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I. INTRODUCTION

EMC filters are designed to improve the electromagnetic compatibility and the immunity level of electric and electronic systems, in particular the aspects concerning power quality and electromagnetic signature. For this reason the behavior of these filters has to be studied. Concerning these studies, the evaluation of the electrical parameters of the filter components assumes an important role. Basically, there are two types of parasitic parameters: the self-parasitic of the filter components and the mutual parasitic that reflect the coupling between components. Fig. 1 represents the electric model of an EMC filter « Π » consisting of two capacitors Cy 1 and Cy 2 , and an inductance L DM . This model includes the selfparasitic of the filter components and the inductive coupling between components [START_REF] Wang | Controlling the parasitic parameters to improve EMI filter performance[END_REF]. The capacitive effects are not considered. Due to the significant current values related the filter when compared with the voltage one, this simplified model is assumed. As Fig. 2 shows, these parasitic parameters can affect the EMC filter performances. This figure was withdraw from [START_REF] Wang | Cancellation of capacitor parasitic parameters for noise reduction application[END_REF], and it presents three curves: the first one called "base" represents the filter behavior before implementing the electromagnetic interference reduction and the filter performance improvement, the second "Minimized coupling" was obtained by optimizing the location of the components to reduce the coupling between filter components, and the third curve "Minimized coupling + ESL cancellation" represents the filter behavior after reducing the mutual parasitic and the effect of the equivalent serial inductance ESL. The part A calls the attention to the differences between the first curve "base" and the second curve "Minimized coupling", in particular to the first resonance frequency that matches the coupling effect of the filter components (mutual inductances). In a similar way, the part B tress the difference between the curves "base" and the "Minimized coupling + ESL cancellation", and the impact of the self-parasitic components. Thus, in a converter including passive and active components, the component mutual parasitic modeling can be considered as a fundamental problem.

Nevertheless, it should be mentioned that, currently, there is not a suitable methodology that takes into account the near-field coupling between components when an accurate evaluation of filter performances is required.

The objective of this work is to propose a methodology suitable for obtain models that could represent the radiated field of the filter components, at a wide range of frequencies, useful to evaluating the filter performance. In particular, these models will be applied to determine the coupling effects between the filter components, basically the mutual inductance, considering the influence of parameters, such as the distance between components etc.

As the distance between components is much smaller than the wavelength related to the frequencies of power electronic applications, usually (f< 100MHz), a quasi static approach can be considered. It is the case of a magnetic source, in which the capacitive effects are negligible.

The method proposed to determine the equivalent radiated field model of the filter components by applying the multipolar expansion. It can be used to represent the radiation of generic structures (coils, capacities, tracks…), and the spherical coordinates (r,θ,φ) is considered in this work.

Basically, this method will be used to compute the coupling effects between discrete filter components (capacitors, resistances and inductances). To simulate the whole configuration, the coupling between tracks should also be taken into account. The PEEC method is used to determine the inductive and resistive effects (R, L, M). On the other hand, for the parasitic capacitors evaluations, the MoM (Moments method) and the Fast Multipolar Method FMM are used [START_REF] Ardon | EMC Modeling of an Industrial Variable Speed Drive with an Adapted PEEC Method[END_REF]. For the tracking connection, the equivalent sources corresponding to discrete components can be integrated. This can simplify the model and improve the memory allocation.

II. MULTIPOLAR EXPANSION

A. Definition

The multipolar expansion can be used to represent the electromagnetic fields in 3D, assuming that the field is computed outside the sphere of radius is r that contains the equivalent source (Fig. 3).

The multipolar expansion of the electric and magnetic fields is deduced from the solution of the magnetic vector potential A r and the electric vector potential F r given by [START_REF] Brock | Using vector spherical harmonics to compute antenna mutual impedance from measured or computed fields[END_REF]:

𝐅 𝐫 𝑟, 𝜃, 𝜑 = 𝑄 𝑛𝑚 𝑐𝑓 𝑛 𝑚 =-𝑛 ∞ 𝑛=1 𝐵 𝑛 𝑐𝑓 𝑘𝑟 𝑃 𝑛 𝑚 (𝑐𝑜𝑠𝜃)𝑒 𝑗𝑚𝜑 (1) 𝐀 𝐫 𝑟, 𝜃, 𝜑 = 𝑄 𝑛𝑚 𝑐𝑎 𝑛 𝑚 =-𝑛 ∞ 𝑛=1 𝐵 𝑛 𝑐𝑎 𝑘𝑟 𝑃 𝑛 𝑚 𝑐𝑜𝑠𝜃 𝑒 𝑗𝑚𝜑 (2) 
The notation (cf) and (ca) determine the type of the function 𝐵 𝑛 (𝑘𝑟). For example, for a progressive wave propagating along (+ r), when c = 4, and 𝐵 𝑛 𝑘𝑟 = 𝐻 𝑛 2 (𝑘𝑟), it will correspond to the spherical Hankel functions [START_REF] Brock | Using vector spherical harmonics to compute antenna mutual impedance from measured or computed fields[END_REF].

If these functions are chosen, the expressions of the electric field E and the magnetic field H can be represented by the following expressions [START_REF] Brock | Using vector spherical harmonics to compute antenna mutual impedance from measured or computed fields[END_REF]: excluding the sphere that involves the sources. To compute the vector spherical harmonics, the solution of the scalar Helmholtz equation is used:

𝐄 𝑟, , 𝜑 = 𝑄 1𝑚𝑛 4 𝑛 𝑚 =-𝑛 ∞ 𝑛=1 𝐹 1𝑛𝑚 4 𝑟, 𝜃, 𝜑 + 𝑄 2𝑛𝑚 4 𝐹 2𝑛𝑚 4 (𝑟, 𝜃, 𝜑) (3) 
𝐹 1𝑛𝑚 (4) = ∇ × Ψ 𝑛𝑚 4 𝑟 𝐹 2𝑛𝑚 (4) = 1 𝑘 ∇ × 𝐹 1𝑛𝑚 (4) 
(5)

The solution of the Helmholtz equation is then expressed as follows:

𝛹 𝑛𝑚 4 𝑟, 𝜃, 𝜑 = 𝑗 𝑛(𝑛+1) 𝑄 𝑠𝑛𝑚 4 𝑏 𝑛 4 𝑘𝑟 𝑌 𝑛𝑚 (𝜃, 𝜑) (6)
where Y nm are the normalized spherical harmonics

𝑌 𝑛𝑚 (𝜃, 𝜑) = 2𝑛+1 𝑛-𝑚 ! 4𝜋 𝑛+𝑚 ! 𝑃 𝑛 𝑚 (𝑐𝑜𝑠𝜃)𝑒 𝑗𝑚𝜑 (7) 
In the aforementioned equations:

n: degree, m: azimuthal order, k : the phase constant, r : distance from the center of the coordinate system, b n : The Bessel functions, 𝑃 𝑛 𝑚 : The Legendre associated functions.

B. Application

It should be mentioned that, in order to represent the component radiated field in spherical harmonics, it is necessary to compute the coefficients of the decomposition Q nm . In the case of a magnetic source in the near-field, the coefficients associated to the magnetic transverse modes are negligible because the electric field is considered very low compared to the magnetic field. These coefficients are functions of H(r,,φ), and can be obtained by applying [START_REF] Brock | Using vector spherical harmonics to compute antenna mutual impedance from measured or computed fields[END_REF]:

𝐇 = 𝑗 𝜂 2𝑛 -1 ‼ (𝑘𝑟) 𝑛+2 𝑁 𝑛 𝑚 𝑛 𝑚 =-𝑛 ∞ 𝑛 =1 𝑒 𝑗𝑚𝜑 𝑄 𝑚𝑛 4 𝑛 𝑛 + 1 𝑃 𝑛 𝑚 (𝑐𝑜𝑠𝜃)𝑎 𝑟 -𝑛 𝑑𝑃 𝑛 𝑚 (𝑐𝑜𝑠𝜃) 𝑑𝜃 𝑎 𝜃 -𝑛 𝑗𝑚𝑃 𝑛 𝑚 (𝑐𝑜𝑠𝜃) 𝑠𝑖𝑛𝜃 𝑎 𝜑 (8) 
with

N n m = j 2n+1 4π n n+1 n-m ! n+m ! (9)
Depending on the complexity of the object to model, we can calculate the radiated H-field by using a 3D model or by performing experimental measurements [START_REF] Vincent | Loop antennas for Near Field Multipolar Expansion Identification: First experimental Validations[END_REF]. Some components of the multipolar expansion can be directly measured using novel magnetic induction sensors, for example, the sensors based on the standard CISPR16-1 coils [START_REF][END_REF].

III. MEASUREMENT APPROACH USED TO IDENTIFY THE COMPONENTS OF THE MULTIPOLAR EXPANSION

The approach used to identify the components of the multipolar expansion consists in measuring the magnetic flux coupled with large coils placed around the device in order to achieve a special integration. The measurement principle is similar to a special filtering: according to the coil shape, each sensor is sensitive to one specific component of the multipolar expansion [START_REF] Vincent | Loop antennas for Near Field Multipolar Expansion Identification: First experimental Validations[END_REF]. The prototype is shown in Fig. 4: 

Where n is the unit outgoing normal of S M , and 𝑭𝒍𝒖𝒙 𝒏𝒎 corresponds to the sum of the fluxes through the sensor coils.

Table 1 shows some results related to the validation of the z-dipole and z-quadrupole source identifications. These sources are centered and their effects on the three sensors are measured one after the other. In all cases, the consistent results validate the Q 10 and Q 20 theoretical values. Thus, when the source is composed of a z-dipole, the result from the Q 20 sensor measurement is very small. As with the standard sensor, the proposed solution exhibits good filtering of the second order. This filtering capability is less significant for the z-quadrupole case. Indeed, current intensities are close to the sensitivity limits of the oscilloscope, so the accuracy is reduced [START_REF] Vincent | Loop antennas for Near Field Multipolar Expansion Identification: First experimental Validations[END_REF]. It should be noted in Table I that the result of the calibration using the z-dipole is fairly good, with only 1.3% error.

Another approach, using a few coils with a simple geometry are considered, the identification is performed by rotating these coils around the device. The measured fluxes in different positions are combined and the equivalent multipolar terms are determined by a simpler measurement approach. The Fig. 5 illustrates the prototype.

Fig. 5 -The new system to identify the terms of the multipolar expansion [START_REF] Vincent | Loop antennas for Near Field Multipolar Expansion Identification: First experimental Validations[END_REF].

IV. COMPUTING THE MUTUAL INDUCTANCE

A. Mutual inductance

Using the equivalent radiated field source model, we can determine the coupling between two equivalent sources through the computation of the mutual inductance. The Fig. 6 illustrates the configurations regarding the representation of two radiating sources (Models 1 and 2). The computation of the mutual impedance between source 1 and source 2 can be expressed in terms of the electrical field E and magnetic field H for each source, by [START_REF] Brock | Using vector spherical harmonics to compute antenna mutual impedance from measured or computed fields[END_REF]:

𝑍 12 = - 1 𝑖 1 𝑖 2 ( 𝐄 1 1 × 𝐇 2 -𝐄 2 × 𝐇 1 ) (11) 
When the spheres which contain each of the sources don't intersect, the mutual impedance can be expressed according to the coefficients of the multipolar expansion [START_REF] Brock | Using vector spherical harmonics to compute antenna mutual impedance from measured or computed fields[END_REF]:

𝑍 12 = 1 𝑖 1 𝑖 2 1 𝑘 2 𝜀 0 𝜇 0 -1 𝑚 ( 𝑄 𝑛 ,-𝑚 (4) 1 * 𝑄 2 𝑛𝑚 (4) ) 𝑛 𝑚 =-𝑛 𝑁𝑚𝑎𝑥 𝑛=1 (12)
The expression of the mutual inductance is:

𝑀 12 = 1 𝑗𝜔 𝑖 1 𝑖 2 1 𝑘 2 𝜀 0 𝜇 0 -1 𝑚 ( 𝑄 𝑛 ,-𝑚 (4) 1 * 𝑄 2 𝑛𝑚 (4) ) 𝑛 𝑚 =-𝑛 𝑁𝑚𝑎𝑥 𝑛=1 (13)
In the expression ( 12) and (13), i 1 and i 2 are respectively the current circulate in the source 1 and 2, k are phase constant.

The coefficients associated to the magnetic transverse modes of the multipolar expansion of sources 1 and 2 must be expressed in the same reference: a translation is required for example the coefficients of the source 2 can be expressed in the reference of the source 1.

B. Translation and rotation of the coefficients Q nm

The rotation of the coefficients Q nm is obtained by applying the Euler angle reference formula. It should be mentioned that only two angles are necessary because of the spherical symmetry. The details of the methodology for determining the rotation matrices for complex or real coefficients Q nm are presented in [START_REF] Blanco | Evalution of the rotation matrices in the basis of the real spherical harmonics[END_REF]- [START_REF] Clebsch-Gordan | Coefficients and '3j' Symbols[END_REF].

The translation is based on the « Addition Theorem for Vector Spherical Harmonics » [START_REF]Advanced Engineering Electromagnetics[END_REF]. Z 21

r 2 r 1 r L 2 L 1 H Z X Y
The addition theorem links the harmonics evaluated on r to those evaluated on r ', where r is measured from the origin of the second spherical basis, whose axes' are parallel to the first. The origin of the second spherical basis is linked to the first by r''. These 3 vectors are connected by the relation r = r '+ r''.

The expression of the translate coefficients Q nm are:

𝑄 𝑛′ 𝑚′ = 𝑄 1𝑚𝑛 𝑛 𝑚 =-𝑛 ∞ 𝑛=1 𝐴 𝑛 ′ ,𝑚 ′ ,𝑛,𝑚 (14) 
The coefficient A n ′ ,m ′ ,n,m computation involves the Wigner 3j symbol according to quantum mechanics [START_REF] Clebsch-Gordan | Coefficients and '3j' Symbols[END_REF].

V. VALIDATION To validate the method of computing the mutual inductance between two equivalent radiated field of the components, the analytical result was compared to the numerical result computed by Flux3D® [10]. For this proposal, two similar loops configuration were considered, C 1 and C 2. This is a simple case, which, objective is to validate this method in the case of a filter, for two coils.

The results obtained through experimental measurements were led to be presented in a future paper.

A. First case

We consider two loops, C 1 and C 2 with a radius of 10 cm, separated by r, both located on the Oz-axis as shown in the Fig. 8. The minimum sphere of validity is the sphere which surface includes the source. In our case the radius of the sphere was assumed equal to the radius loop. We have computed the mutual inductance between the loops, according to the distance r using the method of spherical harmonics for n=3 and n=5, and on the simulation of the flux through the surface of one of the two loops. The result is compared with those computed directly by Flux3D®. The comparison between the results is shown in the Fig. 9. Using the equivalent models of each loop to compute the mutual inductance, there must be no intersection between the spheres that include the source for which of the mutual inductance that will be computed , which has a minimum distance of (Rcoil1 + Rcoil2)= 0.2m between their centers.

As shown in Fig. 9, the results between the method using a truncated multipolar expansion and the numerical method in Flux3D® are comparable.

To compute the mutual inductance for a small distance between the two loops, the number of terms required to describe the complexity of the source increases. For that reason, at distance of r=0.2m the error is greater for n=3 than n=5 as show in the Fig. 10. 

B. Second case

In the second case the numerical method is validated when the theorem to rotate the coefficients Q 2nm of the loop C 2 is applied. A rotation of 45° around the y axis corresponds to the 2 nd Euler angle as shown in Fig. 11 Fig. 11 -Two similar coils in oz axis where the coil C2 is rotate of 45° than the the coil C1.

To compute the mutual inductance between the two loops, in the spherical basis of the loop C 1 , it was necessary to rotate the coefficients Q 2nm of the loop C 2 before translating them to the spherical basis of loop C 1. The comparison results of the spherical harmonics method and Flux3D® are represented in Fig. 12. The results of the mutual inductance between the two coils are similar to the previous case, at r =0.2m, where the error is greater for n=3 than n=5.

VI. CONCLUSION

This method allows us to create, at first, the equivalent sources which represent the radiated field component using the multipolar expansion. The equivalent sources will then be used to compute the coupling between them, which was represented by a mutual inductance as a function of the distance that separates them.

Although some simple configurations were used to validate the proposed methodology, some not canonical structures been planned to be evaluated by the authors in the near future. Moreover, other kind of multipolar expansions, like the cylindrical one can be more suitable for modeling components such as tracks or cables, and it will also be considered. For example, in the case of the coupling between a track and a component, the spherical harmonic of the equivalent models of components radiated field is not very adequate and other one should be used.

The method proposed could be helpful when coupled with the PEEC method in the evaluation of equivalent circuit of power electronics devices (R-L-M-C). This will allow considerable gain in memory space concerning the full model configuration used in EMC filter numerical simulations.

The use of experimental results was based on the flux method measuring by large coils placed around the system. It allows a "spatial integration" to reduce the effect of the sensor position errors, unlike to the punctual measurement method where the sensor of magnetic field moves around the object to measure the field at many points, and can also be stressed as a helpful tool concerning the multipolar expansion coefficient determination. 
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 1 Fig.1 -Filter with parasitic coupling and the self-parasitic.
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 2 Fig.2 -Effect of parasitic parameters, extract from [2].
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 3 Fig.3 -References adopted in the field computation The coefficients 𝑄 1𝑚𝑛 4 describe the strength of the transverse-electric (TE) components of the radiated field, while coefficients 𝑄 2𝑛𝑚 4 describe the strength of the transverse-magnetic (TM) components. These coefficients are the parameters to be identified to characterize the equivalent model of the radiated field component. F 1nm 4 and F 2nm 4 are the vector's spherical harmonics which are a solution of Maxwell's equations in free space,
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 4 Fig.4-The prototype to identify the terms of the multipolar expansion[START_REF] Vincent | Loop antennas for Near Field Multipolar Expansion Identification: First experimental Validations[END_REF].The basic principle is to measure the magnetic flux through different coils in short circuit mode on the measurement sphere S M (radius r M ) around the device. The flux across the surface delimited by the set of coils is expressed by:

Fig. 6 -

 6 Fig.6 -Representation of two radiating sources.
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 7 Fig.7 -Translation of a spherical basis
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 8 Fig.8 -Two similar coils placed on the z axis In this case, the method of computing the mutual inductance in flux3D® is based on the computation of the flux through the surface of one of the two loops.
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 9 Fig.9-The comparison between spherical harmonics mutual inductance result and Flux3D® up to the near-field distance limit at 200MHz (1m)
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 10 Fig.10 -The relative error compared to Flux3D®
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 12 Fig.12 -The comparison between numerical and spherical harmonics results of mutual inductance