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AbstractEMC filters are increasingly integrated into 

power applications. To improve the filter performance it is 

important to model the electromagnetic interference 

between components to optimize their positions. In this 

paper, a method is proposed to construct the equivalent 

model of the filter components. The proposed method is 

based on the multipolar expansion by representing the 

radiation emission of generic structures in a spherical 

reference (r, θ, φ). These models of the sources will be used 

to compute the mutual inductance between the components 

according to their geometric placement. 

I. INTRODUCTION 

EMC filters are designed to improve the 

electromagnetic compatibility and the immunity level of 

electric and electronic systems, in particular the aspects 

concerning power quality and electromagnetic signature.  

For this reason the behavior of these filters has to be 

studied. Concerning these studies, the evaluation of the 

electrical parameters of the filter components assumes an 

important role. Basically, there are two types of parasitic 

parameters: the self-parasitic of the filter components and 

the mutual parasitic that reflect the coupling between 

components.  Fig.1 represents the electric model of an 

EMC filter « Π » consisting of   two capacitors Cy1 and 

Cy2, and an inductance LDM. This model includes the self-

parasitic of the filter components and the inductive 

coupling between components [1]. The capacitive effects 

are not considered. Due to the significant current values 

related the filter when compared with the voltage one, this 

simplified model is assumed. 

 

Fig.1 – Filter with parasitic coupling and the self-parasitic. 

In Fig.1 the following notations are used: 

ESL, ESR, C: The self-parasitic parameters, inductance, 

resistance, and the capacitance,                                                  

LDM, EPC, EPR: The inductance, and the related self-

parasitic capacitance and the resistance, 

M1 and M2: Mutual inductances between LDM and the 

self-parasitic inductances ESL1 and ESL2,                                        

M3 : Mutual inductance between the self-parasitic 

inductances ESL1 and ESL2,                                        

M4: Coupling inductance between LDM and the PCB 

tracks. 

As Fig.2 shows, these parasitic parameters can affect 

the EMC filter performances. This figure was withdraw 

from [2], and it presents three curves: the first one called 

“base” represents the filter behavior before implementing 

the electromagnetic interference reduction and the filter 

performance improvement, the second “Minimized 

coupling” was obtained by optimizing the location of the 

components to reduce the coupling between filter 

components, and the third curve “Minimized coupling + 

ESL cancellation” represents the filter  behavior after 

reducing the mutual parasitic and the effect of the 

equivalent serial inductance ESL.  The part A calls the 

attention to the differences between the first curve “base” 

and the second curve “Minimized coupling”, in particular 

to the first resonance frequency that matches the coupling 

effect of the filter components (mutual inductances). In a 

similar way, the part B tress the difference between the 

curves “base” and the “Minimized coupling + ESL 

cancellation”, and the impact of the self-parasitic 

components. 
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Fig.2 – Effect of parasitic parameters, extract from [2]. 

Thus, in a converter including passive and active 

components, the component mutual parasitic modeling 

can be considered as a fundamental problem.  

Nevertheless, it should be mentioned that, currently, 

there is not a suitable methodology that takes into account 

the near-field coupling between components when an 

accurate evaluation of filter performances is required. 

The objective of this work is to propose a 

methodology suitable for obtain models that could 

represent the radiated field of the filter components, at a 

wide range of frequencies, useful to evaluating the filter 

performance. In particular, these models will be applied to 

determine the coupling effects between the filter 

components, basically the mutual inductance, considering 

the influence of parameters, such as the distance between 

components etc.  

As the distance between components is much smaller 

than the wavelength related to the frequencies of power 

electronic applications, usually (f< 100MHz), a quasi 

static approach can be considered. It is the case of a 

magnetic source, in which the capacitive effects are 

negligible. 

The method proposed to determine the equivalent 

radiated field model of the filter components by applying 

the multipolar expansion. It can be used to represent the 

radiation of generic structures (coils, capacities, tracks…), 

and the spherical coordinates (r,θ,φ) is considered in this 

work. 

Basically, this method will be used to compute the 

coupling effects between discrete filter components 

(capacitors, resistances and inductances). To simulate the 

whole configuration, the coupling between tracks should 

also be taken into account. The PEEC method is used to 

determine the inductive and resistive effects (R, L, M). 

On the other hand, for the parasitic capacitors evaluations, 

the MoM (Moments method) and the Fast Multipolar 

Method FMM are used [3]. For the tracking connection, 

the equivalent sources corresponding to discrete 

components can be integrated. This can simplify the 

model and improve the memory allocation. 

II. MULTIPOLAR EXPANSION 

A. Definition 

The multipolar expansion can be used to represent the 

electromagnetic fields in 3D, assuming that the field is 

computed outside the sphere of radius is r that contains 

the equivalent source (Fig.3).  

The multipolar expansion of the electric and magnetic 

fields is deduced from the solution of the magnetic vector 

potential Ar and the electric vector potential Fr  given by 

[4]: 

 

𝐅𝐫 𝑟, 𝜃, 𝜑 =   𝑄𝑛𝑚
 𝑐𝑓 𝑛

𝑚=−𝑛
∞
𝑛=1 𝐵 𝑛

 𝑐𝑓 
 𝑘𝑟 𝑃𝑛

𝑚 (𝑐𝑜𝑠𝜃)𝑒𝑗𝑚𝜑   

                                                                    (1) 

𝐀𝐫 𝑟, 𝜃, 𝜑 =   𝑄𝑛𝑚
 𝑐𝑎 𝑛

𝑚=−𝑛
∞
𝑛=1 𝐵 𝑛

 𝑐𝑎  𝑘𝑟 𝑃𝑛
𝑚  𝑐𝑜𝑠𝜃 𝑒𝑗𝑚𝜑   

                                                                               (2) 

 

The notation (cf) and (ca) determine the type of the 

function 𝐵 𝑛(𝑘𝑟). For example, for a progressive wave 

propagating along (+ r), when c = 4, and  𝐵 𝑛 𝑘𝑟 =

𝐻 𝑛
 2 

(𝑘𝑟), it will correspond to the spherical Hankel 

functions [4]. 

 

If these functions are chosen, the expressions of the 

electric field E and the magnetic field H can be 

represented by the following expressions [4]: 

𝐄 𝑟, , 𝜑 =   𝑄1𝑚𝑛
 4 

𝑛

𝑚=−𝑛

∞

𝑛=1

𝐹1𝑛𝑚
 4  𝑟, 𝜃, 𝜑 + 𝑄2𝑛𝑚

 4 
𝐹2𝑛𝑚

 4 
(𝑟, 𝜃, 𝜑) 

                                                                        (3) 

𝐇 𝑟, , 𝜑 =
𝑗

𝜂
  𝑄2𝑛𝑚

 4 

𝑛

𝑚=−𝑛

∞

𝑛=1

𝐹1𝑛𝑚
 4  𝑟, 𝜃, 𝜑 + 𝑄1𝑚𝑛

 4 
𝐹2𝑛𝑚

 4  𝑟, 𝜃, 𝜑  

                                                                                  (4) 

with  𝜂 =  
𝜇

𝜀
   the intrinsic impedance of the considered 

environment. 

 

 

 

 

 

Fig.3 – References adopted in the field computation 

The coefficients 𝑄1𝑚𝑛
 4 

 describe the strength of the 

transverse-electric (TE) components of the radiated field, 

while coefficients 𝑄2𝑛𝑚
 4 

describe the strength of the 

transverse-magnetic (TM) components. These coefficients 

are the parameters to be identified to characterize the 

equivalent model of the radiated field component. 

F1nm
 4 

 and F2nm
 4 

 are the vector’s spherical harmonics 

which are a solution of Maxwell’s equations in free space, 
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excluding the sphere that involves the sources. To 

compute the vector spherical harmonics, the solution of 

the scalar Helmholtz equation is used: 

𝐹1𝑛𝑚
(4)

= ∇    ×  Ψ𝑛𝑚
 4 

𝑟       𝐹2𝑛𝑚
(4)

=
1

𝑘
∇    × 𝐹1𝑛𝑚

(4)
  (5) 

The solution of the Helmholtz equation is then 

expressed as follows: 

𝛹𝑛𝑚
 4  𝑟, 𝜃, 𝜑 =

𝑗

 𝑛(𝑛+1)
 𝑄𝑠𝑛𝑚  

 4 
𝑏𝑛

 4  𝑘𝑟  𝑌𝑛𝑚 (𝜃, 𝜑) (6) 

where Ynm are the normalized spherical harmonics  

𝑌𝑛𝑚 (𝜃, 𝜑) =  
2𝑛+1 𝑛−𝑚 !

4𝜋 𝑛+𝑚 !
𝑃𝑛

𝑚 (𝑐𝑜𝑠𝜃)𝑒𝑗𝑚𝜑   (7) 

In the aforementioned equations: 

n: degree,                                                                          

m: azimuthal order,                                                               

k : the phase constant, 

r : distance from the center of the coordinate system,                                   

bn : The Bessel functions,                                                                                       

𝑃𝑛
𝑚  : The Legendre associated functions. 

B. Application 

It should be mentioned that, in order to represent the 

component radiated field in spherical harmonics, it is 

necessary to compute the coefficients of the 

decomposition Qnm. In the case of a magnetic source 

in the near-field, the coefficients associated to the 

magnetic transverse modes are negligible because the 

electric field is considered very low compared to the 

magnetic field. These coefficients are functions of 

H(r,,φ), and can be obtained by applying [4]: 
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                                                                                  (8) 

with     

                  Nn
m = j 

2n+1

4π n n+1 

 n−m !

 n+m !
                     (9) 

Depending on the complexity of the object to model, 

we can calculate the radiated H-field by using a 3D model 

or by performing experimental measurements [5]. Some 

components of the multipolar expansion can be directly 

measured using novel magnetic induction sensors, for 

example, the sensors based on the standard CISPR16-1 

coils [6].  

 

III. MEASUREMENT APPROACH USED TO IDENTIFY THE 

COMPONENTS OF THE MULTIPOLAR EXPANSION 

 

The approach used to identify the components of the 

multipolar expansion consists in measuring the magnetic 

flux coupled with large coils placed around the device in 

order to achieve a special integration. The measurement 

principle is similar to a special filtering: according to the 

coil shape, each sensor is sensitive to one specific 

component of the multipolar expansion [5]. The prototype 

is shown in Fig.4: 

 

Fig.4 – The prototype to identify the terms of the multipolar expansion 

[5]. 

The basic principle is to measure the magnetic flux 

through different coils in short circuit mode on the 

measurement sphere SM (radius rM) around the device. 

The flux across the surface delimited by the set of coils is 

expressed by: 

𝑭𝒍𝒖𝒙𝒏𝒎 =  (𝜇. 𝐇

𝑐𝑜𝑖𝑙  𝑠𝑢𝑟𝑓𝑎𝑐𝑒

 𝑟𝑀 , 𝜃, 𝜑 . 𝐧) 𝑑𝑠 

                                =  
𝜇0

4𝜋
 
 𝑛 + 1 

𝑟𝑀
𝑛+2  𝑄𝑚𝑛

 4 
 𝑌𝑛𝑚

𝑆𝑀 𝑝𝑜𝑟𝑡𝑖𝑜𝑛𝑠

 𝜃, 𝜑 𝑑𝑆  

                                                                                         (10) 

Where n is the unit outgoing normal of SM, and 

𝑭𝒍𝒖𝒙𝒏𝒎corresponds to the sum of the fluxes through the 

sensor coils. 

Table 1 shows some results related to the validation of 

the z-dipole and z-quadrupole source identifications. 

These sources are centered and their effects on the three 

sensors are measured one after the other. In all cases, the 

consistent results validate the Q10 and Q20 theoretical 

values. Thus, when the source is composed of a z-dipole, 

the result from the Q20 sensor measurement is very small. 

As with the standard sensor, the proposed solution 

exhibits good filtering of the second order. This filtering 

capability is less significant for the z-quadrupole case. 

Indeed, current intensities are close to the sensitivity 

limits of the oscilloscope, so the accuracy is reduced [5]. 

 

 

 

Current probe

Z-dipole source

Q20_1 loop 

antenna

Q20_2 loop 

antenna

Q10_2 loop 

antenna

Q10_1 loop 

antenna



 
z-dipole source 

(mA.m
2
) 

z-quadrupole source 

(mA.m
3
) 

 Calculated Measured Calculated Measured 

A10 

sensor 
7.854 

7.955 / 
-0.025 

Standard 

sensor 
7.854 

7.854 / 
0.030 

A20 

sensor 
/ 

9.2·10
-4

 0.732 
0.753 

 
TABLE 1. IDENTIFICATION RESULTS WITH TWO DIFFERENT SOURCES 

PLACED AT THE CENTER 

 

It should be noted in Table I that the result of the 

calibration using the z-dipole is fairly good, with only 

1.3% error. 

Another approach, using a few coils with a simple 

geometry are considered, the identification is performed 

by rotating these coils around the device. The measured 

fluxes in different positions are combined and the 

equivalent multipolar terms are determined by a simpler 

measurement approach. The Fig.5 illustrates the 

prototype. 

 

Fig.5 – The new system to identify the terms of the multipolar expansion 

[5]. 

IV. COMPUTING THE MUTUAL INDUCTANCE 

A. Mutual inductance 

     Using the equivalent radiated field source model, we 

can determine the coupling between two equivalent 

sources through the computation of the mutual 

inductance. The Fig.6 illustrates the configurations 

regarding the representation of two radiating sources 

(Models 1 and 2). 

 

Fig.6 – Representation of two radiating sources. 

The computation of the mutual impedance between 

source 1 and source 2 can be expressed in terms of the 

electrical field E and magnetic field H for each source, by 

[4]: 

    𝑍12 = −
1

𝑖1𝑖2
  ( 𝐄1

     
 1

× 𝐇2
      − 𝐄2

     × 𝐇1
      )             (11) 

When the spheres which contain each of the sources 

don’t intersect, the mutual impedance can be expressed 

according to the coefficients of the multipolar expansion 

[4]: 

              𝑍12 =
1

𝑖1𝑖2

1

𝑘2  
𝜀0

𝜇0
   −1 𝑚 ( 𝑄𝑛 ,−𝑚

(4)
1 ∗ 𝑄2 𝑛𝑚

(4)
)𝑛

𝑚=−𝑛
𝑁𝑚𝑎𝑥
𝑛=1   

                                                                                       (12) 

The expression of the mutual inductance is: 

    𝑀12 =
1

𝑗𝜔 𝑖1𝑖2

1

𝑘2  
𝜀0

𝜇0
   −1 𝑚 ( 𝑄𝑛 ,−𝑚

(4)
1 ∗ 𝑄2 𝑛𝑚

(4)
)𝑛

𝑚=−𝑛
𝑁𝑚𝑎𝑥
𝑛=1    

              (13) 

In the expression (12) and (13), i1 and i2 are 

respectively the current circulate in the source 1 and 2, k 

are phase constant. 

The coefficients associated to the magnetic transverse 

modes of the multipolar expansion of sources 1 and 2 

must be expressed in the same reference: a translation is 

required for example the coefficients of the source 2 can 

be expressed in the reference of the source 1. 

B. Translation and rotation of the coefficients Qnm 

 

The rotation of the coefficients Qnm is obtained by 

applying the Euler angle reference formula. It should be 

mentioned that only two angles are necessary because of 

the spherical symmetry. The details of the methodology 

for determining the rotation matrices for complex or real 

coefficients Qnm are presented in [7]-[9]. 

The translation is based on the « Addition Theorem 

for Vector Spherical Harmonics » [8].  

 

Fig.7 – Translation of a spherical basis 
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The addition theorem links the harmonics evaluated 

on r to those evaluated on r ', where r is measured from 

the origin of the second spherical basis, whose axes’ are 

parallel to the first. The origin of the second spherical 

basis is linked to the first by r''. These 3 vectors are 

connected by the relation r = r '+ r''. 

The expression of the translate coefficients Qnm are:  

        𝑄𝑛′𝑚′ =   𝑄1𝑚𝑛
𝑛
𝑚=−𝑛

∞
𝑛=1  𝐴𝑛 ′ ,𝑚 ′ ,𝑛 ,𝑚              (14) 

The coefficient  An′ ,m ′ ,n,m  computation involves the 

Wigner 3j symbol according to quantum mechanics [9].  

V. VALIDATION 

To validate the method of computing the mutual 

inductance between two equivalent radiated field of the 

components, the analytical result was compared to the 

numerical result computed by Flux3D® [10]. For this 

proposal, two similar loops configuration were 

considered, C1 and C2. This is a simple case, which, 

objective is to validate this method in the case of a filter, 

for two coils. 

 

The results obtained through experimental 

measurements were led to be presented in a future paper. 

A. First case 

 

We consider two loops, C1 and C2 with a radius of 10 

cm, separated by r, both located on the Oz-axis as shown 

in the Fig.8. The minimum sphere of validity is the sphere 

which surface includes the source. In our case the radius 

of the sphere was assumed equal to the radius loop. 

 

Fig.8 – Two similar coils placed on the z axis  

In this case, the method of computing the mutual 

inductance in flux3D® is based on the computation of the 

flux through the surface of one of the two loops.  

We have computed the mutual inductance between the 

loops, according to the distance r using the method of 

spherical harmonics for n=3 and n=5, and on the 

simulation of the flux through the surface of one of the 

two loops. The result is compared with those computed 

directly by Flux3D®. The comparison between the results 

is shown in the Fig.9. 

 
Fig.9 – The comparison between spherical harmonics mutual inductance 

result and Flux3D® up to the near-field distance limit at 200MHz (1m) 

Using the equivalent models of each loop to compute 

the mutual inductance, there must be no intersection 

between the spheres that include the source for which of 

the mutual inductance that will be computed , which  has 

a minimum distance of (Rcoil1 + Rcoil2)= 0.2m between 

their centers.  

As shown in Fig.9, the results between the method 

using a truncated multipolar expansion and the numerical 

method in Flux3D® are comparable. 

To compute the mutual inductance for a small distance 

between the two loops, the number of terms required to 

describe the complexity of the source increases. For that 

reason, at distance of r=0.2m the error is greater for n=3 

than n=5 as show in the Fig.10.  

 

Fig.10 – The relative error compared to Flux3D® 
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B. Second case 

 

In the second case the numerical method is validated 

when the theorem to rotate the coefficients Q2nm of the 

loop C2 is applied.  A rotation of 45° around the y axis 

corresponds to the 2
nd

 Euler angle as shown in Fig.11 

 

Fig.11 – Two similar coils in oz axis where the coil C2 is rotate of 45° 

than the the coil C1. 

To compute the mutual inductance between the two 

loops, in the spherical basis of the loop C1, it was 

necessary to rotate the coefficients Q2nm of the loop C2 

before translating them to the spherical basis of loop C1. 

The comparison results of the spherical harmonics 

method and Flux3D® are represented in Fig.12. 

 

Fig.12 – The comparison between numerical and spherical harmonics 
results of mutual inductance 

The results of the mutual inductance between the two 

coils are similar to the previous case, at r =0.2m, where 

the error is greater for n=3 than n=5. 

VI. CONCLUSION 

This method allows us to create, at first, the equivalent 

sources which represent the radiated field component 

using the multipolar expansion. The equivalent sources 

will then be used to compute the coupling between them, 

which was represented by a mutual inductance as a 

function of the distance that separates them. 

 

Although some simple configurations were used to 

validate the proposed methodology, some not canonical 

structures been planned to be evaluated by the authors in 

the near future. Moreover, other kind of multipolar 

expansions, like the cylindrical one can be more suitable 

for modeling components such as tracks or cables, and it 

will also be considered. For example, in the case of the 

coupling between a track and a component, the spherical 

harmonic of the equivalent models of components 

radiated field is not very adequate and other one should be 

used.  

The method proposed could be helpful when coupled 

with the PEEC method in the evaluation of equivalent 

circuit of power electronics devices (R-L-M-C). This will 

allow considerable gain in memory space concerning the 

full model configuration used in EMC filter numerical 

simulations. 

The use of experimental results was based on the flux 

method measuring by large coils placed around the 

system. It allows a “spatial integration” to reduce the 

effect of the sensor position errors, unlike to the punctual 

measurement method where the sensor of magnetic field 

moves around the object to measure the field at many 

points, and can also be stressed as a helpful tool 

concerning the multipolar expansion coefficient 

determination. 
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