −S∞, on Γ0
∞
,

lim
r∞→∞

vR∞s(r∞, θ) = 0.

(22)

This regular potential vR∞s can be found with the FEM and

a classical “shell transformation” for taking into account the

unbounded domain [6]. Then, v∞ is obtained by (21).

B. Method of conformal maps

The method of conformal maps [7] allows to build ana-

lytically potentials with the properties requested for v∞, i.e.

equal to zero on the conductor and with a prescribed behavior

at infinity, on domains like Ω∞. However, only some particular

shapes are reachable by these transformations.

1) Example of transformation for a rounded corner: Let us

consider the two complex planes:

z =x+ iy = reiθ corresponding to the real geometry, (23)

w =u + iv = Reiφ where v is the electric potential. (24)

and the following conformal map [8, p. 320]:

z = k[(w + a)1/α + (w − a)1/α], (25)

with a = 2α−1 and k = 1/2.

The image of the straight line v = 0 in the w-plane is

composed of (see Fig. 5):

• the half-line y = 0, x > 1, for u > a (u − a > 0 and

u + a > 0);



• the half-line reiπ/α, r > 1, for u < −a (u − a < 0 and

u + a < 0);

• a rounded line from Pl(zl = eiπ/α) to Pr(zr = 1), for

u ∈ [−a, a], (u− a < 0 and u + a > 0).

Moreover, for |w|≫ |a|, z ≈ w1/α and v = ℑ(w) =
R sin(φ) ≈ rα sin(αθ), what is the expected behavior at

infinity. Then, this transformation gives the solution v∞ for

the particular shape given by (25).

Fig. 5. z(u = constant) and z(v = constant) plotted in the z-plane for
the conformal map (25)

2) Reference values of the electric field: The electric field

on the conductor, for any point on the right of the rounded

corner (v = 0, u > a) is:

–
dv

dy
=

−2α

(u + a)(1−α)/α + (u–a)(1−α)/α
. (26)

For example, the modulus values of E∞ are:

|E∞(Pl)|= |E∞(Pr)|= α2α, (27)

at the ends of the rounded corner, and:

|E∞(P0)|=
α2(1−α)2/α

sin
(

π
2α

) , (28)

on the middle-point of the rounded corner.

For the right angle (α = 2/3), the field is constant on the

rounded corner:

|E∞(α = 2/3, ε = 1)|= 25/3/3 = 1, 058267... (29)

even though it varies for other values of the conducting corner.

The approximate field on the real structure at the same

points is deduced from E∞ using (7): for this computation,

only the scale ε and the singularity factor λ are required.

We propose to use the reference field (28), or its particular

value 1.06 for a right rounded angle, when the shape of the

rounding is not exactly known, and when an approximation of

the maximum field as function of the mean curvature of the

corner is the requested information.

3) Remarks: Such conformal maps have the required be-

havior (at infinite and on the straight parts of the conductor) for

favorably replacing the shifted singular function S∞, (20) used

in Subsection IV-A: the condition is that the line v = 0 remains

inside the real conductor (at the reference scale ε = 1). By

the way, the norm of the correction vR∞s (22) will probably

be reduced.

C. Scaling by ε: projection method

Whatever the method used to build v∞ in the domain Ω∞

(the FEM, conformal maps or another method), this potential

is not directly constructed in the mesh where v is computed

on the domain Ω with the sharp angle.

Moreover, the computation of the sum (5) and (6) for a par-

ticular ε, on a domain Ωε, see Fig. 1(a), requires a projection

of v∞ on the mesh of the final domain, with a scaling factor

different for each value of ε. For this purpose, the projection

is performed by a continuous least-square approach [9].

When only the results in some particular points is of interest,

such as the amplitude of the electric field in the middle of the

rounded corner, this step requires no particular computation.

D. Numerical results

It is considered the same problem as in Subsection III-C.

It is shown on Fig. 6, the good agreement between results

obtained by formula (7) and results obtained by straight-

forward FEM computations. In order to plot these results,

the solution v∞ is computed by considering the method

proposed in Subsection IV-A and λ is computed by the method

proposed in Subsection III-B. To be precise, the values retained

for max(|E∞|) and for λ are respectively 1.1467V/m and

8.31235 (the value for max(|E∞|) can be compared to the

value 1.06V/m that is given by the conformal map described

in Subsection IV-B).
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It is also shown on Fig. 7 that the knowledge of λ and

v∞ provides an accurate approximation of the normal electric

field on the conductor close to the corner (relation (5)) and

that v and relation (6) provide accurate approximations of the

normal electric field on the conductor far from the corner.
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V. CONCLUSION AND PERSPECTIVES

In this work, a set of practical techniques was proposed

to enable the implementation of new methods to estimate the

electric field in the neighborhood of conductors containing

rounded angles, in the 2D case.

The computation on the whole studied structure can be done

by replacing rounded corners by sharp corners. A generic

auto-similar solution enables to estimate the electric field

close to the corner by post-processing for several values of

the curvature radius. Some numerical tests have assessed the

relevance of the proposed approach.

It has been also shown that forgotten techniques, as con-

formal maps, enable, in some cases, to build exactly the

generic solution and in every case, to approximate it. They

can be coupled with more computationally intensive numerical

methods as the FEM, by providing speed and accuracy.

We are currently working to the extension of these tech-

niques to:

• cases with several angles (such as some MEMs applica-

tions),

• 3D cases which is our real aim,

• singularity treatment (with sharp corners) for eddy-

current problems, that lead also to self-similar solutions,

with the penetration depth δ playing the same role as the

scaling factor ε in the present study.

REFERENCES

[1] H. Timouyas, “Analyse et analyse numérique des singularités en
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Editions Masson, Paris, 1964-1966.
[9] C. Geuzaine, B. Meys, F. Henrotte, P. Dular, and W. Legros, “A Galerkin

projection method for mixed finite elements,” Magnetics, IEEE Transac-

tions on, vol. 35, no. 3, pp. 1438–1441, 1999.


