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Submitted to the Annals of Statistics

ESTIMATOR SELECTION IN THE GAUSSIAN SETTING

By Yannick Baraud, Christophe Giraud and Sylvie Huet

Université de Nice Sophia Antipolis, Ecole Polytechnique and INRA

We consider the problem of estimating the mean f of a Gaussian
vector Y the components of which are independent with a common
variance that we assume to be unknown. Our estimation procedure is
based on estimator selection. More precisely, we start with a collection
F of estimators of f based on Y and, with the same data Y , we
aim at selecting an estimator among F with the smallest Euclidean
risk. We allow the cardinality of F to be very large (possibly infinite)
and also the dependency of the estimators with respect to the data
to be possibly unknown. We establish a non-asymptotic risk bound
for the selected estimator. When F consists of linear estimators, we
derive from this bound an oracle-type inequality. For illustration,
we carry out two simulation studies. One aims at comparing our
procedure to cross-validation for choosing a tuning parameter. The
other shows how to implement our approach to solve the problem of
variable selection in practice.

1. Introduction. We consider the Gaussian regression framework

Yi = fi + εi, i = 1, . . . , n

where f = (f1, . . . , fn) is an unknown vector of R
n and the εi are inde-

pendent centered Gaussian random variables with common variance σ2.
Throughout the paper, σ2 is assumed to be unknown. Our aim is to es-
timate f from the observation of Y . For specific forms of f , this setting
allows to deal simultaneously with the following problems.

Example 1 (Signal denoising). The vector f is of the form

f = (F (x1), . . . , F (xn))

where x1, . . . , xn are distinct points of a set X and F is an unknown mapping
from X into R.
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2 Y. BARAUD ET AL

Example 2 (Linear regression). The vector f is assumed to be of the form

(1) f = Xβ

where X is a n × p matrix, β is an unknown p-dimensional vector and p
some integer larger than 1 (and possibly larger than n). The columns of the
matrix X are usually called predictors. When p is large, one may assume that
the decomposition (1) is sparse in the sense that only few βj are non-zero.
Estimating f or finding the predictors associated to the non-zero coordinates
of β are usually problems of interest. This last one is called variable selection.

Our estimation strategy is based on estimator selection. More precisely, we
start with a collection F = {f̂λ, λ ∈ Λ} of estimators of f based on Y and
aim at selecting the one with the smallest Euclidean risk by using the same
observation Y . The way the estimators f̂λ depends on Y may be arbitrary
and could even be unknown to the statistician. Throughout the paper, F is
assumed to be finite, mostly for the sake of simplicity since the reader can
check that our theoretical results would remain unchanged if F were not.

The problem of choosing some best estimator among a family of candidate
ones is central in statistics. For illustration, let us present some examples.

Example 3 (Choosing a tuning parameter). Many statistical procedures
depend on a (possibly multi-dimensional) parameter λ that needs to be tuned
in view of obtaining an estimator with the best possible performance. For
example, in the context of linear regression as described in Example 2, the
Lasso estimator (see Tibshirani (1996) and Chen et al. (1998)) defined by

f̂λ = Xβ̂λ with

β̂λ = argmin
β∈Rp


‖Y −Xβ‖2 + λ

p∑

j=1

|βj |




depends on the choice of the parameter λ ≥ 0. Selecting this parameter
among a grid Λ ⊂ R+ amounts to selecting a (suitable) estimator among
the family F = {f̂λ, λ ∈ Λ}.

Another dilemma for statisticians is the choice of a procedure to solve a given
problem. In the context of Example 3, there exist many competitors to the
Lasso estimator and one may alternatively choose ridge or PLS1 estimators
for example. Similarly, for the problem of signal denoising as described in
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ESTIMATOR SELECTION 3

Example 1, popular approaches include spline smoothing, wavelet decompo-
sitions and kernel estimators, the choice of a suitable kernel being possibly
tricky.

Example 4 (Choosing a kernel). Consider the problem described in Ex-
ample 1 with X = R. For a kernel K and a bandwidth h > 0, the Nadaraya-
Watson estimator (see Nadaraya (1964) and Watson (1964)) f̂K,h ∈ R

n is
defined as

f̂K,h =
(
F̂K,h(x1), . . . , F̂K,h(xn)

)

where for x ∈ R

F̂K,h(x) =

∑n
j=1K

(
x−xj

h

)
Yj

∑n
j=1K

(
x−xj

h

) .

There exist many possible choices for the kernel K, such as the Gaussian
kernel K(x) = e−x2/2, the uniform kernel K(x) = 1|x|<1, etc. Given a (fi-
nite) family K of candidate kernels K and a grid H ⊂ R

∗
+ of possible values

of h, one may consider the problem of selecting the best kernel estimator
among the family F = {f̂λ, λ = (K,h) ∈ K ×H}.

A common way to address the above issues is to use some cross-validation
scheme such as leave-one-out or V -fold. Even though these resampling tech-
niques are widely used in practice, little is known on the theoretical perfor-
mances of the resulting estimator. We refer to Arlot and Celisse (2010) for
a survey of the performances of cross-validation for model selection. Com-
pared to these approaches, the procedure we propose is less time consuming
and easier to implement. Moreover, it does not require to know how the
estimators depend on the data Y and can therefore handle the following
problem.

Example 5 (Selecting among mute experts). A statistician is given a col-
lection F = {f̂λ, λ ∈ Λ} of estimators from a family Λ of experts λ, each of
which keeping secret the way its estimator f̂λ depends on the observation Y .
The problem is then to find which expert λ is the closest to the truth.

Given a selection rule among F, an important issue is to compare the risk
of the selected estimator to those of the candidate ones. Results in this di-
rection are available in the context of model selection, which can be seen as
a particular case of estimator selection. More precisely, for the purpose of
selecting a suitable model one starts with a collection S of those, typically
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4 Y. BARAUD ET AL

linear spaces chosen for their approximation properties with respect to f ,
and one associates to each model S ∈ S a suitable estimator f̂S with values
in S. Selecting a model then amounts to selecting an estimator among the
collection F = {f̂S , S ∈ S}. For this problem, selection rules based on the
minimization of a penalized criterion have been proposed in the regression
setting by Yang (1999), Baraud (2000), Birgé and Massart (2001) and Ba-
raud et al (2009). Another way, usually called Lepski’s method, appears in
a series of papers by Lepski (1990; 1991; 1992a; 1992b) and was originally
designed to perform model selection among collections of nested models.
Finally, we mention that other procedures based on resampling have inter-
estingly emerged from the work of Arlot (2007; 2009) and Célisse (2008).
A common feature of those approaches lies in the fact that the proposed
selection rules apply to specific collections of estimators only.

An alternative to estimator selection is aggregation which aims at designing a
suitable combination of given estimators in order to outperform each of these
separately (and even the best combination of these) up to a remaining term.
Aggregation techniques can be found in Catoni (1997; 2004), Juditsky and
Nemirovski (2000), Nemirovski (2000), Yang (2000a), (2000b), (2001), Tsy-
bakov (2003), Wegkamp (2003), Birgé (2006), Rigollet and Tsybakov (2007),
Bunea, Tsybakov and Wegkamp (2007) and Goldenshluger (2009) for Lp-
losses. Most of the aggregation procedures are based on a sample splitting,
one part of the data being used for building the estimators, the remaining
part for selecting among these. Such a device requires that the observations
be i.i.d. or at least that one has at disposal two independent copies of the
data. From this point of view our approach differs from aggregation since we
use the whole data Y to build and select. In the Gaussian regression setting
we consider, we mention the results of Leung and Barron (2006) for the
problem of mixing least-squares estimators. Their procedure uses the same
data Y to estimate and to aggregate but requires the variance to be known.
Giraud (2008) extends their results to the case where it is unknown.

The main idea underlying our approach is the following. We introduce a col-
lection S of linear subspaces of Rn in view of approximating the estimators
considered in F and use a penalized criterion in order to compare them. Sim-
ilar ideas appeared in Baraud (2010) where the estimators were compared
pair by pair by means of a testing procedure. Unfortunately, the selection
rule proposed there was computationally intractable. In contrast, the proce-
dure we present is easy to implement, an R-package being available soon on
http://w3.jouy.inra.fr/unites/miaj/public/perso/SylvieHuet_en.html.

The paper is organized as follows. In Section 2 we present our selection rule
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and the theoretical properties of the resulting estimator. We explain how one
can use our procedure for variable selection in Section 3, and for selecting
among a collection of linear estimators in Section 4. Section 5 is devoted
to two simulation studies. One aims at comparing the performance of our
procedure to the classical V -fold in order to select a tuning parameter among
a grid. In the other, we evaluate the performance of the variable selection
procedure we propose to classical ones such as the Lasso, random forest, and
others based on ridge and PLS regression, among others. Finally, the proofs
are postponed to Section 6.

Throughout the paper C denotes a constant that may vary from line to line.

2. The general estimation procedure and the main result.

2.1. Description of the general procedure and main assumptions. Given a
collection F = {f̂λ, λ ∈ Λ} of estimators of f based on Y , the selection rule
we propose is based on the choices of a family S of linear subspaces of Rn, a
collection {Sλ, λ ∈ Λ} of (possibly random) subsets of S, a weight function
∆ and a penalty function pen, both from S into R+. We introduce those
objects below and refer to Sections 3 and 4 for examples.

2.1.1. The collection of estimators F. The collection F is assumed to be
finite, which corresponds to the practical case. Nevertheless, the reader can
check that the results would remain unchanged by considering a countable
collection F and even a collection with the cardinality of the continuum
(provided that the final estimator remains a measurable function of the
observation).

2.1.2. The families S and Sλ. The collection S should contain linear sub-
spaces with good approximation properties with respect to the elements of
F. We assume

Assumption 1. For all S ∈ S, dim(S) ≤ n− 2.

For each λ ∈ Λ, we extract a subset Sλ of S the elements of which possess
good approximation properties with respect to the estimator f̂λ specifically.
One may choose Sλ = S. However, when S is large it may be wise to consider
a smaller subset of S, mainly for computational reasons. The choice of Sλ
may be made on the basis of the observation Y.
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6 Y. BARAUD ET AL

2.1.3. The weight function ∆ and the associated function pen∆. We con-
sider a function ∆ from S into R+ and assume

Assumption 2.

(2) Σ =
∑

S∈S

e−∆(S) < +∞.

Whenever S is finite, inequality (2) automatically holds true. However, in
practice Σ should be kept to a reasonable size. When Σ = 1, e−∆(.) can
be interpreted as a prior distribution on S and gives thus a Bayesian flavor
to the procedure we propose. To the weight function ∆, we associate the
function pen∆ mapping S into R+ and defined by

(3) E

[(
U − pen∆(S)

n− dim(S)
V

)

+

]
= e−∆(S)

where x+ denotes the positive part of x ∈ R and U, V two independent χ2

random variables with respectively dim(S) + 1 and n− dim(S)− 1 degrees
of freedom. This function can be easily computed from the quantiles of the
Fisher distribution as we shall see in Section 7.1. From a more theoretical
point of view, it is shown in Baraud et al (2009) that when dim(S)∨∆(S) ≤
κn for some κ < 1, then for some constant C depending on κ only,

(4) pen∆(S) ≤ C(dim(S) ∨∆(S)).

2.1.4. The selection criterion. The selection procedure we propose involves
a penalty function pen from S into R+ satisfying

Assumption 3. There exists some K > 1 such that

(5) pen(S) ≥ Kpen∆(S) for all S ∈ S.

Whenever equality holds in (5), it derives from (4) that pen(S) measures
the complexity of the model S in terms of dimension and weight. Let us
denote by ΠS the projection operator onto a linear space S ⊂ R

n. Given the
families Sλ, the penalty function pen and some positive number α, we select
the estimator f̂λ̂ which minimizes over F the criterion

(6) critα(f̂λ) = inf
S∈Sλ

[∥∥∥Y −ΠS f̂λ

∥∥∥
2
+ α

∥∥∥f̂λ −ΠS f̂λ

∥∥∥
2
+ pen(S) σ̂2

S

]
,

with

(7) σ̂2
S =

‖Y −ΠSY ‖2
n− dim(S)

.
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ESTIMATOR SELECTION 7

2.1.5. Practical suggestions. In practice, we suggest to take α = 1/2 and
pen(.) = Kpen∆(.) with K = 1.1. These choices are based on the simulation
study carried out in Section 5. The families S, Sλ and the weight function ∆
should be chosen accordingly to the statistical problem to be solved as we
shall see on examples.

2.2. The main result. The following result holds.

Theorem 1. Under Assumptions 1 to 3, the estimator f̂λ̂ minimizing (6)

among the elements of F = {f̂λ, λ ∈ Λ} satisfies

CE

[∥∥∥f − f̂λ̂

∥∥∥
2
]

≤ E

[
inf
λ∈Λ

{∥∥∥f − f̂λ

∥∥∥
2
+A(f̂λ,Sλ)

}]
+ σ2Σ

≤ inf
λ∈Λ

{
E

[∥∥∥f − f̂λ

∥∥∥
2
]
+ E

[
A(f̂λ,Sλ)

]}
+ σ2Σ(8)

where C is a constant given by (18) which depends on K and α only and

A(f̂λ,Sλ) = inf
S∈Sλ

[∥∥∥f̂λ −ΠS f̂λ

∥∥∥
2
+ pen(S) σ̂2

S

]
for all λ ∈ Λ.

Comments. It follows from (8) that the risk bound we get is decreasing
(for the inclusion) with respect to Λ. This means that if one adds a new
estimator to the collection F (without changing neither S nor the families
Sλ associated to the former estimators), the risk bound for f̂λ̂ can only be
improved. The best possible risk bound (up to a universal constant) is

inf
S∈S

{
‖f −ΠSf‖2 + pen(S)σ2

}
+ σ2Σ.

It is achieved when F is, or at least contains, the family of projection esti-
mators {ΠSY, S ∈ S} (by taking Sλ = {S} when f̂λ = ΠSY ). When S is
too large, selecting among such a family becomes intractable. The idea of
the present paper is to solve the computational issue by considering a set F
of smaller cardinality and still maintain good performances for f̂λ̂ by using

more sophisticated estimators f̂λ than just projection ones.

The quantity A(f̂λ,Sλ) corresponds to a cost for approximating f̂λ by
⋃

S∈Sλ
S.

This cost is small as soon as there exists a good approximation model S in
Sλ associated to a small value of pen(S). When the quantities E[A(f̂λ,Sλ)]
are small compared to E[‖f − f̂λ‖2] for all λ ∈ Λ, we derive from (8) the
oracle-type inequality

CE

[∥∥∥f − f̂λ̂

∥∥∥
2
]
≤ inf

λ∈Λ
E

[∥∥∥f − f̂λ

∥∥∥
2
]
+ σ2Σ.
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8 Y. BARAUD ET AL

As we shall see, we obtain a risk bound of this flavor when F consists of
arbitrary linear estimators provided that the Sλ are chosen in a suitable
way.

The quantity A(f̂λ,Sλ) is minimum for the choice Sλ = S. Nevertheless, the
computation of critα(f̂λ) given by (6) may be unpractical whenever Sλ is too
large. Consequently, if one knows a good (possibly random) approximation
model Ŝλ ∈ S for f̂λ, it is convenient to choose Sλ = {Ŝλ} in practice. The
case where f̂λ belongs to Ŝλ with probability one is of special interest and
leads to the following corollary.

Corollary 1. Assume that Assumptions 1 to 3 hold and that there exists
some κ ∈ (0, 1) such that 1 ≤ dim(S) ∨∆(S) ≤ κn for all S ∈ S. Besides,
assume that for all λ ∈ Λ, there exists a (possibly random) set Ŝλ ∈ Sλ

such that f̂λ ∈ Ŝλ with probability 1. If pen is chosen to achieve equality
in (5), then for some constant C depending on κ, α,K and Σ, the estimator
f̂λ̂ satisfies

(9) CE

[∥∥∥f − f̂λ̂

∥∥∥
2
]
≤ inf

λ∈Λ

[
E

[∥∥∥f − f̂λ

∥∥∥
2
]
+ E

[
dim(Ŝλ) ∨∆(Ŝλ)

]
σ2

]
.

The assumption that f̂λ belongs to Ŝλ with probability 1 for all λ, is usually
met in the context of model selection. In this situation, as already explained,
one starts with a collection of models S = {Sm, m ∈ M} and associate to
each Sm an estimator f̂m with values in Sm. To perform model selection,
one may apply our selection procedure to the collection F = {f̂m, m ∈ M}
(here Λ = M) with Sm = {Sm} for all m ∈ M.

In the particular case where f̂m = ΠSmY for all m ∈ M, this selection rule
turns out to be exactly the same as that described in Baraud et al (2009).
It is proved there that under the assumptions of Corollary 1,

(10) CE

[∥∥∥f − f̂m̂

∥∥∥
2
]
≤ inf

m∈M

[
E

[∥∥∥f − f̂m

∥∥∥
2
]
+ (dim(Sm) ∨∆(Sm)) σ2

]
.

Inequality (9) generalizes (10) in the sense that the family M is now allowed
to be random depending on Y . Moreover, Corollary 1 shows that the result is
not only true for collections of projection estimators but also, more generally,
for all families F such that f̂m belongs to Sm for all m ∈ M.

3. Variable selection. Throughout this section, we consider the prob-
lem of variable selection introduced in Example 2. When p is small enough
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ESTIMATOR SELECTION 9

(say smaller than 20), this problem can be solved by using a suitable vari-
able selection procedure exploring all the subsets of {1, . . . , p}. For example,
one may use the penalized criterion introduced in Birgé and Massart (2001)
when the variance is known and in Baraud et al (2009) when it is not. When
p is larger, such an approach can no longer be applied since it becomes nu-
merically intractable. To overcome this problem, algorithms based on the
minimization of convex criteria have been proposed among which the Lasso,
the Dantzig selector of Candès and Tao (2007), the elastic net of Zou and
Hastie (2005). An alternative to those criteria is the forward-backward al-
gorithm described in Zhang (2008), among others. Since there seems to be
no evidence that one of these procedures outperforms all the others, it may
be reasonable to mix them all and let the data decide which is the more
appropriate to solve the problem at hand. As enlarging F can only improve
the risk bound of our estimator, only the CPU resources should limit the
number of candidate estimators.

The procedure we propose could not only be used to select among those
candidate procedures but also to select the tuning parameters they depend
on. From this point of view, it provides an alternative to the cross-validation
techniques which are quite popular but offer little theoretical guarantees.

3.1. Implementation roadmap. Start by choosing a family L of variable se-
lection procedures. Examples of such procedures are the Lasso, the Dantzig
selector, the elastic net, among others. If necessary, associate to each ℓ ∈ L
a family of tuning parameters Hℓ. For example, in order to use the Lasso
procedure one needs to choose a tuning parameter h > 0 among a grid
HLasso ⊂ R+. If a selection procedure ℓ requires no choice of tuning param-
eters, then one may take Hℓ = {0}. Let us denote by m̂(ℓ, h) the subset of
{1, . . . , p} corresponding to the predictors selected by the procedure ℓ for
the choice of the tuning parameter h and for m ⊂ {1, . . . , p}, let Sm be
the linear span of the column vectors X.,j for j ∈ m (with the convention
S∅ = {0}). For ℓ ∈ L and h ∈ Hℓ, associate to the subset m̂(ℓ, h) an estima-
tor f̂(ℓ,h) of f with values in Sm̂(ℓ,h) (for example, the projection estimator).

Finally, consider the family F = {f̂λ, λ ∈ Λ} of those estimators by taking
Λ =

⋃
ℓ∈L({ℓ} ×Hℓ).

3.1.1. The approximation spaces and the weight function. Throughout, we
shall restrict ourselves to subsets of predictors with cardinality not larger
than some Dmax ≤ n − 2. In view of approximating the estimators f̂λ, we
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10 Y. BARAUD ET AL

suggest the collection S given by

(11) S =
⋃{

Sm

∣∣ m ⊂ {1, . . . , p} , card(m) ≤ Dmax

}
.

We associate to S the weight function ∆ defined for S ∈ S by

(12) ∆(S) = log

[(
D
p

)]
+ log(1 +D) with D = dim(S).

Since

∑

S∈S

e−∆(S) =

p∑

D=0

∑

S ∈ S

dim(S) = D

e−∆(S)

≤
p∑

D=0

e− log(1+D) ≤ 1 + log(1 + p),

Assumption 2 is satisfied with Σ = 1 + log(1 + p).

Let us now turn to the choices of the Sλ ⊂ S. The criterion given by (6)
cannot be computed when Sλ = S for all λ as soon as p is too large. In
such a case, one must consider a smaller subset of S and we suggest for
λ = (ℓ, h) ∈ Λ

S(ℓ,h) =
{
Sm̂(ℓ,h′), h′ ∈ Hℓ

}

(where the Sm are defined in Section 3.1), or preferably

S(ℓ,h) =
{
Sm̂(ℓ′,h′), ℓ′ ∈ L, h′ ∈ Hℓ

}

whenever this latter family is not too large. Note that these two families are
random.

3.1.2. The case of projection estimators. When F is the family of projection
estimators ΠSm̂(ℓ,h)

Y associated to the family of random subsets

M̂ = {m̂(ℓ, h), (ℓ, h) ∈ L×Hℓ} ,

one can merely take S(ℓ,h) = {Sm̂(ℓ,h)} for (ℓ, h) ∈ L × Hℓ. In this case,

selecting among F by minimizing (6) amounts to minimizing over M̂

(13) crit(m) = ‖Y −ΠSmY ‖2 +K pen∆(Sm)σ̂2
Sm

,

where pen∆ is given by (3). An example of family M̂ of interest is described
in Section 7.3. It consists of data-driven subsets m̂(ℓ, h) obtained from the
Lasso, ridge regression, elastic net, PLS1 regression and random forest.
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ESTIMATOR SELECTION 11

3.2. Theoretical guarantees. Our choices of ∆ and Sλ ensure that f̂λ ∈
Sm̂(λ) ∈ Sλ for all λ ∈ Λ and that

∆(Sm̂(λ)) ≤ 2 dim(Sm̂(λ)) log p.

Hence, by applying Corollary 1 with Ŝλ = Sm̂(λ), we get that if Dmax ≤
κn/(2 log p), the selected estimator satisfies

CE

[∥∥∥f − f̂λ̂

∥∥∥
2
]
≤ inf

λ∈Λ

[
E

[∥∥∥f − f̂λ

∥∥∥
2
]
+ E

[
dim(Sm̂(λ))

]
log(p)σ2

]
.

4. Selecting among linear estimator. In this section, we focus on the
case where the estimators f̂λ are linear, that is, are of the form f̂λ = AλY for
some deterministic linear operator Aλ : Rn → R

n. As mentioned before, this
setting covers many popular estimation procedures including kernel ridge es-
timators, spline smoothing, Nadaraya estimators, λ-nearest neighbors, pro-
jection estimators, low-pass filters, etc. In some cases Aλ is symmetric (e.g.
kernel ridge, spline smoothing, projection estimators), in some others Aλ

is non-symmetric and non-singular (as for Nadaraya estimators) and some-
times Aλ can be both singular and non-symmetric (low pass filters, λ-nearest
neighbors).

All the procedures mentioned above have a tuning parameter (possibly mul-
tidimensional) and their practical performance strongly depends on the value
of this parameter. A series of papers have investigated the calibration of some
of these procedures. To mention a few of them, Cao and Golubev (2006) focus
on spline smoothing, Zhang (2005) on kernel ridge regression, Goldenshluger
and Lepski (2009) on kernel estimators and Arlot and Bach (2009) propose
a procedure to select among symmetric linear estimator with spectrum in
[0, 1]. The procedure we present can handle all these cases in an unified
framework. As in Section 3 for the problem of variable selection, one may
index the estimators f̂λ by a pair λ = (ℓ, h) corresponding to the choice of
a procedure ℓ and a tuning parameter h.

4.1. The approximation families Sλ. To apply our selection procedure, we
need to associate to each Aλ a suitable collection of approximation spaces
Sλ. To do so, we introduce below an approximation space Sλ which plays a
key role in our analysis.

For the sake of simplicity, let us first consider the case where Aλ is non-
singular. The approximation space Sλ is then defined as the linear span of the
right-singular vectors of A−1

λ − I associated to singular values smaller than
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12 Y. BARAUD ET AL

1. When Aλ is symmetric, Sλ is merely the linear span of the eigenvectors
of Aλ associated to eigenvalues not smaller than 1/2.

Let us now extend the definition of Sλ to singular operators Aλ. Let us re-
call that R

n = ker(Aλ) ⊕ rg(A∗
λ) where A∗

λ stands for the transpose of Aλ

and rg(A∗
λ) for its range. The operator Aλ then induces a one to one oper-

ator between rg(A∗
λ) and rg(Aλ). Write A+

λ for the inverse of this operator
from rg(Aλ) to rg(A∗

λ). The orthogonal projection operator from R
n onto

rg(A∗
λ) induces a linear operator from rg(Aλ) into rg(A∗

λ), denoted Πλ. The
approximation space Sλ is defined as the linear span of the right-singular
vectors of A+

λ − Πλ associated to singular values smaller than 1. When Aλ

is non-singular or symmetric, we recover the definition of Sλ given above.

For each λ ∈ Λ, we choose Sλ ⊃ {Sλ}. For example, we may take Sλ = {Sλ}
or alternatively Sλ =

{
S1
λ, . . . , S

n−2
λ

}
where Sk

λ is the linear span of the right-
singular vectors associated to the k smallest singular values of A+

λ −Πλ.

4.2. Collection S and weights ∆. The minimal choice for S is S =
⋃

λ∈Λ Sλ.
As to the weight function ∆, we suggest to take it of the form

∆(S) = adim(S) for all S ∈ S

where a is a suitable positive number for which the value of Σ is not too
large (say not larger than 1).

4.3. Theoretical garanties. The following holds.

Corollary 2. Assume that there exists κ ∈ (0, 1) such that

1 ≤ dim(Sλ) ≤ (a−1κn) ∧ κn ∧ (n − 2) for all λ ∈ Λ.

If pen achieves equality in (5) then

CE

[∥∥∥f − f̂λ̂

∥∥∥
2
]
≤ (a ∨ 1) inf

λ
E

[∥∥∥f − f̂λ

∥∥∥
2
]
,

for some C depending on K,α,Σ and κ only.

Risk bounds for the problem of selecting among a family of linear estima-
tors have also been obtained by Arlot and Bach (2009) in the Gaussian
regression framework, and Goldenshluger and Lepski (2009) in the multidi-
mensional Gaussian white noise model. Arlot and Bach propose a penalized
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ESTIMATOR SELECTION 13

procedure based on random penalties in view of selecting among families
of linear estimators. Unlike ours, their approach requires that the operators
be symmetric with eigenvalues in [0, 1] and that the cardinality of Λ is at
most polynomial with respect to n. Goldenshluger and Lepski propose a
selection rule among families of kernel estimators to solve the problem of
structural adaptation. Their approach requires suitable assumptions on the
kernels while ours requires almost nothing. Nevertheless, we restrict to the
case of the Euclidean loss whereas Goldenshluger and Lepski consider more
general Lp ones.

5. Simulation study. In the linear regression setting described in Exam-
ple 2, we carry out a simulation study to evaluate the performances of our
procedure to solve the two following problems.

We first consider the problem, described in Example 3, of tuning the smooth-
ing parameter of the Lasso procedure for estimating f . The performances
of our procedure are compared with those of the V -fold cross-validation
method. Secondly, we consider the problem of variable selection. We solve
it by using our criterion in view of selecting among a family L of candidate
variable selection procedures.

Our simulation study is based on a large number of examples which have
been chosen in view of covering a large variety of situations. Most of these
have been found in the literature in the context of Example 2 either for
estimation or variable selection purposes when the number p of predictors
is large.

The section is organized as follows. The simulation design is given in the
following section. Then, we describe how our procedure is applied for tuning
the Lasso and performing variable selection. Finally, we give the results of
the simulation study.

5.1. Simulation design. One example is determined by the number of ob-
servations n, the number of variables p, the n×p matrix X, the values of the
parameters β, and the ratio signal/noise ρ. It is denoted by ex(n, p,X, β, ρ),
and the set of all considered examples is denoted E . For each example, we
carry out 400 simulations of Y as a Gaussian random vector with expecta-
tion f = Xβ and variance σ2In, where In is the n× n identity matrix, and
σ2 = ‖f‖2/nρ.
The collection E is composed of several collections Ee for e = 1, . . . , E where
each collection Ee is characterized by a vector of parameters βe, and a set
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14 Y. BARAUD ET AL

Xe of matrices X:

Ee = {ex(n, p,X, β, ρ) : (n, p) ∈ I,X ∈ Xe, β = βe, ρ ∈ R}

where R = {5, 10, 20} and I consists of pairs (n, p) such that p is smaller,
equal or greater than n. The examples are described in further details in
Section 7.2. They are inspired by examples found in Tibshirani (1996), Zou
and Hastie (2005), Zou (2006), and Huang et al. (2008) for comparing the
Lasso method to the ridge, adaptive Lasso and elastic net methods. They
make up a large variety of situations. They include cases where

• the covariates are not, moderately or strongly correlated,
• the covariates with zero coefficients are weakly or highly correlated

with covariates with non-zero coefficients,
• the covariates with non-zero coefficients are grouped and correlated

within these groups,
• the lasso method is known to be inconsistent,
• few or many effects are present.

5.2. Tuning a smoothing parameter. We consider here the problem of tun-
ing the smoothing parameter of the Lasso estimator as described in Ex-
ample 3. Instead of considering the Lasso estimators for a fixed grid Λ of
smoothing parameters λ, we rather focus on the sequence {f̂1, . . . , f̂Dmax}
of estimators given by the Dmax first steps of the LARS-Lasso algorithm
proposed by Efron et al. (2004). Hence, the tuning parameter is here the
number h ∈ H = {1, . . . ,Dmax} of steps. In our simulation study, we com-
pare the performance of our criterion to that of the V -fold cross-validation
for the problem of selecting the best estimator among the collection F =
{f̂1, . . . , f̂Dmax}.

The estimator of f based on our procedure. We recall that our selection
procedure relies on the choices of families S, Sh for h ∈ H, a weight func-
tion ∆, a penalty function pen and two universal constants K > 1 and
α > 0. We choose the family S defined by (11). We associate to f̂h the
family Sh = {Sm̂(h′)| h′ ∈ H} ⊂ S where the Sm are defined in Sec-
tion 3.1 and m̂(h′) ⊂ {1, . . . , p} is the set of indices corresponding to the
predictors retuned by the LARS-Lasso algorithm at step h′ ∈ H. We take
pen(S) = Kpen∆(S) with ∆(S) defined by (12) and K = 1.1. This value of
K is consistent with what is suggested in Baraud et al. (2009). The choice
of α is based on the following considerations. First, choosing α around one
seems reasonable since it weights similarly the term ‖Y − ΠS f̂λ‖2 which
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quantiles
procedure mean std-err 0% 50% 75% 99% 100%

CV 1.18 0.08 1.05 1.18 1.24 1.36 1.38
pen∆ 1.065 0.06 1.01 1.055 1.084 1.18 2.27

Table 1

Mean, standard-error and quantiles of the ratios Rex/Oex calculated over all ex ∈ E such
that Oex < nσ2/3. The number of such examples equals 654, see Section 7.2.

measures how well the estimator fits the data and the approximation term
‖f̂λ−ΠS f̂λ‖2 involved in our criterion (6). Second, simple calculation shows
that the constant C−1 = C−1(1.1, α) involved in Theorem 1 is minimum
for α close to 0.6. We therefore carried out our simulations for α varying
from 0.2 to 1.5. The results being very similar for α between 0.5 and 1.2, we
choose α = 0.5. We denote by f̂pen∆ the resulting estimator of f .

The estimator of f based on V -fold cross-validation. For each h ∈ H, the
prediction error is estimated using a V -fold cross-validation procedure, with
V = n/10. The estimator f̂CV is chosen by minimizing the estimated pre-
diction error.

The results. The simulations were carried out with R (www.r-project.org)
using the library elasticnet.

For each example ex ∈ E , we estimate on the basis of 400 simulations the
oracle risk

(14) Oex = E

(
min
h∈H

‖f − f̂h‖2
)
,

and the Euclidean risks Rex(f̂pen∆
) and Rex(f̂CV ) of f̂pen∆ and f̂CV respec-

tively.

The results presented in Table 1 show that our procedure tends to choose
a better estimator than the CV in the sense that the ratios Rex(f̂pen∆

)/Oex

are closer to one than Rex(f̂CV )/Oex.

Nevertheless, for a few examples these ratios are larger for our procedure
than for the CV. These examples correspond to situations where the Lasso
estimators are highly biased.

In practice, it is worth considering several estimation procedures in order to
increase the chance to have good estimators of f among the family F. Select-
ing among candidate procedures is the purpose of the following simulation
experiment in the variable selection context.

imsart-aos ver. 2010/04/27 file: LinSelect_1207.hyper12886.tex date: July 13, 2010



16 Y. BARAUD ET AL

5.3. Variable selection. In this section, we consider the problem of variable
selection and use the procedure and notations introduced in Section 3. To
solve this problem, we deal with projection estimators. More precisely, for a
subset m of {1, . . . , p} we denote by f̂m the estimator ΠSmY and consider
the family F = {f̂m̂(ℓ,h)| (ℓ, h) ∈ L×Hℓ}, the descriptions of L and Hℓ being
postponed to Section 7.3. Let us merely mention that we choose L which
gathers variable selection procedures based on the Lasso, ridge regression,
Elastic net, PLS regression, Adaptive Lasso, Random Forest, and whenever
possible, on an exhaustive research among the subsets of {1, . . . , p}.

5.3.1. Results. The simulations were carried out with R (www.r-project.org)
using the libraries elasticnet, randomForest, pls and the program lm.ridge

in the library MASS. We first select the tuning parameters associated to the
procedures ℓ in L. More precisely, for each ℓ we select an estimator among
the collection Fℓ = {f̂m̂(ℓ,h)| h ∈ Hℓ} by minimizing Criterion (13) over

M̂ℓ = {m̂(ℓ, h)|h ∈ Hℓ}. We denote by m̂(ℓ) the selected set and by f̂m̂(ℓ)

the corresponding projection estimator. For each example ex ∈ E and each
method ℓ ∈ L, we estimate the risk

Rex,ℓ = E

(
‖f − f̂m̂(ℓ)‖2

)

of f̂m̂(ℓ) on the basis of 400 simulations and we do the same to calculate that

of our estimator f̂m̂,

Rex,all = E

(
‖f − f̂m̂‖2

)
.

Let us now define the minimum of these risks over all methods:

Rex,min = min {Rex,all, Rex,ℓ, ℓ ∈ L} .

We compare the ratios Rex,ℓ/Rex,min for ℓ ∈ L ∪ {all} to judge the perfor-
mances of the candidate procedures on each example ex ∈ E . The mean,
standard deviations and quantiles of the sequence {Rex,ℓ/Rex,min, ex ∈ E}
are presented in Table 2. In particular, the results show that

• none of the procedures ℓ in L outperforms all the others simultaneously
over all examples,

• our procedure, corresponding to ℓ = all, achieves the smallest mean
value. Besides, this value is very close to one.

• the variability of our procedure is small compared to the others
• for all examples, our procedure selects an estimator the risk of which

does not exceed twice that of the oracle.
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quantiles
method mean std-err 50% 75% 95% 100%

Lasso 2.82 9.40 1.12 1.33 6.38 127
ridge 1.76 1.90 1.42 1.82 2.87 36.9
pls 1.50 1.20 1.22 1.50 2.58 17
en 1.46 1.90 1.12 1.33 2.57 29
ALridge 1.20 0.31 1.15 1.26 1.51 5.78
ALpls 1.29 0.87 1.14 1.29 1.75 12.7
rFmse 4.13 9.50 1.38 2.04 19.2 118
rFpurity 3.99 10.00 1.42 2.06 15.1 138
exhaustive 22.9 45 6.30 24.5 92.9 430
all 1.16 0.16 1.12 1.25 1.47 1.95

Table 2

For each ℓ ∈ L ∪ {all}, mean, standard-error and quantiles of the ratios Rex,ℓ/Rex,min

calculated over all ex ∈ E . The number of examples in the collection E is equal to 660.

E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11

FDR 0.045 0.026 0.004 0.026 0.018 0.041 0.012 0.026 0.042 0.15 0.014
TDR 0.74 0.63 0.18 0.63 0.17 0.99 1 1 0.98 0.29 0.20

Table 3

False dicovery rate (FDR) and true discovery rate (TDR) using our method, for each
example with ρ = 10 and n = p = 100.

The false discovery rate (FDR) and the true discovery rate (TDR) are also
parameters of interest in the context of variable selection. These quantities
are given at Table 3 for each example when ρ = 10 and n = p = 100. Except
for one example, the FDR is small, while the TDR is varying a lot among
the examples.

6. Proofs.

6.1. Proof of Theorem 1. Throughout this section, we use the following
notations. For all λ ∈ Λ, S(λ) denotes any minimizer among S ∈ Sλ of

critα(f̂λ, S) =
∥∥∥Y −ΠS f̂λ

∥∥∥
2
+ σ2

pen(S) + α
∥∥∥f̂λ −ΠS f̂λ

∥∥∥
2
,

where

(15) pen(S) = pen(S) σ̂2
S/σ

2, for all S ∈ S.

We also write ε = Y − f and S for the linear space generated by S and f .
It follows the facts that for all λ ∈ Λ and S ∈ Sλ

critα(f̂λ̂) ≤ critα(f̂λ) ≤ critα(f̂λ, S)
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18 Y. BARAUD ET AL

and simple algebra that

∥∥∥f −ΠS(λ̂)f̂λ̂

∥∥∥
2
+ α

∥∥∥f̂λ̂ −ΠS(λ̂)f̂λ̂

∥∥∥
2

≤
∥∥∥f −ΠS f̂λ

∥∥∥
2
+ α

∥∥∥f̂λ −ΠS f̂λ

∥∥∥
2
+ 2σ2

pen(S)

+ 2〈ε,ΠS(λ̂)f̂λ̂ − f〉 − σ2
pen(S(λ̂)) + 2〈ε, f −ΠS f̂λ〉 − σ2

pen(S).

For λ ∈ Λ and S ∈ S, let us set uλ,S =
(
ΠS f̂λ − f

)
/
∥∥∥ΠS f̂λ − f

∥∥∥ if ΠS f̂λ 6=
f and uλ,S = 0 otherwise. For all λ and S, we have uλ,S ∈ S and

∥∥∥f −ΠS(λ̂)f̂λ̂

∥∥∥
2
+ α

∥∥∥f̂λ̂ −ΠS(λ̂)f̂λ̂

∥∥∥
2

≤
∥∥∥f −ΠS f̂λ

∥∥∥
2
+ α

∥∥∥f̂λ −ΠS f̂λ

∥∥∥
2
+ 2σ2

pen(S)

+ 2
∣∣∣〈ε, uλ̂,S(λ̂)〉

∣∣∣
∥∥∥ΠS(λ̂)f̂λ̂ − f

∥∥∥− σ2
pen(S(λ̂))

+ 2 |〈ε, uλ,S〉|
∥∥∥ΠS f̂λ − f

∥∥∥− σ2
pen(S)

≤
∥∥∥f −ΠS f̂λ

∥∥∥
2
+ α

∥∥∥f̂λ −ΠS f̂λ

∥∥∥
2
+ 2σ2

pen(S)

+ K−1
∥∥∥f −ΠS(λ̂)f̂λ̂

∥∥∥
2
+K

∥∥∥ΠS̄(λ̂)ε
∥∥∥
2
− σ2

pen(S(λ̂))

+ K−1
∥∥∥f −ΠS f̂λ

∥∥∥
2
+K ‖ΠS̄ε‖2 − σ2

pen(S)

Hence, by using (5) and (15) we get

(1−K−1)
∥∥∥f −ΠS(λ̂)f̂λ̂

∥∥∥
2
+ α

∥∥∥f̂λ̂ −ΠS(λ̂)f̂λ̂

∥∥∥
2

≤ (1 +K−1)
∥∥∥f −ΠS f̂λ

∥∥∥
2
+ α

∥∥∥f̂λ −ΠS f̂λ

∥∥∥
2
+ 2σ2

pen(S) + Σ̃

≤ 2(1 +K−1)
∥∥∥f − f̂λ

∥∥∥
2

+
(
α+ 2(1 +K−1)

) ∥∥∥f̂λ −ΠS f̂λ

∥∥∥
2
+ 2σ2

pen(S) + Σ̃(16)

where

Σ̃ = 2K
∑

S∈S

(∥∥ΠSε
∥∥2 − pen∆(S)

n− dim(S)

∥∥Y −ΠSY
∥∥2
)

+

.

For each S ∈ S,

‖Y −ΠSY ‖2
n− dim(S)

≥
∥∥Y −ΠSY

∥∥2

n− dim(S)

imsart-aos ver. 2010/04/27 file: LinSelect_1207.hyper12886.tex date: July 13, 2010



ESTIMATOR SELECTION 19

and since the variable
∥∥Y −ΠSY

∥∥2 is independent of
∥∥ΠSε

∥∥2 and is stochas-

tically larger than
∥∥ε−ΠSε

∥∥2, we deduce from the definition of pen∆(S)

and (2), that on the one hand E(Σ̃) ≤ 2Kσ2Σ.

On the other hand, since S is arbitrary among Sλ and since

(
1

α
+

1

1−K−1

)−1 ∥∥∥f − f̂λ̂

∥∥∥
2
≤ (1−K−1)

∥∥∥f −ΠS(λ̂)f̂λ̂

∥∥∥
2
+α

∥∥∥f̂λ̂ −ΠS(λ̂)f̂λ̂

∥∥∥
2

we deduce from (16) that for all λ ∈ Λ,

(17)
∥∥∥f − f̂λ̂

∥∥∥
2
≤ C−1

[∥∥∥f − f̂λ

∥∥∥
2
+A(f̂λ,Sλ) + Σ̃

]

with

(18) C−1 = C−1(K,α) =

(
1 + α−K−1

) (
α+ 2(1 +K−1)

)

α(1 −K−1)
,

and the result follows by taking the expectation on both sides of (17).

6.2. Proof of Corollary 1. We set σ̂2
λ = σ̂2

Ŝλ

. It suffices to compute the

expectation of pen(Ŝλ) σ̂
2
λ for λ ∈ Λ. Since f̂λ ∈ Ŝλ we have

pen(Ŝλ) σ̂
2
λ = K

pen∆(Ŝλ)

n− dim(Ŝλ)

∥∥∥Y −Π
Ŝλ
Y
∥∥∥
2

≤ K
pen∆(Ŝλ)

n− dim(Ŝλ)

∥∥∥Y − f̂λ

∥∥∥
2
= K

pen∆(Ŝλ)

n− dim(Ŝλ)

∥∥∥f + ε− f̂λ

∥∥∥
2

≤ 2K
pen∆(Ŝλ)

n− dim(Ŝλ)

[∥∥∥f − f̂λ

∥∥∥
2
+ ‖ε‖2

]

≤ 2K
pen∆(Ŝλ)

n− dim(Ŝλ)

[∥∥∥f − f̂λ

∥∥∥
2
+ (‖ε‖2 − 2nσ2)+ + 2nσ2

]
.

Under the assumption that for all S ∈ S, ∆(S) ∨ dim(S) ≤ κn, we deduce
from (4) that for some constant C depending only on K and κ, we have that
for all λ ∈ Λ

C pen(Ŝλ) σ̂
2
λ ≤

∥∥∥f − f̂λ

∥∥∥
2
+
(
dim(Ŝλ) ∨∆(Ŝλ)

)
σ2 + (‖ε‖2 − 2nσ2)+.

The result follows from the fact that E[(‖ε‖2 − 2nσ2)+] ≤ 3σ2 for all n and
dim(Ŝλ) ≥ 1 for all λ.
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6.3. Proof of Corollary 2. Combining the equality

E
[
σ̂2
Sλ

]
= σ2 +

‖f −ΠSλ
f‖2

n− dim(Sλ)

with the bounds (4) and (8) leads to

CE

[∥∥∥f − f̂λ̂

∥∥∥
]

≤ inf
λ∈Λ

{
E

[∥∥∥f − f̂λ

∥∥∥
2
]
+ E

[∥∥∥f̂λ −ΠSλ
f̂λ

∥∥∥
2
]

+(a ∨ 1)

[
dim(Sλ)σ

2 +
κ

1− κ
‖f −ΠSλ

f‖2
]}

+ σ2Σ.

We shall bound both E

[
‖f̂λ −ΠSλ

f̂λ‖2
]
and ‖f −ΠSλ

f‖2 + dim(Sλ)σ
2 in

terms of E
[
‖f − f̂λ‖2

]
. Since for all λ ∈ Λ we have

E

[
‖f − f̂λ‖2

]
= ‖f −Aλf‖2 + E

[
‖Aλε‖2

]
= ‖f −Aλf‖2 +Tr(A∗

λAλ)σ
2

and

E

[∥∥∥f̂λ −ΠSλ
f̂λ

∥∥∥
2
]
= ‖(I −ΠSλ

)Aλf‖2 + E

[
‖(I −ΠSλ

)Aλε‖2
]
,

Corollary 2 follows from ‖(I −ΠSλ
)Aλε‖ ≤ ‖Aλε‖ and the next lemma.

Lemma 1. For all λ ∈ Λ we have

(i) ‖Aλf −ΠSλ
Aλf‖ ≤ ‖f −Aλf‖ ,

(ii) ‖f −ΠSλ
f‖ ≤ 2 ‖f −Aλf‖ ,

(iii) dim(Sλ) ≤ 4Tr(A∗
λAλ).

Proof of Lemma 1: Writing f = f0 + f1 ∈ ker(Aλ) ⊕ rg(A∗
λ) and using the

fact that rg(A∗
λ) = ker(Aλ)

⊥ and the definition of Πλ, we obtain

‖f −Aλf‖2 = ‖f0 + f1 −Aλf1‖2

=
∥∥f0 −Πker(Aλ)Aλf1

∥∥2 +
∥∥(I −ΠλAλ)f1

∥∥2

≥
∥∥(A+

λ −Πλ)Aλf1
∥∥2

≥
mλ∑

k=1

s2k < Aλf, vk >2,

where s1 ≥ . . . ≥ smλ
are the singular values of A+

λ − Πλ counted with
their multiplicity and (v1, . . . , vmλ

) is an orthonormal family of right-singular
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vectors associated to (s1, . . . , smλ
). We write kλ for the largest k such that

sk ≥ 1 and derive that

‖f −Aλf‖2 ≥
kλ∑

k=1

s2k < Aλf, vk >2

≥
kλ∑

k=1

< Aλf, vk >2 = ‖(I −ΠSλ
)Aλf‖2 ,

which proves the assertion (i).

For the second part (ii), we note that

‖f −ΠSλ
f‖ ≤ ‖f −ΠSλ

Aλf‖
≤ ‖f −Aλf‖+ ‖Aλf −ΠSλ

Aλf‖ .

The bound (ii) then follows from (i).

For the last bound (iii), we set Mλ = A+
λ −Πλ and note that

(Mλ −Πλ)(Mλ −Πλ)
∗ = MλM

∗
λ +ΠλΠ

∗
λ −MλΠ

∗
λ −ΠλM

∗
λ

induces a semi-positive quadratic form on rg(A∗
λ). As a consequence the

quadratic form (Mλ + Πλ)(Mλ + Πλ)
∗ is dominated by the quadratic form

2(MλM
∗
λ +ΠλΠ

∗
λ) on rg(A∗

λ). Furthermore

(Mλ +Πλ)(Mλ +Πλ)
∗ = (A+

λ )(A
+
λ )

∗ = (A∗
λAλ)

+

where (A∗
λAλ)

+ is the inverse of the linear operator Lλ : rg(A∗
λ) → rg(A∗

λ)
induced by A∗

λAλ restricted on rg(A∗
λ). We then have that the quadratic

form induced by (A∗
λAλ)

+ is dominated by the quadratic form

2(A+
λ −Πλ)(A

+
λ −Πλ)

∗ + 2ΠλΠ
∗
λ

on rg(A∗
λ). In particular the sequence of the eigenvalues of (A∗

λAλ)
+ is dom-

inated by the sequence (2s2k + 2)k=1,mλ
so

Tr(A∗
λAλ) = Tr(Lλ) ≥

mλ∑

k=1

1

2(1 + s2k)

≥
mλ∑

k=kλ+1

1

2(1 + s2k)
≥ dim(Sλ)/4,

which conclude the proof of Lemma 1.
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Lepskĭı, O. V. (1990). A problem of adaptive estimation in Gaussian white noise. Teor.
Veroyatnost. i Primenen., 35(3):459–470.
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7. Appendix.

7.1. Computation of pen∆(S). The penalty pen∆(S), defined at equation (3),
is linked to the EDKhi function introduced in Baraud al (2009) (see Defini-
tion 3), via the following formula:

pen∆(S) =
n− dim(S)

n− dim(S)− 1
EDKhi

(
dim(S) + 1, n− dim(S)− 1,

e−∆(S)

dim(S) + 1

)
.

Therefore, according to the result given in Section 6.1 in Baraud et al (2009),
pen∆(S) is the solution in x of the equation

e−∆(S)

D + 1
= P

(
FD+3,N−1 ≥ x

N − 1

N(D + 3)

)

−x
N − 1

N(D + 1)
P

(
FD+1,N+1 ≥ x

N + 1

N(D + 1)

)
.

7.2. Simulated examples. The collection E is composed of several collections
E1, . . . , E11 that are detailed below. The collections E1 to E10 are composed of
examples where X is generated as n independent centered Gaussian vectors
with covariance matrix C. For each e ∈ {1, . . . , 10}, we define a p×p matrix
Ce and a p-vector of parameters βe. We denote by Xe the set of 5 matrices
X simulated as n-i.i.d Np(0, Ce). The collection Ee is then defined as follows:

Ee = {ex(n, p,X, β, ρ), (n, p) ∈ I,X ∈ Xe, β = βe, ρ ∈ R}

where R = {5, 10, 20} and

(19) I = {(100, 50), (100, 100), (100, 1000), (200, 100), (200, 200)}

in Section 5.2, and

(20) I = {(100, 50), (100, 100), (200, 100), (200, 200)}

in Section 5.3.

Let us now describe the collections E1 to E10.

imsart-aos ver. 2010/04/27 file: LinSelect_1207.hyper12886.tex date: July 13, 2010



ESTIMATOR SELECTION 25

Collection E1. The matrix C equals the p× p identity matrix denoted Ip.
The parameters β satisfy βj = 0 for j ≥ 16, βj = 2.5 for 1 ≤ j ≤ 5, βj = 1.5
for 6 ≤ j ≤ 10, βj = 0.5 for 11 ≤ j ≤ 15.

Collection E2. the matrix C is such that Cjk = r|j−k|, for 1 ≤ j, k ≤ 15
and 16 ≤ j, k ≤ p with r = 0.5. Otherwise Cj,k = 0. The parameters β are
as in Collection E1.
Collection E3. The matrix C is as in Collection E2 with r = 0.95, the
parameters β are as in Collection E1.
Collection E4. The matrix C is such that Cjk = r|j−k|, for 1 ≤ j, k ≤ p,
with r = 0.5, the parameters β are as in Collection E1.
Collection E5. the matrix C is as in Collection E4 with r = 0.95, the
parameters β are as in Collection E1.
Collection E6. The matrix C equals Ip. The parameters β satisfy βj = 0
for j ≥ 16, βj = 1.5 for j ≤ 15.

Collection E7. The matrix C satisfies Cj,k = (1 − ρ1)1lj=k + ρ1 for 1 ≤
, j, k ≤ 3, Cj,k = Ck,j = ρ2 for j = 4, k = 1, 2, 3, Cj,k = 1lj=k for j, k ≥ 5,
with ρ1 = .39 and ρ2 = .23. The parameters β satisfy βj = 0 for j ≥ 4,
βj = 5.6 for j ≤ 3.

Collection E8. The matrix C satisfies Cj,k = 0.5|j−k| for j, k ≤ 8, Cj,k =
1lj=k for j, k ≥ 9. The parameters β satisfy βj = 0 for j 6∈ {1, 2, 5}, β1 = 3,
β2 = 1.5, β5 = 2.

Collection E9. The matrix C is defined as in Example E8. The parameters
β satisfy βj = 0 for j ≥ 9, βj = 0.85 for j ≤ 8.

Collection E10. The matrix C satisfies Cj,k = 0.51lj 6=k +1lj=k for j, k ≤ 40,
Cj,k = 1lj=k for j, k ≥ 41. The parameters β satisfy βj = 2 for 11 ≤ j ≤ 20
and 31 ≤ j ≤ 40, βj = 0 otherwise.

Collection E11. In this last example, we denote by X11 the set of 5 matrices
X simulated as follows. For 1 ≤ j ≤ p, we denote by Xj the column j of X.
Let E be generated as n i.i.d. Np(0, 0.01Ip) and let Z1, Z2, Z3 be generated
as n i.i.d. N3(0, I3). Then for j = 1, . . . , 5, Xj = Z1 + Ej , for j = 6, . . . , 10,
Xj = Z2 + Ej, for j = 11, . . . , 15, Xj = Z3 + Ej , for j ≥ 16, Xj = Ej . The
parameters β are as in Collection E6. The collection E11 is defined as the set
of examples ex(n, p,X, β, ρ) for (n, p) ∈ I, X ∈ X11, and ρ ∈ R.

The collection E is thus composed of 660 examples for I chosen as in (20),
and 825 for I chosen as in (19). For some of the examples, the Lasso esti-
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mators were highly biased leading to high values of the ratio Oex/nσ
2, see

Equation (14). We only keep the examples for which the Lasso estimator
improves the risk of the naive estimator Y by a factor at least 1/3. This
convention leads us to remove 171 examples over 825. These pathological
examples are coming from the collections E1, E6 and E7 for n = 100 and
p ≥ 100, and from collections E2 and E4 when p = 1000. The examples of
collection E7 were chosen by Zou to illustrate that the Lasso estimators may
be highly biased. All the other examples, correspond to matrices X that are
nearly orthogonal.

7.3. Procedures for calculating sets of predictors. Let M̂ =
⋃

ℓ∈L M̂ℓ where

we recall that for ℓ ∈ L, M̂ℓ = {m̂(ℓ, h)| h ∈ Hℓ}.
The Lasso procedure is described in Section 5.2. The collection M̂Lasso =
{m̂(1), . . . , m̂(Dmax)} where m̂(h) is the set of indices corresponding to the
predictors retuned by the LARS-Lasso algorithm at step h ∈ {1, . . . ,Dmax}
(see Section 5.2).

The ridge procedure is based on the minimization of ‖Y −Xβ‖2+h‖β‖2 with
respect to β, for some positive h, see for example Hoerl and Kennard (2006).
Tibshirani (1996) noted that in the case of a large number of small effects,
ridge regression gives better results than the lasso for variable selection.
For each h ∈ Hridge, the regression coefficients β̂(h) are calculated and a
collection of predictors sets is built as follows. Let j1, . . . jp be such that

|β̂j1(h)| > . . . > |β̂jp(h)| and set

Mh = {{j1, . . . , jk}, k = 1, . . . ,Dmax} .

Then, the collection M̂ridge is defined as M̂ridge = {Mh, h ∈ Hridge}.
The elastic net procedure proposed by Zou and Hastie (2005) mixes the
ℓ1 and ℓ2 penalties of the Lasso and the ridge procedures. Let Hridge be
a grid a values for the tuning parameter h of the ℓ2 penalty. We choose
M̂en = {M(en,h) : h ∈ Hridge} where M(en,h) denotes the collection of the ac-
tive sets of cardinality less than Dmax, selected by the elastic net procedure
when the ℓ2-smoothing parameter equals h. For each h ∈ Hridge the col-
lection M(en,h) can be conveniently computed by first calculating the ridge
regression coefficients and then applying the LARS-lasso algorithm, see Zou
and Hastie (2005).

The partial least squares regression (PLSR1) aims to reduce the dimension-
ality of the regression problem by calculating a small number of components
that are usefull for predicting Y . Several applications of this procedure for
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analysing high-dimensional genomic data have been reviewed by Boulesteix
and Strimmer (2006). In particular, it can be used for calculating subsets
of covariates as we did for the ridge procedure. The PLSR1 procedure con-
structs, for a given h, uncorrelated latent components t1, . . . , th that are
highly correlated with the response Y , see Helland (2006). Let Hpls be a

grid a values for the tuning parameter h. For each h ∈ Hpls, we write β̂(h)
for the PLS regression coefficients calculated with the first h components.
We then set M̂PLS = {Mh : h ∈ Hpls}, where Mh is build from β̂(h) as for
the ridge procedure.

The adaptive lasso procedure proposed by Zou (2006) starts with a pre-

liminary estimator β̃. Then one applies the lasso procedure replacing the
parameters |βj |, j = 1, . . . , p in the ℓ1 penalty by the weighted parameters
|βj |/|β̃j |γ , j = 1, . . . , p for some positive γ. The idea is to increase the penalty
for coefficients that are close to zero, reducing thus the bias in the estima-
tion of f and improving the variable selection accuracy. Zou showed that,
if β̃ is a

√
n-consistent estimator of β, then the adaptive lasso procedure is

consistent in situations where the lasso is not. A lot of work has been done
around this subject, see Huang et al. (2008) for example.

We apply the procedure with γ = 1, and considering two different prelimi-
nary estimators:

- using the ridge estimator, β̃(h) as preliminary estimator. For each h ∈
Hridge, the adaptive lasso procedure is applied for calculating the active

sets, MALridge,h, of cardinality less than Dmax. The collection M̂ALridge is

thus defined as M̂ALridge = {MALridge,h, h ∈ Hridge}.
- using the PLSR1 estimator, β̃(h), as preliminary estimator. The procedure
is the same as described just above. The collection MALpls is defined as
MALpls = {MALpls,h, h ∈ Hpls}.
The random forest algorithm was proposed by Breiman (2001) for classifi-
cation and regression problems. The procedure averages several regression
trees calculated on bootstrap samples. The algorithm returns measures of
variable importance that may be used for variable selection, see for example
Dı́az-Uriarte and Alvares de Andrés (2006), Genuer et al. (2010), Strobl et
al. (2007; 2008).

Let us denote by h the number of variables randomly chosen at each split
when constructing the trees and

HrF = {p/j | j ∈ {3, 2, 1.5, 1}}.
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For each h ∈ HrF , we consider the set of indices

Mh = {{j1, . . . , jk}, k = 1, . . . ,Dmax},

where {j1, . . . , jk} are the ranks of the variable importance measures. Two
importance measures are proposed. The first one is based on the decrease
in the mean square error of prediction after permutation of each of the
variables. It leads to the collection M̂rFmse = {Mh, h ∈ HrF}. The second
one is based on the decrease in node impurities, and leads similarly to the
collection M̂purity.

The exhaustive procedure considers the collection of all subsets of {1, . . . p}
with dimension smaller than Dmax. We denote this collection Mexhaustive.

Choice of tuning parameters. We have to choose Dmax, the largest number
of predictors considered in the collection M̂. For all methods, except the
exhaustive method, Dmax may be large, say Dmax ≤ min(n − 2, p). Never-
theless, for saving computing time, we chose Dmax large enough such that
the dimension of the estimated subset is always smaller than Dmax. For the
exhaustive method, Dmax must be chosen in order to make the calculation
feasible: Dmax = 4 for p = 50, Dmax = 3 for p = 100 and Dmax = 2 for
p = 200.

For the ridge method we choose Hridge = {10−3, 10−2, 10−1, 1, 5}, and for
the PLSR1 method, Hpls = 1, . . . , 5.
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