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). Here we present some structural properties of δ-minimum edge-colourings, partially taken from the above thesis. The paper serves as an auxiliary tool for another paper submitted by the authors to Graphs and Combinatorics.

Introduction

Throughout this note, we shall be concerned with connected graphs with maximum degree 3. We know by Vizing's theorem [START_REF] Vizing | On an estimate of the chromatic class of p-graphs[END_REF] that these graphs can be edge-coloured with 4 colours. Let φ : E(G) → {α, β, γ, δ} be a proper edgecolouring of G. It is often of interest to try to use one colour (say δ) as few as possible. In [START_REF] Fouquet | Graphes cubiques d'indice chromatique quatre[END_REF] we gave without proof (in French) results on δ-minimum edge-colourings of cubic graphs. Some of them have been obtained later and independently by Steffen [START_REF] Steffen | Classifications and characterizations of snarks[END_REF] and [START_REF] Steffen | Measurements of edge-uncolorability[END_REF]. The purpose of Section 2 is to give with their proofs those results as structural properties of δ-minimum edge-colourings.

An edge colouring of G using colours α, β, γ, δ is said to be δ-improper provided that adjacent edges having the same colours (if any) are coloured with δ. It is clear that a proper edge colouring of G is a particular δ-improper edge colouring. For a proper or δ-improper edge colouring φ of G , it will be convenient to denote E φ (x) (x ∈ {α, β, γ, δ}) the set of edges coloured with x by φ. For x, y ∈ {α, β, γ, δ}, x = y, φ(x, y) is the partial subgraph of G spanned by these two colours, that is E φ (x) ∪ E φ (y) (this subgraph being a union of paths and even cycles where the colours x and y alternate). Since any two δ-minimum edge-colourings of G have the same number of edges coloured δ we shall denote by s(G) this number (the colour number as defined in [START_REF] Steffen | Classifications and characterizations of snarks[END_REF]).

As usual, for any undirected graph G, we denote by V (G) the set of its vertices and by E(G) the set of its edges. A strong matching C in a graph G is a matching C such that there is no edge of E(G) connecting any two edges of C, or, equivalently, such that C is the edge-set of the subgraph of G induced on the vertex-set V (C).

Structural properties of δ-minimum edge-colourings

The graph G considered in the following series of Lemmas will have maximum degree 3.

Lemma 1 [START_REF] Fouquet | Contribution à l' étude des graphes cubiques et problèmes hamiltoniens dans les graphes orientés[END_REF] Any 2-factor of G contains at least s(G) disjoint odd cycles.

Proof Assume that we can find a 2-factor of G with k < s(G) odd cycles. Then let us colour the edges of this 2-factor with α and β, except one edge (coloured δ) on each odd cycle of our 2-factor and let us colour the remaining edges by γ.

We get hence a new edge colouring φ with E φ (δ) < s(G), impossible.

Lemma 2 [START_REF] Fouquet | Contribution à l' étude des graphes cubiques et problèmes hamiltoniens dans les graphes orientés[END_REF] Let φ be a δ-minimum edge-colouring of G. Any edge in E φ (δ) is incident to α, β and γ. Moreover each such edge has one end of degree 2 and the other of degree 3 or the two ends of degree 3.

Proof Any edge of E φ (δ) is certainly adjacent to α, β and γ. Otherwise this edge could be coloured with the missing colour and we should obtain an edge colouring

φ ′ with |E φ ′ (δ)| < |E φ (δ)|.
Lemma 3 below was proven in [START_REF] Fouquet | On parcimonious edge-colouring of graphs with maximum degree three[END_REF], we give its proof for the sake of completeness.

Lemma 3 [START_REF] Fouquet | On parcimonious edge-colouring of graphs with maximum degree three[END_REF] Let φ be a δ-improper colouring of G then there exists a proper colouring of G φ ′ such that E φ ′ (δ) ⊆ E φ (δ). Moreover, if φ is improper, then φ ′ can be chosen so that E φ ′ (δ) E φ (δ).

Proof Let φ be a δ-improper edge colouring of G. If φ is a proper colouring, we are done. Hence, assume that uv and uw are coloured δ. If d(u) = 2 we can change the colour of uv to α, β or γ since v is incident to at most two colours in this set.

If d(u) = 3 assume that the third edge uz incident to u is also coloured δ, then we can change the colour of uv for the same reason as above.

If uz is coloured with α, β or γ, then v and w are incident to the two remaining colours of the set {α, β, γ} otherwise one of the edges uv, uw can be recoloured with the missing colour. W.l.o.g., consider that uz is coloured α then v and w are incident to β and γ. Since u has degree 1 in φ(α, β) let P be the path of φ(α, β) which ends on u. We can assume that v or w (say v) is not the other end vertex of P . Exchanging α and β along P does not change the colours incident to v. But now uz is coloured β and we can change the colour of uv to α.

In each case, we get hence a new δ-improper edge colouring φ 1 with E φ1 (δ) E φ (δ). Repeating this process leads us to construct a proper edge colouring of

G with E φ ′ (δ) ⊆ E φ (δ) as claimed.
Corollary 4 Any δ-minimum edge-colouring is proper.

Lemma 5 [START_REF] Fouquet | Contribution à l' étude des graphes cubiques et problèmes hamiltoniens dans les graphes orientés[END_REF] Let φ be a δ-minimum edge-colouring of G. For any edge e = uv ∈ E φ (δ) with d(v) ≤ d(u) there is a colour x ∈ {α, β, γ} present at v and a colour y ∈ {α, β, γ} -{x} present at u such that one of connected components of φ(x, y) is a path of even length joining the two ends of e. Moreover, if d(v) = 2, then both colours of {α, β, γ} -{x} satisfy the above assertion.

Proof Without loss of generality suppose that x = γ is present at v and α, β are present at u (see Lemma 2). Then u is an endvertex of paths in both φ(α, γ) and φ(β, γ), while there is y ∈ {α, β} such that v is an endvertex of a path in φ(x, y). Without loss of generality assume that both u and v are endvertices of paths in φ(α, γ). If these paths are disjoint, we exchange the colours α and γ on the path with endvertex u and then recolour e with α; this yields a contradiction to the δ-minimality of φ. To conclude the proof note that if d(v) = 2, then v is an endvertex of paths in both φ(α, γ) and φ(β, γ).

An edge of E φ (δ) is in A φ when its ends can be connected by a path of φ(α, β), B φ by a path of φ(β, γ) and C φ by a path of φ(α, γ). From Lemma 5 it is clear that if d(u) = 3 and d(v) = 2 for an edge e = uv ∈ E φ (δ), the A φ , B φ and C φ are not pairwise disjoint; indeed, if the colour γ is present at the vertex v, then e ∈ A φ ∩ B φ .

When e ∈ A φ we can associate to e the odd cycle C A φ (e) obtained by considering the path of φ(α, β) together with e. We define in the same way In the following lemma we consider an edge in A φ , an analogous result holds true whenever we consider edges in B φ or C φ as well.

C B φ (e) and C C φ (e) when e is in B φ or C φ . Lemma 6 [2] If G is a cubic graph then |A φ | ≡ |B φ | ≡ |C φ | ≡ s(G) (mod 2).
Lemma 7 [START_REF] Fouquet | Contribution à l' étude des graphes cubiques et problèmes hamiltoniens dans les graphes orientés[END_REF] Let φ be a δ-minimum edge-colouring of G and let e be an edge in A φ then for any edge e ′ ∈ C A φ (e) there is a δ-minimum edge-colouring

φ ′ such that E φ ′ (δ) = E φ (δ) -{e} ∪ {e ′ }, e ′ ∈ A φ ′ and C A φ (e) = C A φ ′ (e ′ ).
Moreover, each edge outside C A φ (e) but incident with this cycle is coloured γ, φ and φ ′ only differ on the edges of C A φ (e).

Proof By exchanging colours δ and α and δ and β successively along the cycle C A φ (e), we are sure to obtain an edge colouring preserving the number of edges coloured δ. Since we have supposed that φ is δ-minimum, φ is proper by Corollary 4. At each step, the resulting edge colouring remains to be δminimum and hence proper. Hence, there is no edge coloured δ incident with C A φ (e), which means that every such edge is coloured with γ.

We can perform these exchanges until e ′ is coloured δ. In the δ-minimum edge-colouring φ ′ hence obtained, the two ends of e ′ are joined by a path of φ(α, β). Which means that e ′ is in A φ and C A φ (e) = C A φ ′ (e ′ ).

For each edge e ∈ E φ (δ) (where φ is a δ-minimum edge-colouring of G) we can associate one or two odd cycles following the fact that e is in one or two sets from among A φ , B φ , C φ . Let C be the set of odd cycles associated to edges in E φ (δ).

Lemma 8 [START_REF] Fouquet | Contribution à l' étude des graphes cubiques et problèmes hamiltoniens dans les graphes orientés[END_REF] For each cycle C ∈ C, there are no two consecutive vertices with degree two.

Proof Otherwise, we exchange colours along C in order to put the colour δ on the corresponding edge and, by Lemma 2, this is impossible in a δ-minimum edge-colouring . Proof If e 1 and e 2 are contained in the same set A φ , B φ , or C φ , we are done since their respective ends are joined by an alternating path of φ(x, y) for some two colours x and y in {α, β, γ}.

Without loss of generality assume that e 1 ∈ A φ and e 2 ∈ B φ . Assume moreover that there exists an edge e such that e ∈ C 1 ∩ C 2 . We have hence an edge f ∈ C 1 with exactly one end on C 2 . We can exchange colours on C 1 in order to put the colour δ on f which is impossible by Lemma 7.

Lemma 10 [2] Let e 1 = uv 1 be an edge of E φ (δ) such that v 1 has degree 2 in G. Then v 1 is the only vertex in N (u) of degree 2 and for any other edge e 2 ∈ E φ (δ), {e 1 , e 2 } induces a 2K 2 .

Proof We have seen in Lemma 2 that uv 1 has one end of degree 3 while the other has degree 2 or 3. Hence, we have d(u) = 3 and d(v 1 ) = 2. Let v 2 and v 3 the other neighbours of u. We can suppose without loss of generality that uv 2 is coloured α, uv 3 is coloured β and, finally v 1 is incident to an edge coloured γ, say v 1 v 4 .

Assume first that d(v 2 ) = 2. An alternating path of φ(β, γ) using the edge uv 3 ends with the vertex v 1 , moreover v 2 is incident to an edge coloured γ since an alternating path of φ(α, γ) using the edge uv 2 ends with v 1 Lemma 5), then, exchanging the colours along the component of φ(β, γ) containing v 2 allows us to colour uv 2 with γ and uv 1 with α. A new edge colouring φ ′ so obtained is such that

|E φ ′ (δ)| ≤ |E φ (δ)| -1, impossible.
Thus, d(v 2 ) = 3, and, by symmetry, d(v 3 ) = 3. We know that e 1 ∈ B φ ∩ C φ (see Lemma 5). By Lemma 7, since e 1 ∈ C B φ (e 1 ) the edges incident to v 3 in C B φ (e 1 ) are coloured with β and γ and the third edge incident to v 3 is coloured α. Similarly the vertex v 2 being on C B φ (e 1 ) is incident to colours α and γ and the third edge incident to v 2 is coloured β. Moreover the vertex v 4 being on both cycles C B φ (e 1 ) and C C φ (e 1 ) is incident to colours α, β, γ. Hence no edge coloured δ can be incident to v 2 nor v 3 nor v 4 . It follows that for any edge e 2 in E φ (δ) -{e 1 }, the set {e 1 , e 2 } induces a 2K 2 .

Lemma 11 [START_REF] Fouquet | Contribution à l' étude des graphes cubiques et problèmes hamiltoniens dans les graphes orientés[END_REF] Let e 1 and e 2 be two edges of E φ (δ) e 1 = e 2 . If e 1 and e 2 are contained in two distinct sets of A φ , B φ , C φ then {e 1 , e 2 } induces a 2K 2 , otherwise e 1 , e 2 are joined by at most one edge.

Proof By Lemma 10 one can suppose that all vertices incident with e 1 , e 2 are of degree 3 so that there is exactly one of the sets A φ , B φ or C φ containing e 1 (respectively e 2 ).

Assume in the first stage that e 1 ∈ A φ and e 2 ∈ B φ . Since C A φ (e 1 ) and C B φ (e 2 ) are disjoint by Lemma 9, we know that e 1 and e 2 have no common vertex. The edges having exactly one end in C A φ (e 1 ) are coloured γ while those having exactly one end in C B φ (e) are coloured α. Hence there is no edge between e 1 and e 2 as claimed.

Assume in the second stage that e 1 = u 1 v 1 , e 2 = u 2 v 2 ∈ A φ . Since C A φ (e 1 ) and C B φ (e 2 ) are disjoint by Lemma 9, we can consider that e 1 and e 2 have no common vertex. The edges having exactly one end in C A φ (e 1 ) or C B φ (e 2 ) are coloured γ. Assume that u 1 u 2 and v 1 v 2 are edges of G. We may suppose without loss of generality that u 1 and u 2 are incident to α while v 1 and v 2 are incident to β (if necessary, colours α and β can be exchanded on C A φ (e 1 ) and C B φ (e 2 )). We know that u 1 u 2 and v 1 v 2 are coloured γ. Let us colour e 1 and e 2 with γ and u 1 u 2 with β and v 1 v 2 with α. We get a new edge colouring φ ′ where

|E φ ′ (δ)| ≤ |E φ (δ)| -2, contradiction since φ is a δ-minimum edge-colouring .
Lemma 12 [START_REF] Fouquet | Contribution à l' étude des graphes cubiques et problèmes hamiltoniens dans les graphes orientés[END_REF] Let e 1 , e 2 and e 3 be three distinct edges of E φ (δ) contained in the same set A φ , B φ or C φ . Then {e 1 , e 2 , e 3 } induces a subgraph with at most four edges.

Proof

Without loss of generality assume that e 1 = u 1 v 1 , e 2 = u 2 v 2 and e 3 = u 3 v 3 ∈ A φ . From Lemma 11 we have just to suppose that (up to the names of vertices) u 1 u 3 ∈ E(G) and v 1 v 2 ∈ E(G). Possibly, by exchanging the colours α and β along the 3 disjoint paths of φ(α, β) joining the ends of each edge e 1 , e 2 and e 3 , we can suppose that u 1 and u 3 are incident to β while v 1 and v 2 are incident to α. Let φ ′ be obtained from φ when u 1 u 3 is coloured with α, v 1 v 2 with β and u 1 v 1 with γ. It is easy to check that φ ′ is a proper edge-colouring with |E φ ′ (δ)| ≤ |E φ (δ)|-1, contradiction since φ is a δ-minimum edge-colouring . Let us summarize most of the above results in a single Theorem.

Theorem 13 Let G be a graph of maximum degree 3 and φ be a δ-minimum colouring of G. Then the following hold. 5. The cycles from 1 that correspond to distinct edges of E φ (δ) are vertexdisjoint.

6. If the edges e 1 , e 2 , e 3 ∈ E φ (δ) all belong to A φ (B φ , C φ respectively), then the set {e 1 , e 2 , e 3 } induces in G a subgraph with at most 4 edges.

  Proof φ(α, β) contains 2|A φ |+|B φ |+|C φ | vertices of degree 1 and must be even. Hence we get |B φ | ≡ |C φ | (mod 2). In the same way we get |A φ | ≡ |B φ | (mod 2) leading to |A φ | ≡ |B φ | ≡ |C φ | ≡ s(G) (mod 2).

Lemma 9 [ 2 ]

 2 Let e 1 , e 2 ∈ E φ (δ), such that e 1 = e 2 and let C 1 , C 2 ∈ C be such that C 1 = C 2 , e 1 ∈ E(C 1 ) and e 2 ∈ E(C 2 ) then C 1 and C 2 are (vertex) disjoint.

1 . 2 .

 12 E φ (δ) = A φ ∪B φ ∪C φ where an edge e in A φ (B φ , C φ respectively) belongs to a uniquely determined cycle C A φ (e) (C B φ (e), C C φ (e) respectively) with precisely one edge coloured δ and the other edges being alternately coloured α and β (β and γ, α and γ respectively). Each edge having exactly one vertex in common with some edge in A φ (B φ , C φ respectively) is coloured γ (α, β, respectively).

3 .

 3 The multiset of colours of edges of C A φ (e) (C B φ (e), C C φ (e) respectively) can be permuted to obtain a (proper) δ-minimum edge-colouring of G in which the colour δ is moved from e to an arbitrarily prescribed edge. 4. No two consecutive vertices of C A φ (e) (C B φ (e), C C φ (e) respectively) have degree 2.