

Tools for parsimonious edge-colouring of graphs with maximum degree three

Jean-Luc Fouquet, Jean-Marie Vanherpe

▶ To cite this version:

Jean-Luc Fouquet, Jean-Marie Vanherpe. Tools for parsimonious edge-colouring of graphs with maximum degree three. 2011. hal-00502201v3

HAL Id: hal-00502201 https://hal.science/hal-00502201v3

Submitted on 27 Sep 2011 (v3), last revised 28 Jan 2012 (v4)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Tools for parsimonious edge-colouring of graphs with maximum degree three

J.L. Fouquet and J.M. Vanherpe L.I.F.O., Faculté des Sciences, B.P. 6759 Université d'Orléans, 45067 Orléans Cedex 2, FR

Abstract

The notion of a δ -minimum edge-colouring was introduced by J-L. Fouquet (in its french PhD Thesis [2]). Here we present some structural properties of δ -minimum edge-colourings, some of them being first presented in the above thesis. The paper serves as an auxiliary tool for another paper submitted by the authors to Graphs and Combinatorics.

1 Introduction

Throughout this note, we shall be concerned with connected graphs with maximum degree 3. We know by Vizing's theorem [6] that these graphs can be edge-coloured with 4 colours. Let $\phi : E(G) \to \{\alpha, \beta, \gamma, \delta\}$ be a proper edgecolouring of G. It is often of interest to try to use one colour (say δ) as few as possible. When it is optimal following this constraint, we shall say that such a parsimonious edge-colouring ϕ is δ -minimum . In [1] we gave without proof (in French) results on δ -minimum edge-colourings of cubic graphs. Some of them have been obtained later and independently by Steffen [4] and [5]. The purpose of Section 2 is to give with their proofs those results as structural properties of δ -minimum edge-colourings.

An edge colouring of G using colours $\alpha, \beta, \gamma, \delta$ is said to be δ -improper provided that adjacent edges having the same colours (if any) are coloured with δ . It is clear that a proper edge colouring of G is a particular δ -improper edge colouring, obviously that is also true for a δ -minimum edge-colouring. For a proper or δ -improper edge colouring ϕ of G, it will be convenient to denote $E_{\phi}(x)$ $(x \in \{\alpha, \beta, \gamma, \delta\})$ the set of edges coloured with x by ϕ . For $x, y \in \{\alpha, \beta, \gamma, \delta\}$, $x \neq y, \phi(x, y)$ is the partial subgraph of G spanned by these two colours, that is $E_{\phi}(x) \cup E_{\phi}(y)$ (this subgraph being a union of paths and even cycles where the colours x and y alternate). Since any two δ -minimum edge-colourings of G have the same number of edges coloured δ we shall denote by s(G) this number (the colour number as defined in[4]).

As usual, for any undirected graph G, we denote by V(G) the set of its vertices and by E(G) the set of its edges. A strong matching C in a graph G is a matching C such that there is no edge of E(G) connecting any two edges of C, or, equivalently, such that C is the edge-set of the subgraph of G induced on the vertex-set V(C).

2 Structural properties of δ -minimum edge-colourings

The graph G considered in the following series of Lemmas will have maximum degree 3.

Lemma 1 [2] Any 2-factor of G contains at least s(G) disjoint odd cycles.

Proof Assume that we can find a 2-factor of G with k < s(G) odd cycles. Then let us colour the edges of this 2-factor with α and β , except one edge (coloured δ) on each odd cycle of our 2-factor and let us colour the remaining edges by γ . We get hence a new edge colouring ϕ with $E_{\phi}(\delta) < s(G)$, impossible.

Lemma 2 [2] Let ϕ be a δ -minimum edge-colouring of G. Any edge in $E_{\phi}(\delta)$ is incident to α , β and γ . Moreover each such edge has one end of degree 2 and the other of degree 3 or the two ends of degree 3.

Proof Any edge of $E_{\phi}(\delta)$ is certainly adjacent to α, β and γ . Otherwise this edge could be coloured with the missing colour and we should obtain an edge colouring ϕ' with $|E_{\phi'}(\delta)| < |E_{\phi}(\delta)|$.

Lemma 3 below was proven in [3], we give its proof for the sake of completeness.

Lemma 3 [3] Let ϕ be a δ -improper colouring of G then there exists a proper colouring of $G \phi'$ such that $E_{\phi'}(\delta) \subseteq E_{\phi}(\delta)$

Proof Let ϕ be a δ -improper edge colouring of G. If ϕ is a proper colouring, we are done. Hence, assume that uv and uw are coloured δ . If d(u) = 2 we can change the colour of uv to α, β or γ since v is incident to at most two colours in this set.

If d(u) = 3 assume that the third edge uz incident to u is also coloured δ , then we can change the colour of uv for the same reason as above.

If uz is coloured with α, β or γ , then v and w are incident to the two remaining colours of the set $\{\alpha, \beta, \gamma\}$ otherwise one of the edges uv, uw can be recoloured with the missing colour. W.l.o.g., consider that uz is coloured α then v and w are incident to β and γ . Since u has degree 1 in $\phi(\alpha, \beta)$ let P be the path of $\phi(\alpha, \beta)$ which ends on u. We can assume that v or w (say v) is not the other end vertex of P. Exchanging α and β along P does not change the colours incident to v. But now uz is coloured β and we can change the colour of uv to α .

In each case, we get hence a new δ -improper edge colouring ϕ_1 with $E_{\phi_1}(\delta) \subsetneq E_{\phi}(\delta)$. Repeating this process leads us to construct a proper edge colouring of G with $E_{\phi'}(\delta) \subseteq E_{\phi}(\delta)$ as claimed. \Box

Lemma 4 [2] Let ϕ be a δ -minimum edge-colouring of G. For any edge $e = uv \in E_{\phi}(\delta)$ with $d(v) \leq d(u)$ there is a colour $x \in \{\alpha, \beta, \gamma\}$ present at v and a colour $y \in \{\alpha, \beta, \gamma\} - \{x\}$ present at u such that one of connected components

of $\phi(x, y)$ is a path of even length joining the two ends of e. Moreover, if d(v) = 2, then both colours of $\{\alpha, \beta, \gamma\} - \{x\}$ satisfy the above assertion.

Proof Without loss of generality suppose that $x = \gamma$ is present at v and α, β are present at u (see Lemma 2). Then u is an endvertex of paths in both $\phi(\alpha, \gamma)$ and $\phi(\beta, \gamma)$, while there is $y \in \{\alpha, \beta\}$ such that v is an endvertex of a path in $\phi(x, y)$. Without loss of generality assume that both u and v are endvertices of paths in $\phi(\alpha, \gamma)$. If these paths are disjoint, we exchange the colours α and γ on the path with endvertex u and then recolour e with α ; this yields a contradiction to the δ -minimality of ϕ . To conclude the proof note that if d(v) = 2, then v is an endvertex of paths in both $\phi(\alpha, \gamma)$ and $\phi(\beta, \gamma)$.

An edge of $E_{\phi}(\delta)$ is in A_{ϕ} when its ends can be connected by a path of $\phi(\alpha, \beta)$, B_{ϕ} by a path of $\phi(\beta, \gamma)$ and C_{ϕ} by a path of $\phi(\alpha, \gamma)$. From Lemma 4 it is clear that if d(u) = 3 and d(v) = 2 for an edge $e = uv \in E_{\phi}(\delta)$, the A_{ϕ} , B_{ϕ} and C_{ϕ} are not pairwise disjoint; indeed, if the colour γ is present at the vertex v, then $e \in A_{\phi} \cap B_{\phi}$.

When $e \in A_{\phi}$ we can associate to e the odd cycle $C_{A_{\phi}}(e)$ obtained by considering the path of $\phi(\alpha, \beta)$ together with e. We define in the same way $C_{B_{\phi}}(e)$ and $C_{C_{\phi}}(e)$ when e is in B_{ϕ} or C_{ϕ} .

Lemma 5 [2] If G is a cubic graph then $|A_{\phi}| \equiv |B_{\phi}| \equiv |C_{\phi}| \equiv s(G) \pmod{2}$.

Proof $\phi(\alpha, \beta)$ contains $2|A_{\phi}| + |B_{\phi}| + |C_{\phi}|$ vertices of degree 1 and must be even. Hence we get $|B_{\phi}| \equiv |C_{\phi}| \pmod{2}$. In the same way we get $|A_{\phi}| \equiv |B_{\phi}| \pmod{2}$ leading to $|A_{\phi}| \equiv |B_{\phi}| \equiv |C_{\phi}| \equiv s(G) \pmod{2}$ In the following lemma we consider an edge in A_{ϕ} , an analogous result holds true whenever we consider edges in B_{ϕ} or C_{ϕ} as well.

Lemma 6 [2] Let ϕ be a δ -minimum edge-colouring of G and let e be an edge in A_{ϕ} then for any edge $e' \in C_{A_{\phi}}(e)$ there is a δ -minimum edge-colouring ϕ' such that $E_{\phi'}(\delta) = E_{\phi}(\delta) - \{e\} \cup \{e'\}, e' \in A_{\phi'}$ and $C_{A_{\phi}}(e) = C_{A_{\phi'}}(e')$. Moreover, each edge outside $C_{A_{\phi}}(e)$ but incident with this cycle is coloured γ , ϕ and ϕ' only differ on the edges of $C_{A_{\phi}}(e)$.

Proof By exchanging colours δ and α and δ and β successively along the cycle $C_{A_{\phi}}(e)$, we are sure to obtain an edge colouring preserving the number of edges coloured δ . Since we have supposed that ϕ is δ -minimum, ϕ is proper. At each step, the resulting edge colouring remains to be δ -minimum and hence proper. Hence, there is no edge coloured δ incident with $C_{A_{\phi}}(e)$, which means that every such edge is coloured with γ .

We can perform these exchanges until e' is coloured δ . In the δ -minimum edge-colouring ϕ' hence obtained, the two ends of e' are joined by a path of $\phi(\alpha, \beta)$. Which means that e' is in A_{ϕ} and $C_{A_{\phi}}(e) = C_{A_{\phi'}}(e')$.

For each edge $e \in E_{\phi}(\delta)$ (where ϕ is a δ -minimum edge-colouring of G) we can associate one or two odd cycles following the fact that e is in one or two sets from among A_{ϕ} , B_{ϕ} or C_{ϕ} . Let \mathcal{C} be the set of odd cycles associated to edges in $E_{\phi}(\delta)$.

Lemma 7 [2] For each cycle $C \in C$, there are no two consecutive vertices with degree two.

Proof Otherwise, we exchange colours along C in order to put the colour δ on the corresponding edge and, by Lemma 2, this is impossible in a δ -minimum edge-colouring.

Lemma 8 [2] Let $e_1, e_2 \in E_{\phi}(\delta)$, such that $e_1 \neq e_2$ and let $C_1, C_2 \in \mathcal{C}$ be such that $C_1 \neq C_2$, $e_1 \in E(C_1)$ and $e_2 \in E(C_2)$ then C_1 and C_2 are (vertex) disjoint.

Proof If e_1 and e_2 are contained in the same set A_{ϕ} , B_{ϕ} , or C_{ϕ} , we are done since their respective ends are joined by an alternating path of $\phi(x, y)$ for some two colours x and y in $\{\alpha, \beta, \gamma\}$.

Without loss of generality assume that $e_1 \in A_{\phi}$ and $e_2 \in B_{\phi}$. Assume moreover that there exists an edge e such that $e \in C_1 \cap C_2$. We have hence an edge $f \in C_1$ with exactly one end on C_2 . We can exchange colours on C_1 in order to put the colour δ on f, which is impossible by Lemma 6.

Lemma 9 [2] Let $e_1 = uv_1$ be an edge of $E_{\phi}(\delta)$ such that v_1 has degree 2 in G. Then v_1 is the only vertex in N(u) of degree 2 and for any other edge $e_2 \in E_{\phi}(\delta)$, $\{e_1, e_2\}$ induces a $2K_2$.

Proof We have seen in Lemma 2 that uv_1 has one end of degree 3 while the other has degree 2 or 3. Hence, we have d(u) = 3 and $d(v_1) = 2$. Let v_2 and v_3 the other neighbours of u. We can suppose without loss of generality that uv_2 is coloured α , uv_3 is coloured β and, finally v_1 is incident to an edge coloured γ , say v_1v_4 .

Assume first that $d(v_2) = 2$. An alternating path of $\phi(\beta, \gamma)$ using the edge uv_3 ends with the vertex v_1 , moreover v_2 is incident to an edge coloured γ since an alternating path of $\phi(\alpha, \gamma)$ using the edge uv_2 ends with v_1 (see Lemma 4), then, exchanging the colours along the component of $\phi(\beta, \gamma)$ containing v_2 allows us to colour uv_2 with γ and uv_1 with α . A new edge colouring ϕ' so obtained is such that $|E_{\phi'}(\delta)| \leq |E_{\phi}(\delta)| - 1$, impossible.

Thus, $d(v_2) = 3$, and, by symmetry, $d(v_3) = 3$. We know that $e_1 \in B_{\phi} \cap C_{\phi}$ (see Lemma 4). By Lemma 6, since $e_1 \in C_{B_{\phi}}(e_1)$ the edges incident to v_3 in $C_{B_{\phi}}(e_1)$ are coloured with β and γ and the third edge incident to v_3 is coloured α . Similarly the vertex v_2 being on $C_{B_{\phi}}(e_1)$ is incident to colours α and γ and the third edge incident to v_2 is coloured β . Moreover the vertex v_4 being on both cycles $C_{B_{\phi}}(e_1)$ and $C_{C_{\phi}}(e_1)$ is incident to colours α , β , γ . Hence no edge coloured δ can be incident to v_2 nor v_3 nor v_4 . It follows that for any edge e_2 in $E_{\phi}(\delta) - \{e_1\}$, the set $\{e_1, e_2\}$ induces a $2K_2$.

Lemma 10 [2] Let e_1 and e_2 be two edges of $E_{\phi}(\delta)$ $e_1 \neq e_2$. If e_1 and e_2 are contained in two distinct sets of $A_{\phi}, B_{\phi}, C_{\phi}$ then $\{e_1, e_2\}$ induces a $2K_2$ otherwise e_1, e_2 are joined by at most one edge.

Proof By Lemma 9 one can suppose that all vertices incident with e_1 , e_2 are of degree 3 so that there is exactly one of the sets A_{ϕ} , B_{ϕ} or C_{ϕ} containing e_1 (respectively e_2).

Assume in the first stage that $e_1 \in A_{\phi}$ and $e_2 \in B_{\phi}$. Since $C_{A_{\phi}}(e_1)$ and $C_{B_{\phi}}(e_2)$ are disjoint by Lemma 8, we know that e_1 and e_2 have no common vertex. The edges having exactly one end in $C_{A_{\phi}}(e_1)$ are coloured γ while those having exactly one end in $C_{B_{\phi}}(e)$ are coloured α . Hence there is no edge between e_1 and e_2 as claimed.

Assume in the second stage that $e_1 = u_1v_1, e_2 = u_2v_2 \in A_{\phi}$. Since $C_{A_{\phi}}(e_1)$ and $C_{B_{\phi}}(e_2)$ are disjoint by Lemma 8, we can consider that e_1 and e_2 have no common vertex. The edges having exactly one end in $C_{A_{\phi}}(e_1)$ or $C_{B_{\phi}}(e_2)$ are coloured γ . Assume that u_1u_2 and v_1v_2 are edges of G. We may suppose without loss of generality that u_1 and u_2 are incident to α while v_1 and v_2 are incident to β (if necessary, colours α and β can be exchanded on $C_{A_{\phi}}(e_1)$ and $C_{B_{\phi}}(e_2)$). We know that u_1u_2 and v_1v_2 are coloured γ . Let us colour e_1 and e_2 with γ and u_1u_2 with β and v_1v_2 with α . We get a new edge colouring ϕ' where $|E_{\phi'}(\delta)| \leq |E_{\phi}(\delta)| - 2$, contradiction since ϕ is a δ -minimum edge-colouring. \Box

Lemma 11 [2] Let e_1, e_2 and e_3 be three distinct edges of $E_{\phi}(\delta)$ contained in the same set A_{ϕ}, B_{ϕ} or C_{ϕ} . Then $\{e_1, e_2, e_3\}$ induces a subgraph with at most four edges.

Proof Without loss of generality assume that $e_1 = u_1v_1, e_2 = u_2v_2$ and $e_3 = u_3v_3 \in A_{\phi}$. From Lemma 10 we have just to suppose that (up to the names of vertices) $u_1u_3 \in E(G)$ and $v_1v_2 \in E(G)$. Possibly, by exchanging the colours α and β along the 3 disjoint paths of $\phi(\alpha, \beta)$ joining the ends of each edge e_1, e_2 and e_3 , we can suppose that u_1 and u_3 are incident to β while v_1 and v_2 are incident to α . Let ϕ' be obtained from ϕ when u_1u_3 is coloured with α , v_1v_2 with β and u_1v_1 with γ . It is easy to check that ϕ' is a proper edge-colouring with $|E_{\phi'}(\delta)| \leq |E_{\phi}(\delta)| - 1$, contradiction since ϕ is a δ -minimum edge-colouring.

Let us summarize most of the above results in a single Theorem.

Theorem 12 Let G be a graph of maximum degree 3 and ϕ be a δ -minimum colouring of G. Then the following hold.

- 1. $E_{\phi}(\delta) = A_{\phi} \cup B_{\phi} \cup C_{\phi}$ where an edge e in A_{ϕ} (B_{ϕ} , C_{ϕ} respectively) belongs to a uniquely determined cycle $C_{A_{\phi}}(e)$ ($C_{B_{\phi}}(e)$, $C_{C_{\phi}}(e)$ respectively) with precisely one edge coloured δ and the other edges being alternately coloured α and β (β and γ , α and γ respectively).
- 2. Each edge having exactly one vertex in common with some edge in A_{ϕ} (B_{ϕ} , C_{ϕ} respectively) is coloured γ (α , β , respectively).
- 3. The multiset of colours of edges of $C_{A_{\phi}}(e)$ ($C_{B_{\phi}}(e)$, $C_{C_{\phi}}(e)$ respectively) can be permuted to obtain a (proper) δ -minimum edge-colouring of G in which the colour δ is moved from e to an arbitrarily prescribed edge.
- 4. No two consecutive vertices of $C_{A_{\phi}}(e)$ ($C_{B_{\phi}}(e)$, $C_{C_{\phi}}(e)$ respectively) have degree 2.
- 5. The cycles from 1 that correspond to distinct edges of $E_{\phi}(\delta)$ are vertexdisjoint.

6. If the edges $e_1, e_2, e_3 \in E_{\phi}(\delta)$ all belong to A_{ϕ} (B_{ϕ}, C_{ϕ} respectively), then the set $\{e_1, e_2, e_3\}$ induces in G a subgraph with at most 4 edges.

References

- J.-L. Fouquet. Graphes cubiques d'indice chromatique quatre. Annals of Discrete Mathematics, 9:23–28, 1980.
- [2] J.-L. Fouquet. Contribution à l'étude des graphes cubiques et problèmes hamiltoniens dans les graphes orientés. PhD thesis, Université Paris SUD, 1981.
- [3] J.-L. Fouquet and J.-M. Vanherpe. On parcimonious edge-colouring of graphs with maximum degree three. Submitted to Graphs and Combinatorics.
- [4] E. Steffen. Classifications and characterizations of snarks. Discrete Mathematics, 188:183–203, 1998.
- [5] E. Steffen. Measurements of edge-uncolorability. Discrete Mathematics, 280:191–214, 2004.
- [6] V.G. Vizing. On an estimate of the chromatic class of p-graphs. Diskret. Analiz, 3:25–30, 1964.