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Dilatational and Compacting Behavior around a Cylindrical
Cavern Leached Out in a Solid–Fluid Elastic Rock Salt

Giulio Sciarra1; Francesco dell’Isola2; and Kolumban Hutter3

Abstract: A fluid-filled cylindrical cavern of circular cross section in a homogeneous infinite fluid-saturated polycristalline �salt�
formation subjected to isotropic stress is set under internal pressure that differs from the confining pressure. The fluid in the cavern and
in the mixture is treated as ideal and the solid as elastic. The state of stress that is established as a consequence of an outside pressure and
a cavern pressure serves as the reference state. Perturbing the cavern pressure induces small changes in the solid and fluid densities and
in the solid displacements. We compute these and other fields as functions of the radial distance from the cavern center and show that,
depending on the relative stress levels, the �salt� formation experiences either a dilatation or a compaction that is highly concentrated in
a thin boundary layer near the cavern wall and tapers off as one moves away from it. The amount of dilatation/compaction of the
cylindrical wall and the thickness of the boundary layer grow with an increase in the difference between the referential confining pressure
and the pressure in the cavern.
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Introduction

In geotechnique, caverns excavated in salt domes are used as
storage volumes for the disposal of waste and hydrocarbons.
These caverns, leached out in salt formations, are characterized
by a damaged zone in the vicinity of their surface. In fact, per-
meability measurements �Cosenza et al. 1999; Stormont 1997� in
the immediate vicinity of the cavern walls disclose a dilatation of
the pores within a relatively small boundary layer of the polycrys-
talline salt. The origin of this disturbed rock zone is still some-
what debatable; however, a microstructured theory of solid–fluid
mixtures was recently proposed �Sciarra 2002; Sciarra et al. 2001,
2003; dell’Isola et al. 2000� that offered a means of explaining, in
the framework of an elastic model, the occurrence of the appar-
ently counterintuitive expansion of the pore-space by the increase
in internal cavern pressure. In our initial publication on this sub-
ject �Sciarra et al. 2001�, second-gradient effects for the deformed
porous salt matrix, which was filled with an ideal fluid, were
claimed to be essential. Our present understanding tells us that
second-gradient effects yield dominant qualitative behavior of the
dilatancy deformation of the salt-fluid mixture only for specific

1Doctor, Dipartimento di Ingegneria Chimica, dei Materiali, delle
Materie Prime e Metallurgia, Univ. of Rome “La Sapienza,” via
Eudossiana 18 00184 Rome, Italy. E-mail: giulio.sciarra@uniroma1.it

2Professor, Dipartimento di Ingegneria Strutturale e Geotecnica, Univ.
of Rome “La Sapienza,” via Eudossiana 18 00184 Rome, Italy. E-mail:
francesco.dellisola@uniroma1.it

3Professor, Dept. of Mechanics, Darmstadt Univ. of Technology,
D-64289 Darmstadt, Germany. E-mail: hutter@mechanik.tu-darmstadt.de

Note. Discussion open until February 1, 2006. Separate discussions
must be submitted for individual papers. To extend the closing date by
one month, a written request must be filed with the ASCE Managing
Editor. The manuscript for this paper was submitted for review and pos-
sible publication on March 15, 2004; approved on December 9, 2004.
This paper is part of the International Journal of Geomechanics, Vol. 5,
No. 3, September 1, 2005. ©ASCE, ISSN 1532-3641/2005/3-233–243/

$25.00. 

                             

Downloaded 11 Jun 2010 to 151.100.70.22. Redistribu
simple load configurations, while in general it affects the defor-
mation field only quantitatively, for instance by altering the di-
mension of dilatancy boundary layers.

To understand this, consider a cylindrical, very long cavern
surrounded by an infinite salt–brine mixture; let us model it as a
first-gradient elastic material and assume that the cylinder is sub-
ject to a steady internal pressure p01, while the outside boundary,
ideally at infinity, is carrying the isotropic pressure p02 �Fig. 1�.
Because both the cavern pressure and the outer boundary pres-
sure, integrated over their individual closed boundaries, are in
static equilibrium, p01 and p02 can individually be chosen; they
thus define a multitude of isotropic stresses states. In particular,
fluid can be pressed into or sucked from the cylinder, and the
effect of such actions may be studied. Therefore, replacing p01 by
p01+�p01 �and applying the zero displacement condition at infin-
ity� will, for a given p02, change the deformation state in the
solid–fluid mixture around the fluid-filled cavern, in particular
inducing some dilatancy boundary layers inside the solid matrix.
This deformation state will depend upon the prestresses p01 and
p02. Of concern is how the apparent solid density ��s changes due
to the imposed additional �p01 as a function of the radial distance
from the cavern wall.

For the first-gradient solid–fluid mixture model used in the
present paper, the results are displayed in Fig. 2. If p01� p02, a
linear increase in the cavern pressure results in a dilatancy,
��s�0, for all r� �a ,��, where a�radius of the cylinder; alter-
natively, when p01� p02, an increase in the cavern pressure will
result in a compaction, ��s�0, for all r� �a ,��. These results
imply almost by default that, for p01= p02, ��s=0 for all
r� �a ,��. This is indeed the result that motivated us to improve
the first-gradient model by a second-gradient model in our earlier
paper �Sciarra et al. 2001� to recover dilatancy effects also in the
wall-near boundary layer when p01= p02.

The monotonic behavior exhibited by the graphs of Fig. 2
prevails for all prestress conditions p01 and p02. However, as p01

increases beyond p02, the maximum value of ��s at r=a increases

and the boundary layer becomes thicker �Fig. 3�.
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Formulation of Problem

Consider a solid–fluid mixture; identify the solid and fluid con-
stituents by the labels s and f , respectively. Material particles of
the fluid and the solid are identified, respectively, by their position
vectors X f and Xs in fixed reference configurations � f

0 and �s
0. As

is usually done in the theory of mixtures, we presume that, at any
time t, particles of both constituents occupy the same position x
in the present configuration �. The velocity va �a= f ,s� of the
material particle Xa is defined by

va =
daua�Xa,t�

dt
�1�

where da /dt�material time derivative following the motion of
Xa; and ua�displacement of the ath constituent from its refer-
ence configuration. Let � f and �s denote, respectively, the appar-
ent mass densities of the fluid and the solid; then the mass density,
�, of the mixture equals � f +�s. The mean barycentric velocity v
of the mixture is defined by

�v = � fv f + �svs �2�

We assume the reader to be familiar with the concepts of the
theory of mixtures. Details can be taken from the literature, e.g.,
Truesdell �1957�; Müller �1985�; and Hutter and Jöhnk �2003�.

Balance Laws

We assume a classical mixture of first-gradient formulation and
use the principle of virtual power to derive the balance of linear
momentum and the boundary conditions for each constituent; that

Fig. 1. Cylindrical cavern of radius a filled with an inviscid fluid, in
a very low permebility. Plane deformation is assumed.
is
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�
�

�ms · vs + m f · v f + Ts · �vs − pf div v f�dV

=�
�

�bs · vs + b f · v f�dV +�
��

�ts · vs + t f · v f�dA �3�

Here, ma�bulk solid–fluid interaction force; Ts�partial Cauchy
stress in the solid; pf�hydrostatic pressure in the fluid �we as-
sume that the partial Cauchy stress in the fluid is spherical�;
��gradient operator with respect to coordinates in the present
configuration; ba�density of partial body forces; and ta�partial
surface tractions. The objectivity of the left-hand side of Eq. �3�
implies that the sum of the two internal supplies ms and m f of
linear momentum equals 0 and Ts is symmetric.

By using the divergence theorem and exploiting the fact that
Eq. �3� must hold for all virtual velocities, we obtain

div Ts − ms + bs = 0, in � �4�

− �pf − m f + b f = 0, in � �5�

ms + m f = 0, in � �6�

Tsn = ts, on � � �7�

− pfn = t f, on � � �8�

Eqs. �4� and �5� are the momentum or force balance equations for
the solid and fluid constituents, Eq. �6� expresses Newton’s third
law, and, Eqs. �7� and �8� are the boundary conditions of traction
of the two constituents. The principle of virtual power can also

d–fluid mixture of polycrystalline salt and brine. The porous salt has
a soli
allow us to take into account boundary conditions on the displace-
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ment field simply by restricting the space of virtual velocities to
those fields that vanish on the boundary itself.

Constitutive Relations

The balance laws, Eqs. �4� and �5�, are to be supplemented by
constitutive relations; we express these in terms of the internal

Fig. 2. Variation of the solid normalized apparent density change
��̄s=��s /�s

0 plotted against x to a change in cavern pressure
�p01=1 MPa. Computations were done for phenomenological
constants of Table 1: �a� p02=18 MPa and p01=7.2 MPa; �b�
p01= p02; �c� p01=28.8 MPa..

Fig. 3. Variation of the normalized solid perturbation density ��̄s=�
indicated, and for �a� p01� p02 and �b� p01� p02. For increasing p01, th

Computations were done with the values of Table 1 and p02=18 MPa.
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energy. We presume that the mixture is at a uniform temperature,
the constituents are deforming quasi-statically so that their kinetic
energy can be neglected, and no energy is dissipated. The internal
energy density is assumed to exhibit only elastic properties of the
solid and fluid constituents �=��Fs ,� f ,Xs�. Thus, the balance of
energy takes the form

dv

dt
�

�

���Fs,� f,Xs�dV =�
�

�bs · vs + b f · v f�dV

+�
��

�ts · vs + t f · v f�dA �9�

in which Fs�deformation gradient of the solid; and
dv /dt�material time derivative following the barycentric motion
of the mixture. According to the Reynolds transport theorem, the
following constitutive equations must hold:

Ts = �
��

�Fs
Fs

T �10�

pf = �� f

��

�� f
�11�

ms = − ��	 f��Fs�T ��

�Fs
+ 	 fFs

−T ��

�Xs
− 	s

��

�� f
�� f� �12�

in which

	 f =
� f

�
, 	s =

�s

�
, � = � f + �s �13�

are the fluid and solid mass fractions and, by definition,
	s+	 f =1.

In this paper we limit attention to external actions for which
bs=b f =0, i.e., only external surface tractions are applied. When
applying the interior pressure of the interface between the single
fluid in the cavern, a suitable procedure must be known for how
to divide this traction between the two constituents. Our earlier
studies �Sciarra et al. 2001� have shown that, to avoid violation of
the second law of thermodynamics, the existence of a potential

function must be assumed such that the working Ẇext of the ex-
ternal surface tractions is given by

for �p01=1 MPa and different values of the cavern pressure p01, as
e of ��̄s at the cavern wall increases and the boundary layer thickens.
�s /�s
0

e valu
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Ẇext =
dv

dt
�

�


ext�x,�s,� f�dV �14�

where Ẇext�surface integral on the right-hand side of Eq. �9�.
The external surface tractions for which Eq. �14� holds are
conservative.

Requiring that Eq. �14� holds for all choices of the velocity
field, we obtain

�
ext

��s
= Cs,

�
ext

�� f
= Cf, in � �15�

ts = −
�
ext

��s
�s + 	s


ext, on � � �16�

t f = −
�
ext

�� f
� f + 	 f


ext, on � � �17�

Eq. �15� with Cs and Cf as constants are necessary conditions for
the existence of a 
ext for which bs=b f =0.

The preceding relations must be complemented by explicit ex-
pressions for the internal energy � and the external potential 
ext,
and both must account for the prestress acting in the reference
configuration. Denoting these stresses by Ts

0 and pf
0, respectively,

they must satisfy the equilibrium conditions

div Ts
0 = 0, �pf

0 = 0 �18�

We assume an internal energy � that depends on Ts
0, Hs=�us,

where us�solid displacement field; � f and �� f =� f −� f
0, quadratic

in Hs and �� f. This argument yields

� =
1

�0
�Ts

0 · Hs + � f�� f +
1

2
C�Hs� · Hs −

1

4
�Ts

0Hs
T − HsTs

0� · Hs

+
1

8
�HsTs

0 − Ts
0Hs + Ts

0Hs
T − Hs

TTs
0� · Hs +

1

2
� f f�� f

2

+ Ksf�� fI · Hs� �19�

in which �0= ��s+� f�0�mixture density and C�elasticity tensor:

C�Hs� = 2� symHs + 
�tr Hs�I �20�

where 
 and ��Lamé constants. Moreover, � f, � f f, and
Ksf�material parameters. The spherical tensor KsfI accounts for
the interaction between the solid and the fluid phases because of
the deformation of the pores, while � f and � f f mimic fluid appar-
ent compressibilities due to the initial pressure pf

0 and the addi-
tional load �pf. A constant term has been omitted in Eq. �19�. The
first two members of the right-hand side of Eq. �19� are linear in
Hs and �� f and thus account for the primary effect of the non-
trivial stress state in the reference configuration. All other terms
are second order and yield a linear contribution of Hs and �� f to
the solid and the fluid stress. They also contain prestress contri-
butions that may contribute to an anisotropic response behavior
also if C�·� is isotropic, as suggested by Eq. �20�.

The presence of a prestress exerted in the solid as well as in
the fluid phase accounts for the initial state of stress due to the
lithostatic confining traction and the internal pressure of the cav-
ern. This contribution, which is typically omitted, will allow the
determination of a prediction for the disturbance induced by a
change of the cavern pressure in terms of changes in the solid and

fluid densities close to the cavern walls with respect to their initial
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values. We underline that, in the present paper, we do not explic-
itly discuss the range of values of Ts

0, � f, and Ksf which guaran-
tees the second-order polynomial in Eq. �19� to be positive defi-
nite; in other words, no stability analysis has been developed.
Apparently, further steps should be devoted to investigate the
buckling limit of the mixture.

It has to be noticed that Eq. �19� may be obtained by means of
a Taylor expansion of the free-energy truncated at the second
order. Its physical interpretation must be based on the remark that,
in the reference configuration, the mixture elementary volume
element is not stress-free, and moreover its state of stress is not
spherical. In particular, as it is very well known in the literature,
the deformation energy depends on the whole deformation gradi-
ent and not only on its symmetric part.

The constitutive choice for 
ext will depend upon the form of
the traction applied at the cylindrical boundary and at infinity.
Thus, the subsequent analysis will be specialized for the assumed
state of stress that we are analyzing in this paper. It will be sup-
posed that the deformations of the mixture are axisymmetric; i.e.,
in cylindrical coordinates the two in-plane components of the
displacement ur and u� are functions of the radial coordinate r
only. This implies that Eq. �18� possesses the solutions

Ts
0 = �a0 −

b0

r2 	er � er + �a0 +
b0

r2 	e� � e� �21�

pf
0 = � f� f

0 = const �22�

in which er and e��radial and azimuthal unit vectors. Therefore,
the solid stress Ts

0 only has a radial and an azimuthal component.
Its isotropic part a0 defines a homogeneous pressure, while its
deviatoric part exhibits the normal stress effects. These have the
largest contribution at the cylindrical wall and decay quadratically
as r−2 as one moves to infinity. The radial stress is decreased from
the ambient pressure a0 by b0r−2; the hoop stress, on the other
hand, is increased by this same amount. The fluid pressure Eq.
�22� is uniformly distributed in the entire exterior of the cylinder
and linearly related to the initial apparent fluid density � f

0.
The conceivable most simple representation of 
ext is of the

form


ext = 
0
ext + �
ext

= �Cs�s
0 + Cf� f

0 + �̄0 +
�̄1

r
	 + �Cs��s + Cf�� f + ��0�

�23�

in which Cs,Cf�phenomenological constants; and �̄0, �̄1, and
��0 are related to the pressure at the boundaries in the reference
and in the perturbed configuration. To find these connections, Eq.
�23� is substituted into Eqs. �16� and �17�. A routine, but some-
what lengthy, computation yields the solid–fluid traction vectors

ts
0 = �− 	 f

0	s
0�0�Cs − Cf� + 	s

0��̄0 +
�̄1

r
	�n, at r = a,r → �

t f
0 = �	 f

0	s
0�0�Cs − Cf� + 	 f

0��̄0 +
�̄1

r
	�n, at r = a �24�

Because t0= ts
0+ t f

0, we deduce from Eq. �24� that

0 �̄1
t �a� = ��̄0 +
a
	n = − p01n, at r = a

tion subject to ASCE license or copyright. Visithttp://www.ascelibrary.org



lim
r→�

t0�r� = �− 	 f
0	s

0�0�Cs − Cf� + 	s
0�̄0�n = − p02n, as r → �

�25�

Finally, there remains the determination of a0 and b0 in Eq. �21�.
With the aid of Eq. �24� we may write

�a0 −
b0

a2	n = �− 	 f
0	s

0�0�Cs − Cf� + 	s
0��̄0 +

�̄1

a
	�n, at r = a

a0n = �− 	 f
0	s

0�0�Cs − Cf� + 	s
0�̄0�n, as r → � �26�

from which

a0 = �− 	 f
0	s

0�0�Cs − Cf� + 	s
0�̄0�, b0 = − 	s

0a�̄1 �27�

may be deduced, once the following expressions for �0 and �1

are taken into account from Eq. �25�:

�̄0 = −
p02

	s
0 + 	 f

0�0�Cs − Cf�, �̄1 = a
p02

	s
0 − ap01 − a	 f

0�0�Cs − Cf�

�28�

For Cs=Cf, which means that the external potential simply
depends on the mixture density, Eqs. �24� and �25� simplify

considerably.

�0 r s
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Eq. �25� defines the boundary conditions for the zeroth order
problem setting. In other words, for a given internal pressure p01

of the cylindrical boundary and a prescribed outer pressure p02,
the density distributions � f

0 and �s
0 can be computed in terms of

p01 and p02, once suitable constitutive relations have been taken
into account for solid and fluid reference stresses. In the subse-
quent sections, this solution is regarded as a basic reference state
from which deviations will now be determined.

Perturbed Linear Boundary Value Problem

Consider now the cylindrical cavity embedded in the solid–fluid
medium subjected to the boundary pressures p01 and p02 as de-
scribed previously. Assume that, by the application of some ex-
ternal action, the pressure p01 on the boundary of the cavity is
quasi-statically changed to p01+�p01, while on the external
boundary the pressure p02 is kept. This can for instance be
achieved by pressing liquid into the cavern or by removing it.
This will change the state of stress in the surrounding solid–fluid
medium. For �p01�0, the fluid will be pressed into the pore
space, the pores will tend to open, and the solid component will
experience a density change and a radial displacement field ur

s that
will attenuate to zero as r tends to infinity.

It will now be assumed that all fields depend only on the radial
coordinate and that the solid displacement field �ur

s ,u�
s� as well as

the change in densities �� f and ��s and pressure ��0 are small,
such that nonlinear terms can be dropped. The linearized field
equations, derivable from Eqs. �4�, �5�, �10�, �11�, and �12�, then

take the forms
�2	 f
0�a0 −

b0

r2 	 + 
 + 2��ur� +
1

r
�2	 f

0�a0 +
b0

r2 	 +
2b0

r2 + 
 + 2��ur� +
1

r2�− 2	 f
0�a0 +

b0

r2 	 −
2b0

r2 − �
 + 2���ur

+ � 1

�0
�a0 −

b0

r2 	 + Ksf − 	s
0� f��� f� = 0 �29�

1

r2��a0

2
+ �	r2 − b0�u�� +

1

r3��a0

2
+ �	r2 − b0�u�� −

1

r4��a0

2
+ �	r2 − b0�u� = 0 �30�

�� f� =

� f
0��s

0� f − �0Ksf��ur� +
1

r
ur	�

− � f
0��a0 −

b0

r2 	ur���
− �� f

0�a0 +
b0

r2 	1

r
ur��

2� f
0� f + �0� f

0� f f

�31�
valid in a�r��, and the first-order boundary conditions follow
from the ansatz Eq. �23� and the localizations Eqs. �16� and �17�:

�ts = 
�− �	 f
0�2�Cs − Cf� +

	 f
0

�0
��̄0 +

�̄1

r
	���s + �− �	s

0�2�Cs − Cf�

+
	s

0��̄0 +
�̄1	��� f + 	0��0�n, at r = a �32�
�t f = 
��	s
0�2�Cs − Cf� +

	s
0

�0
��̄0 +

�̄1

r
	��� f + ��	 f

0�2�Cs − Cf�

−
	 f

0

�0
��̄0 +

�̄1

r
	���s + 	 f

0��0�n, at r = a �33�
where n=−er at r=a. Adding Eqs. �32� and �33� yields     
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�p01 = − ��0, at r = a �34�

thus identifying the perturbation ��0 with the perturbation pres-
sure �p01 applied at the cylindrical wall and defining the solid
and fluid boundary pressures according to

�ps�a� = − 
�− �	 f
0�2�Cs − Cf� +

	 f
0

�0
��̄0 +

�̄1

r
	���s

+ �− �	s
0�2�Cs − Cf� +

	s
0

�0
��̄0 +

�̄1

r
	��� f + 	s

0��0�
�35�

�pf�a� = − 
��	s
0�2�Cs − Cf� +

	s
0

�0
��̄0 +

�̄1

r
	��� f

+ ��	 f
0�2�Cs − Cf� −

	 f
0

�0
��̄0 +

�̄1

r
	���s + 	 f

0��0�
�36�

In addition, the vanishing shear stresses in r=a require

u���a� = 0 �37�

and the boundary conditions at r→� require

lim
r→�

ur�r� = lim
r→�

u��r� = 0 �38�

A detailed derivation of Eqs. �29�–�33� is given in the Appendix.
Thus, the proposed steady-state deformation problem appears

mathematically as a standard linear two-point boundary value
problem comprising the ordinary differential Eqs. �29�–�31� and
the boundary conditions Eqs. �32�, �33�, �37�, and �38�. The dif-
ferential equations are homogeneous and so are the boundary con-
ditions Eqs. �37� and �38�, but the traction boundary conditions
are inhomogeneous via the prescription of �p01.

Inspection of Eqs. �30� and �37�, and the second part of Eq.
�38� shows that the solution for u� is decoupled from those of
Eqs. �29�, �31�–�33�, and the first part of Eq. �38�. Now, because
the boundary value problem for u� is homogeneous, u�=0 is a
solution; in fact, this trivial result follows simply by the symmetry
of the boundary value problem. What remains are the differential
Eqs. �29� and �31� subjected to the boundary conditions Eqs. �32�
and �33�, and the first part of Eq. �38�. The construction of their
solution will be our next task.

Solution of Boundary Value Problem

The coupled system Eqs. �29� and �31� of ordinary differential
equations can be reduced to a simple second-order differential
equation for ur if Eq. �31� is substituted into Eq. �29�. This new
differential equations has the form

a�r�ur� + b�r�ur� + c�r�ur = 0 �39�

with coefficients that are singular at r=0 and are such that Eq.
�39� is not of the Fuchs type. It follows that no convergent series
solutions can be found. Thus, it is hopeless to search for analyti-
cal solutions. Solutions must be constructed by numerical tech-
niques, and these are not likely to offer any difficulties, because
the only singularities of a�r�, b�r�, and c�r� lie outside the range

of integration, �a ,��, namely, at r=0.

238
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For the numerical integration of the differential Eqs. �29� and
�31�, it is advantageous to reduce it to first-order standard form
and simultaneously to nondimensionalize the equations. To this
end, we select

r = ax, ur = ay1,
dur

dr
= y2, �� f = � f

0y3 �40�

With this choice, it is straightforward to show that Eqs. �29� and
�31� reduce to

A�x�Y� = B�x�Y �41�

�29� where YT= �y1 ,y2 ,y3�; and

A�x� = �1 0 0

0 A�x�
0


 B�x� = � 0 1 0

B�x� 0

0

 �42�

in which A�x� and B�x� can easily be given in terms of the coef-
ficients of Eqs. �29� and �31�. Inverting A�x�, Eq. �41� may be
written as

Y� = A�x�−1B�x�Y = C�x�Y = � 0 1 0

C�x� 0

0

 �43�

This is now the standard form of a vector-valued first-order ordi-
nary differential equation, which must be integrated between x
=1 and x→�. The boundary conditions to which it is subjected
can be deduced from Eqs. �32� and �33�, and the first part of Eq.
�38�, and they imply that

a1y1�1� + a2y2�1� = P, y3�1� = ȳ3, at r = a

lim
x→�

y1�x� = 0, at r → � �44�

where P and ȳ3, as well as a1 and a2, are prescribed constants that
can be expressed in terms of p01, p02, �p01, and all the constitu-
tive parameters we have introduced.

The approach to solve Eqs. �43� and �44� was a fourth-order
Runge–Kutta method combined with the shooting method. To this
end the initial value problem

Y� = C�x�Y Y�1� = Ȳ �45�

was solved with arbitrarily selected y1�1�, and this value was
systematically altered until limx→� y1�x�=0 was obtained with a
preselected error ����1 ln. The actual computation x→� was
replaced by a large finite number x�=1,000 and �y1�x�����
=10−15 was chosen. Furthermore, the shooting method in a linear
problem that does not exhibit stiff properties only requires three
integrations to achieve the final solution. The integrations were
conducted with the use of the software MATHEMATICA.

Results

Numerical solutions of the two-point boundary value problem
Eqs. �43� and �44� were sought for fixed assigned values of the
outside reference pressure p02 and several values of p01 starting at
p01� p02 and ending at p01� p02; a numerical value for p02 is the
overburden pressure of a salt cavern underground, and p01 can
vary from atmospheric pressure to approximately 2p02. Numerical
values for all the phenomenological coefficients are collected in

Table 1. Inspection of all the formulas in the previous section
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reveals that the constants Cs and Cf of the external potential only
arise as �Cs−Cf�, so results are insensitive to the numerical values
of these, if we choose Cs=Cf. The ensuing discussion will be
restricted to this case.

Fig. 2 displays the dimensionless solid density change ��s /�s
0

plotted against the distance x=r /a for the particular
values p02=18 MPa and p01= 7.2 MPa� p02 �Fig. 2�a��,
p01=28.8 MPa� p02 �Fig. 2�c��. Fig. 2�b� shows the results for
p01= p02, and it states that ��s=0 for all x� �1,��, which is a
trivial result. The two load cases p01� p02 and p01� p02 demon-
strate qualitatively different physical behavior. Indeed, for the first
case, Fig. 2�a�, the numerical values show ��s�0. This means
that the pore space becomes bigger, �� f �0, where � f is the po-
rosity, corresponding to a dilatation. For the second case,
��s�0 for all x� �1,��, implying that the pore space becomes
smaller, �� f �0, corresponding to a compaction. As a function of
x, this behavior is monotonous; i.e., the dilatation and compac-
tion, respectively, decrease with increasing x and seem to ap-
proach zero as x→�.

When varying p01 parametrically from p01=1.8 MPa� p02 in
steps �p01=5.4 MPa until p01=34.2 MPa� p02, the graphs analo-
gous to those of Fig. 2 are as shown in Fig. 3. Evidently, the
maximum value of the dilatation/compaction occurs at the cylin-
der wall, and it increases until increasing the difference
�p01− p02�. Moreover, as �p01− p02� increases, the boundary layer
with appreciable values of the dilatation/compaction thickens.
Thus, the larger the difference �p01− p02� are, the less localized the
reactions to this difference will be. This behavior is evidently
consistent with the identically vanishing solution of the apparent
density, which is reached at p01= p02. An estimate of the boundary
layer thickness �the thickness � of the boundary layer is the dis-
tance from the cylinder wall at which the derivative of ��s be-
comes vanishing� has been determined computationally and is
summarized in Fig. 4.

The preceding results may equally be explained somewhat dif-
ferently. To this end, consider a representative elementary volume
�REV� comprising idealistically of four solid quadrants and a
fluid sphere in the middle with connections to the REV sides �Fig.
5�. When p01� p02 �Fig. 5�a��, the dilatation is associated with an
increase of the fluid volume that is filled by fluid injection from
the neighboring elements or the cavern fluid. However, the true
solid density and therefore the solid volume in the REV remain
the same. The pressure of the solid—essentially the negative trace
of the solid stress—is positive, a compression. Thus, the change
of the apparent density of the solid is negative ��s�0. The effect
of the fluid via its seepage flow is to enlarge the porosity,

Table 1. Values of Parameters Used in Computation of Results: E and
��Young’s Modulus and Poisson’s Ratio of Solid Matrix; �̂s

0 and
�̂ f

0�Densities of Solid and Fluid Constituent in Reference Configuration;
�s

0 and � f
0�Volume Fractions. In the Reference Configuration, the

Mixture is Saturated

Constitutive parameters
Geometrical and referential

state properties

E=200 MPa �̂s
0=1 ,850 Kg/m3

�=0.33 �̂ f
0=1 ,300 Kg/m3

� f f =1.64 106 Nm4/Kg2 �s
0=0.97

Cs=Cf � f
0=0.03

�s
0= �̂s

0�s
0=1 ,794.5 Kg/m3

� f
0= �̂ f

0� f
0=39 Kg/m3
�� f �0, because fluid is injected.
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When p01� p02 � Fig. 5�b��, the compaction is achieved by a
reduction of the pore space, �� f �0, in the REV, and fluid is
squeezed out. The solid stress now is under tension, but the true
solid density does not change so that ��s�0.

In both cases this behavior is the result of seepage flow and
effects of the fluid rather than deformation effects in the solid
component within the REV.

Accompanied with the changes in ��s are also changes in the
fluid pressure, �pf. Fig. 6 shows graphs for �pf / p01 against x for
the same conditions as Fig. 2. For p01� p02 �Fig. 6�a��, the per-
turbation in the fluid pressure is largest at the cylinder wall, and it
decreases monotonically to a nonzero value as x→�. Alterna-
tively, for p01� p02 �Fig. 6�b��, the perturbation pressure takes its
minimum value at the cylinder wall and approaches a large
asymptotic value as x→�. In both cases typical boundary layer
effects are seen.

This behavior, too, can be envisaged by sketches of typical
REVs. We start from a reference configuration of the solid–fluid
mixture, of which the pore structure is characterized by a positive
or a negative porosity gradient when the confining state of stress
satisfies the condition p01� p02 �Fig. 7�b�� or p01� p02 �Fig.
7�d��, respectively. This kind of equilibrium configuration for the
fluid-saturated rock salt can be achieved, for instance, as the ul-
timate fate of a transient creep process tending to stabilize after a
suitable length of time �Cristescu and Hunsche 1998� �see, e.g.,
the transition from Figs. 7�a and c� to Figs. 7�b and d��; local
creep deformations enhance the convergence of the solid within
the REV and consequently the closure of the pores. The smaller
the confining pressure, the more relevant this effect is; for this
reason, we can appreciate a positive or negative gradient of po-
rosity in the reference configuration when p01� p02 or p01� p02,
respectively. This hypothesis, endowed with the assumption of
uniform apparent densities of the solid and fluid constituent in the
initial equilibrium configuration, evidently implies the true densi-
ties �̂a

0=�a
0 /�a

0 �a=s , f� not to be uniform with r.
The deformation of the considered reference configuration is

indeed consistent with the aforementioned results regarding the
fluid pressure �pf due to a positive �p01. As we are dealing with

Fig. 4. Scaled boundary layer thickness � /a plotted against the
scaled initial stress difference for p02=18 MPa and p01 parametrically
varying from p01=1.8 MPa� p02 in steps �p01=5.4 MPa until
p01=34.2 MPa� p02. For �p01− p02�→0, the thickness, of the bound-
ary layer tends to zero � /a→0.
a linear elastic model, the positive pressure �p01, applied on the
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en p01
boundary of the cavity, is likely to imply an injection of fluid in
the connected pores of the salt matrix.

Bearing in mind the previous results on the solid density pro-
files, let us try to discuss what happens to porosity when incom-
pressible small deformations of the solid constituent ���̂s=0� take
place; apparently, the following conditions have to be fulfilled:

��s = ���̂s�s� = ��̂s�s
0 + �̂s

0��s = − �̂s
0�� f �46�

���s = ����̂s�s� = − ���̂s
0�� f� = − ���̂s

0��� f − �̂s
0��� f �47�

Because the porosity in each point X of the mixture corresponds
to the ratio between the fluid volume in the REV �Vf� at X and the

Fig. 5. Representative elementary volume �REV� with solid and fluid
and in the present configuration �right�: �a� shows behavior when p01�
thus yields an increase of the pore space; and �b� shows behavior wh

Fig. 6. Variation of the normalized fluid pressure �pf / p02 �calculated

constructed: �a� for the dilatation case, p01� p02; and �b� for the compactio
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volume of the REV �V� itself, the following allusive chain of
equalities can be established:

�� f = ��Vf

V
	 =

�Vf

V0
−

Vf
0

V0
2�V =

�Vf

V0
− � f

0�V

V0
�48�

���� f� = ���Vf

V0
	 − ��� f

0�V

V0
	

= ���Vf

V0
	 − � f

0���V

V0
	 − �� f

0�V

V0
�49�

where �� f =� f −� f
0, i.e., the difference between the current and the

onnected with neighboring cells� in the reference configuration �left�
the REV expands by fluid injection rather than solid deformation and
� p02: the REV contracts and fluid is squeezed out

p01=1 MPa� plotted against x for the same conditions as Fig. 3 was
�interc
p02:
for �

n case, p01� p02. The typical boundary layer behavior is seen.
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reference porosity. Consider incompressible small deformations
of the solid constituent ���̂s=0�; the variation of the fluid volume
in the REV consequently provides the condition

0 = ��̂s = −
�̂s

0

Vs
0�Vs ⇒ �V = �Vf �50�

which implies, because of Eqs. �48� and �49�

�� f = �1 − � f
0�

�V

V0
�51�

���� f� = �1 − � f
0����V

V0
	 − �� f

0�V

V0
�52�

For p01� p02, the reference porosity gradient is positive
��� f

0�0�; moreover, the dilatation of the REV ���s�0, say,
�� f �0� progressively decreases ����s�0� when r→�. Incom-
pressible small deformations of the solid constituent imply, ac-
cording to Eq. �47�, the variation of porosity to decrease with r,
say, ���� f��0, as ��̂s

0=�s
0 / ��s

0�2�� f
0�0 �see Fig. 7�a and c��.

When the internal confining pressure is smaller than the external
one, dilatancy occurs, and this effect progressively reduces going
away from the cavern wall. As the behavior of the apparent den-
sity of the solid is essentially triggered by the change in volume
of the REVs, the inequalities �V /V0�0 and ���V /V0��0 must
hold true, and therefore �Vf /V0�0 and ���Vf /V0��0, because
of Eq. �50�. Thus, the macroscopic behavior described in Fig. 2�a�
is consistent with the microinterpretation given by Eq. �52�.

On the other hand, when p01� p02, the reference porosity gra-
dient is negative ��� f

0�0�; moreover, compaction of the REV
���s�0, say, �� f �0� progressively decreases ����s�0� as r
tends to infinity. Incompressible small deformations of the solid
constituent ���̂s=0� require, according to Eq. �47�, the following
condition to hold true:

��� f

��� f�
�

�� f
0

1 − � f
0 , �� f

0/�1 − � f
0� � 0 �53�

which does not univocally determine the sign of ��� f. As the
behavior of the apparent density of the solid is essentially trig-

Fig. 7. Rows of representative elementary volumes from the cavern w
with uniform solids and fluids fraction. When p01 and p02 are applied
an inhomogeneous distribution of the pore space. For �b� p01� p02, t
it decreases. This corresponds to a fluid pressure change �pf that is d
current configuration panel� and increasing �when starting from �c�
respectively, with x.
gered by the change in volume of the REVs, the inequalities
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�V /V0�0 ��Vf /V0�0� and ���V /V0��0����Vf /V0��0� must
hold true; these conditions are really consistent with the previous
remarks on the sign of the gradient of porosity, according to
Eq. �52�.

As the mean pressure of the fluid pf can be essentially charac-
terized, via a “naive” micro–macro identification, by the product
p� f, where p indicates the porewater pressure, the variation of the
fluid pressure �pf will be

�pf = p0�� f + �p� f
0 �54�

The pressure of the fluid at the micro level is essentially con-
stant ��p=��p0+�p�=0�. When p01� p02, the injection of a
small amount of fluid mass into the cavern implies ��pf �0 �see
Fig. 6�a��, and consequently

��� f � −
�p

p0
�� f

0 � 0 �55�

which is consistent with Eq. �52�; on the other hand, when
p01� p02, the injection of the same amount of fluid into the cavern
implies ��pf �0 �see Fig. 6�b��, and consequently

��� f � −
�p

p0
�� f

0 � 0 �56�

which is consistent with Eq. �53�.

Conclusion

In this paper, an analysis of the deformational behavior of the

ough to infinity. The first row shows them before any load is applied
the left and right, respectively, the difference in p01 and p02 induces
osity increases with distance from the cavern wall; for �d� p01� p02,
ng �when starting from �a� the reference configuration toward �b� the
eference configuration toward �d� the current configuration panel�,
all thr
from

he por
ecreasi

the r
solid–fluid surrounding ground of a fluid filled cavern was pre-
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sented, when this material is subjected to a confining isotropic
stress p02 from infinity and a different pressure p01 from the cir-
cular cavern wall. Both constituents are treated as elastic, but the
linear law takes the prestress that is established by the external
pressures p01 and p02 into account. The model is set up only to
generate radial dependencies of the process variables when the
cavern pressure is changed from p01 to p01+�p01, where, owing
to linearity, it suffices to analyze �p01=1.

The results show that the solid density change, ��s, associated
with �p01=1, as a function of the radial distance from the cavern
is a dilatation �compaction� if p01� p02 �p01� p02� �Fig. 2�, with
the maximum modulus arising at the cavern wall and quickly
tapering off, thus giving rise to a boundary layer of pore space
opening �or closure� close to the cavern wall. This nontrivial di-
latancy is solely due to the state of prestress, and it collapses
when p01= p02 and when ��s=0 for r�a.

We note that the parametric analysis which has been devel-
oped represents a first step toward the study of the behavior of
salt caverns, in particular when the internal pressure is greater
than the lithostatic one. We noticed that the dilatancy phenom-
enon, induced by the injection of a liquid mass into the cavern,
can occur, in the elastic regime, if the internal pressure is smaller
than the external one. On the other hand, when the initial pressure
of the cavern is greater than the external one, compaction is de-
tected in the elastic regime. Apparently, dilatancy phenomena can
also occur when reaching these pressures inside the cavern once
the yield limit of the salt had been surpassed, but this is a well-
known issue. We prove that, in order to avoid dilatancy, it is not
sufficient to keep the internal pressure below the lithostatic limit
but also the conditions to assure an elastic regime have to be
investigated.

Our analysis has obviously been restrictive in several respects
and ought to be extended. First, the state of prestress does not
contain shear stresses and may thus overlook a significant state of
stress arising in practical applications. For instance, at the far-end
boundaries, the vertical and horizontal confining pressures would
differ from one another and, thus, induce a combination of an
isotropic pressure plus a pure shear. Its analysis will be rather
complicated. Second, the solutions of the linearly perturbed prob-
lem have not been analyzed with regard to their stability. More
specifically, depending upon the initial state of stress, the per-
turbed solution may be linearly stable or unstable. Delineating the
ranges of these stabilities �instabilities� is practically significant.

After the generalizations and improvements just delineated, it
will also become possible to cope with the problem of formulat-
ing and applying a pore-plasticity model to describe more pre-
cisely the behavior of the disturbed rock zone around cavities.
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Appendix.

The constitutive Eqs. �10�–�12�, together with the internal energy
constitutive relation Eq. �19�, are specialized bearing in mind the
axisymmetric assumption of the deformation of the mixture; as in
cylindrical coordinates, if the two in-plane components of the

displacement ur and u� depend only on r, we have
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Ts =
�� f

�0
Ts

0 − 	s
0�tr Hs�Ts

0 +
1

2
�Ts

0Hs
T + HsTs

0T�

+
1

2
�WsTs

0 − Ts
0Ws� + C�Hs� + �� fKsfI �57�

pf = �� f�1 + 	 f
0� + � f

0� f f��� f + � f
0�Ksf − 	s

0� f�tr Hs �58�

ms = − 	 f
0��Ts

0 · Hs� + 	s
0� f���� f� �59�

These last yield the following formulas for the divergence of the
solid stress tensor and the gradient of the fluid pressure:

div Ts = Ts
0� 1

�0
���� f� − 	s

0��tr Hs�� +
1

2
��Ts

0�Hs
T +

1

2
Ts

0 div Hs
T

+
1

2
��Hs�Ts

0 +
1

2
��Ws�Ts

0 +
1

2
Ts

0 div Ws + div C�Hs�

+ ���� f�Ksf �60�

�pf = �� f�1 + 	 f
0� + � f

0� f f����� f� + � f
0�Ksf − 	s

0� f���tr Hs�

�61�

Eqs. �60� and �61�, endowed with the following representation of
the displacement gradient Hs, assumed to depend just on r:

Hs = ur,rer � er + u�,rer � e� −
1

r
u�e� � er +

1

r
ure� � e� �62�

imply the field Eqs. �29�–�31�, once the radial and the azimuthal
components of Eq. �4� as well as Eq. �5� are taken into account.
Note that we adopt the following rule for the tensor product
�a � b�u= �a ·u�b.

Boundary conditions Eqs. �32� and �33� are then achieved,
starting from the external potential 
ext �Eq. �23�� and its partial
derivatives �Eq. �15�� with respect to the solid and fluid apparent
densities, by replacing them into Eqs. �16� and �17�.
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