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Abstract

Electric vibration absorbers made of distributed piezoelectric devices for the control of beam vibrations
are studied. The absorbers are obtained by interconnecting an array of piezoelectric transducers uniformly
distributed on a beam with different modular electric networks. Five different topologies are considered
and their damping performance is analysed and compared. Their optimal parameters are found by
adopting a criterion for critical damping of %k-waves: the parameters are suitably chosen to have the
quickest temporal vibration decay for a single wave number %k: The analysis is based on homogenized
models of the modular piezo-electromechanical systems, i.e. they are regarded as continuous systems by
assuming that the number of modules per unit length is high enough with respect to the considered wave
numbers. Calling %k -absorbers the corresponding optimal absorbers, we show that: (i) %k-waves are damped
in %k-absorbers with an optimal decay time which is independent of the absorber interconnecting topology,
while it depends only on the piezoelectric coupling coefficient; (ii) the efficiency of %k-absorbers depends
significantly on the absorber interconnecting topology for k different from %k; (iii) one of the proposed
absorbers (which is made of a fourth-order electric transmission line with a second-order electric
dissipation) equally performs for all the wave numbers and accomplishes an effective multi-modal damping
for the mechanically forced response; (iv) the optimal values of the electric parameters differently depend
on the number n of used circuit modules for different interconnecting topologies and, in particular, the
optimal inductance per module needed in a fourth-order electric transmission line is proportional 1=n3:
r 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Passive vibration control can be achieved by coupling a mechanical structure S to an auxiliary
dissipative system S0 by means of an appropriate transduction device T : Once the properties of T
are given, a proper design of the auxiliary system S0 allows enhancement of the energy exchange
between S and S0 and the energy dissipation in S0 by exploiting an internal resonance
phenomenon in ðS;T ;S0Þ: In the technical literature the additional system S0 is called dynamic

vibration absorber. For example, the flexural vibrations of an Euler beam can be controlled by
connecting it to a proper spring–mass–damper system (see [1]). The same effect can be achieved by
bonding on the beam a piezoelectric transducer shunted to a resistor and an inductor, obtaining
the so-called resonant shunted piezoelectric transducer (see [2–4]). Indeed, the resistor and the
inductor, together with the capacitance of the piezoelectric transducer, form an RLC circuit
piezoelectrically coupled to a vibration mode of the beam. An efficient electrical dissipation of the
mechanical vibration energy can be achieved thanks to the present technology of piezoelectric
materials, which offer the possibility of producing transducers able to efficiently convert
mechanical into electrical energy (and vice versa).

The vibration control of a continuum system S; like a beam or a plate, obtained by a one-degree-
of-freedom vibration absorber S0 and a localized single transduction device T ; implies several
drawbacks. Indeed, in this case S0 can be tuned to one vibration mode of S only, and the energy
exchange between S and S0 is effective in a narrow frequency band (unimodal damping).
Moreover, the problem of the optimal positioning of the transduction device for each particular
geometrical and dynamic condition arises. In addition, since the energy flow between S and S0 is
concentrated in a small space region, the single transducer can be overstressed. Some variations to
the single resonant shunted piezoelectric transducer were studied to overcome some of these
drawbacks. In [3] the optimal spatial placement of several resonant shunted piezoelectric
transducers, each one tuned to damp a different vibration mode, is studied. Other authors (see e.g.
[5]) propose to shunt a single piezoelectric transducer with a multi-degree-of-freedom electric
network, resonating at more than one frequency, in order to efficiently couple the absorber to
multiple mechanical modes.

An alternative approach suggests to couple the continuum system S to a distributed auxiliary
system S0 with distributed transduction devices. In this case we call S0 distributed vibration
absorber. In [6–8], it is proposed to use distributed piezoelectric transducers to couple mechanical
structures to distributed electric networks. In this way it is possible to synthesize an
electromechanical medium, the damping properties of which are controlled by variation of
electric parameters. In particular, it is shown that, when mechanical structures like bars, beams or
plates are coupled with electric systems possessing analogous dynamic properties (e.g. dispersion
relations), an efficient wideband electromechanical energy exchange is obtained. For example, if an
array of piezoelectric transducers bonded on a bar is interconnected by floating inductors, all the
vibration modes of the bar can be optimally coupled with those of a second-order electric
transmission line. In [9] the problem of synthesizing electric networks providing a multi-modal
energy exchange with beams and plates is addressed and some solutions are proposed. More
recently, the idea of distributed passive control was investigated in [10], where wave propagation
in a periodic electromechanical medium consisting of a beam with an array of resonant
independently shunted piezoelectric transducers is studied. In [11] it is proposed to embed
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piezoelectric fibres in a resistive epoxy matrix to obtain a highly dissipative electromechanical
material. The mathematical problem of continuum modelling periodic media including
piezoelectric transducers and electronic circuits is tackled in [12].

The construction of the piezoelectric devices described above presents a technical problem: due
to the capacitance values of the piezoelectric transducers, electric networks resonating in the band
of the lower structural eigenfrequencies require high-value inductors (up to thousands of Henry).
For this reason, a completely passive realization of these devices is not conceivable and electronic
active filters simulating inductive impedances must be employed, thus implicating important
consequences. On one hand, the use of electronic circuits allows the realization of the required
electric networks by light and small integrated devices which can be embedded into the structure;
moreover, the properties of those electronic circuits can be easily controlled by external
commands and adaptive piezoelectromechanical structures can be conceived (see e.g. [13,14]). On
the other hand, the electronic circuits require an external power supply and, although only a low
power is needed, the advantages of a completely passive control device are partially lost.

In this paper, we exploit the idea of distributed piezoelectric transduction for the vibration
control of beams by means of dissipative electric networks. We analyse and compare the optimal
damping performance achievable by interconnecting an array of piezoelectric transducers through
different circuit topologies. The circuit topologies are synthesized in order to obtain, together with
the piezoelectric transducers, electric networks emulating the behaviour of dynamic vibration
absorbers with assigned equations of motion. The whole analysis is based on one-dimensional
continuum models of the modular electromechanical systems.

The exposure is organized as follows. In Section 2, the electromechanical systems are briefly
presented. In Section 3, the corresponding mathematical models are derived. We start by
presenting a micro-model of the basic module of a modular system consisting of a beam and an
array of piezoelectric transducers with non-local electric interactions. Hence, a macro-
homogenized model of that system is introduced. The corresponding constitutive properties are
deduced by assuming a mapping between the micro- and macro-kinematics and the equivalence of
the expended powers. The set of partial differential equations describing the systems, composed of
the beam and one of the five electric vibration absorbers, is obtained by particular choices of the
constitutive parameters. In Section 4, for each interconnecting topology, the dynamics of the
resulting electromechanical structures is studied and the electric parameters for an optimal
damping of %k-waves (i.e. waves with a fixed wave number %k) are found. Hence, we analyse the
damping performance for wave numbers k differing from the value %k for which the absorbers were
designed. Finally, we compare the behaviour of the five different circuit configurations (which are
obtained by inserting resistors and inductors in different circuit branches). As a numerical
example, we study the vibration damping of a rectangular cross-section aluminium beam on
which pairs of piezoelectric transducers are bonded, aiming at a preliminary design of
experimental prototypes of the proposed devices.

2. Description of considered electromechanical systems

A pair of piezoelectric transducers in bimorph configuration (Fig. 1) provides a coupling between
the flexural vibrations of the beam and the dynamics of a proper electric circuit. As an extension, a
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modular piezo-electro mechanical (PEM) beam like the one in Fig. 2 provides an
electromechanical medium in which the beam vibrations are coupled with a distributed electric
network. The general module of the PEM beam is composed of an elastic beam element,
piezoelectric transducers, inductances and resistances as shown in Fig. 3. Each cell is electrically
interacting with the nearest and the next-to-nearest neighbours through a parallel RL impedance
(the electric network corresponds to an electric lattice with next-to-nearest neighbour interactions,
as defined in [16]). In such a system the equivalent capacitances of the piezoelectric transducers
together with the interconnecting RL network form an electric waveguide which is piezo-
electrically coupled to the beam oscillations. For dynamic phenomena characterized by
sufficiently long wavelengths, the modular system can be modelled as a micro-structured
electromechanical continuum, the constitutive properties of which are controlled by acting on
electric parameters. With this approach the lumped electric network is modelled as a continuous
system and the dynamics of the whole PEM beam is described by a set of two coupled dif-
ferential equations. If an Euler model is accepted, the beam flexural vibrations are governed by a
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Fig. 1. Three-layered beam element with piezoelectric transducers in bimorph configuration: cross-section. The upper

and lower piezoelectric transducers consist of layers of thickness-polarized piezoelectric ceramic with electroded upper

and lower surfaces. The electrodes of the two layers are interconnected in parallel and in counter phase in order to

couple the applied voltage to the beam bending (and vice versa).

Fig. 2. Generic modular PEM beam.
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fourth-order differential equation of the type (here and henceforth &0 ¼ @=@x; ’& ¼ @=@t)

U IVðX ; tÞ þ
1

c2b

.UðX ; tÞ ¼ 0; ð1Þ

where UðX ; tÞ is the transverse displacement of the beam axis at the point labelled by the abscissa
X and cb is the speed of the free bending waves. In the following, we show that suitable choices of
the electric parameters of the circuit scheme in Fig. 3 lead to systems in which the beam vibrations
(1) are piezoelectrically coupled to the electric networks characterized by the following
homogenized evolution equations for the electric flux-linkage C (the electric flux-linkage is
defined as the time primitive of the electric potential):
ðZ; ZÞ-network: zeroth-order network with zeroth-order dissipation,

.CðX ; tÞ þ d0 ’CðX ; tÞ þ b0CðX ; tÞ ¼ 0: ð2aÞ

ðS; ZÞ-network: second-order network with zeroth-order dissipation,

.CðX ; tÞ þ d0 ’CðX ; tÞ � b2C
00ðX ; tÞ ¼ 0: ð2bÞ

ðS; SÞ-network: second-order network with second-order dissipation,

.CðX ; tÞ � d2 ’C00ðX ; tÞ � b2C
00ðX ; tÞ ¼ 0: ð2cÞ

ðF; ZÞ-network: fourth-order network with zeroth-order dissipation,

.CðX ; tÞ þ d0 ’CðX ; tÞ þ b4C
IVðX ; tÞ ¼ 0: ð2dÞ

ðF; SÞ-network: fourth-order network with second-order dissipation,

.CðX ; tÞ � d2 ’C00ðX ; tÞ þ b4C
IVðX ; tÞ ¼ 0: ð2eÞ

The ð�; �Þ-network nomenclature above refers to the order of spatial derivatives appearing in the
third and second term of the left-hand side of the equations of motion (2). For example, the ðF; SÞ-
network is characterized by a fourth-order spatial derivative on C and a second-order spatial
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derivative on ’C ðZ � 0th;� 2nd F � 4thÞ: The lumped electric network modelled by Eqs. (2) are
reported explicitly in Fig. 4. The related PEM beams in which mechanical and electrical
oscillations are piezoelectrically coupled are obtained by replacing the capacitances with
piezoelectric transducers uniformly distributed along the beam. In the following, after that
continuum models of the electromechanical systems are derived, we study the electromechanical
coupling between the mechanical beam and the five electric networks (2). By regarding the latter
as electric absorbers for the beam vibrations, optimal damping and tuning parameters are found
and the corresponding damping performances are compared.

The correspondence between the lumped electric networks in Fig. 4 and the equations of
motion (2) is obtained by assuming an approximation method based on a centred finite difference
scheme. If different discretization methods are used, different lumped electric networks governed
by the same equations (2) can be found. The circuital topologies in Fig. 4 require negative
inductors for the fourth-order networks ðF; ZÞ and ðF; SÞ: These negative inductors must be
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synthesized by means of active electronic circuits (see [9] for further details). An alternative
solution for the synthesis of the fourth-order transmission lines is presented in [17], where the use
of negative inductors is avoided (similar synthesis problems were studied to find electric analogs
for mechanical systems in order to perform analog computing [15]).

3. Mathematical modelling

In this section homogenized equations of motion for the modular PEM beam in Fig. 2 are
derived. We introduce two mathematical descriptions of such a system:

(a) A micro-model, which regards the system as an axially non-homogeneous layered piezoelectric
beam coupled to a lumped electric network.

(b) A macro-model, which regards the system as an electromechanical micro-structured
continuum the constitutive properties of which are determined by those of the basic module.

The micro-model describes the system dynamics by a partial differential equation coupled to a
set of ordinary differential equations, while the macro-model furnishes a system of two coupled
PDEs. In the following sections, only the homogenized equations of motion of the macro-model
are considered for the dynamic analysis. The description at micro-level is presented because it is
necessary to rationally deduce the macro-constitutive properties. To this aim, the micro–macro-
identification method in virtual powers is adopted [18]. This method starts from the weak
formulation of evolutionary problems based on D’Alembert principle of virtual powers (for its
modern presentation see [19,20]). In this approach, a kinematical description of the system is
assumed, and then the model is expressed by means of virtual power linear functionals. They
associate—once a state of the system is fixed—each admissible virtual velocity field to the scalar
quantities representing the corresponding powers expended by applied dynamic actions. A weak

form of the balance equations of a given system is directly derived by imposing the equality
between external and internal powers for each admissible virtual velocity field. Under suitable
regularity conditions, the weak balance equations can be proven to be equivalent to a set of
differential equations, which are their strong counterpart.

The identification method is based on the following procedure:

(1) The kinematics of micro- and macro-models is specified and admissible micro- and macro-
velocity fields are introduced.

(2) A kinematical map is chosen and a precise micro-state is associated to each macro-
kinematical state.

(3) An expression for expended powers at the micro-level is postulated in terms of admissible test
micro-velocity fields: the use of the kinematical map allows the definition of macro-
generalized forces and the derivation of macro-balance and macro-constitutive equations in
terms of the micro-ones.

Obviously, the efficiency of the macro-model in approximating the micro-one relies on the
choice of the kinematical map. In the present paper, instead of attempting to rigorously
determine the conditions under which the kinematical map is reliable, we simply develop some
heuristic arguments. In particular, we assume as kinematical map a local expansion of the
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micro-kinematics in terms of the macro-one, which is valid when the ratio between the basic
module length lb and the characteristic length l of the considered phenomena is small. For further
details about the adopted method, we refer to [18,21].

3.1. Kinematics

Let us consider a PEM beam composed of nm modules of length lb (Fig. 3). We denote by A the
beam axis and by Ai the part of the beam axis in the ith module.

In the micro-model the kinematical state of the system is specified by means of the transverse
displacement field

u :A	 R-R; ð3Þ

and the set of nm nodal flux-linkages

ch :R-R; h ¼ 1;y; nm: ð4Þ

In the homogenized model the kinematical state is specified by the macro-scalar fields

U :A	 R-R; ð5aÞ

C :A	 R-R; ð5bÞ

representing the homogenized transverse displacement field and flux-linkage, respectively. At
macro-level, the system is an electromechanical beam which, at each axial point X ; has the micro-
structure shown in Fig. 3: the part Ai of the beam axis and the corresponding circuitry should be
regarded as an infinitesimal neighbourhood of the generic point X : By locating the generic point
inAi by a micro-coordinate xA½�lb=2; lb=2�; we assume that the micro-state of the neighbourhood
Ai of the point X is given as a function of the macro-kinematical fields through the following
expansions:

uðx; tÞ ¼ UðX ; tÞ þ U 0ðX ; tÞxþ U 00ðX ; tÞ
x2

2
; ð6aÞ

ci71ðtÞ ¼ CðX ; tÞ7C0ðX ; tÞlb þC00ðX ; tÞ
l2b
2
; ð6bÞ

ciðtÞ ¼ CðX ; tÞ: ð6cÞ

The relations above can be regarded as a local (around the point X ) kinematical map between the
micro- and macro-models. This map assumes that lb=l is sufficiently small. Here and henceforth,
we denote by the upper-case letters the macro-quantities, by lower-case letters the micro-ones.

3.2. Micro-model

Once the micro-kinematical descriptors (3) and (4) are introduced, the micro-model of the
system is obtained by specifying the internal and external virtual power functionals per
module. We denote by ’u� :Ai-R and f ’c�h ARg the generalized virtual velocities acting as test
functions and we assume the following expression for the internal (PintðtÞ) and external (PextðtÞÞ
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virtual powers:

PintðtÞ ¼ wi;0ðtÞ ’c
�
i þ wi;1ðtÞð ’c

�
iþ1 � ’c�i Þ þ wi;2ðtÞð ’c

�
iþ1 � ’c�i�1Þ þ

Z
Ai

mðx; tÞ ’u�
00
ðxÞ dx; ð7aÞ

PextðtÞ ¼
Z
Ai

qðx; tÞ ’u�ðxÞ dx: ð7bÞ

The first three terms of PintðtÞ are electric contributions due to the virtual power spent by the
currents fwi;0ðtÞ; wi;1ðtÞ; wi;2ðtÞg on the potential differences f ’c�i ; ’c

�
iþ1 � ’c�i ; ’c

�
iþ1 � ’c�i�1g (refer to

Fig. 3 for naming). The fourth term is the mechanical contribution due to the power spent by the
bending moment mðx; tÞ on the curvature velocity ’u�

00
ðxÞ: The bending moment and the electric

currents are determined by the following micro-constitutive relations:

mðx; tÞ ¼ gmmu00ðx; tÞ þ ’ciðtÞ
Z
Ai

gmeðxÞ dx; ð8aÞ

wi;0ðtÞ ¼ T0ðciðtÞÞ �
Z
Ai

gmeðxÞ ’u00ðx; tÞ dxþ .ciðtÞ
Z
Ai

geeðxÞ dx; ð8bÞ

wi;1ðtÞ ¼ T1ðciþ1ðtÞ � ciðtÞÞ; ð8cÞ

wi;2ðtÞ ¼ T2ðciþ1ðtÞ � ci�1ðtÞÞ; ð8dÞ

where

Thð�Þ :¼
1

rH

@ð�Þ
@t

þ
1

Lh

ð�Þ; h ¼ 0; 1; 2 ð9Þ

express the elementary constitutive relations of the RL parallel impedances and gmm; gme and gee

are beam constitutive coefficients representing flexural stiffness, electromechanical coupling and
electric capacitance per unit of line, respectively. When dynamic phenomena are considered, the
basic inertia effects are modelled by accounting for a charge per unit of line given by

qðx; tÞ ¼ �sðxÞ .uðx; tÞ: ð10Þ

The power functionals (7) and the constitutive equations (8a), (8b) and (10) assume an
equivalent single layer Euler model for the layered piezoelectric beam and a constant distribution
of the electric field inside each piezoelectric transducer. The specified beam model is deduced from
a 3D Cauchy continuum description by assuming:

(i) uniaxial stress state both in the piezoelectric and elastic layers (i.e. the only non-vanishing
stress component of the 3D Cauchy stress tensor is the axial normal stress),

(ii) perfect bonding conditions between the different layers and
(iii) purely extensional membranal behaviour of the piezoelectric layers.

In this way, the constitutive coefficients ðgmm;gee;gmeÞ appearing in Eq. (8) are expressed as a
function of geometric and material properties of the 3D model as follows (see [22] for further
details)

gmmðxÞ ¼ Ybwbh3
b=12þ 2Y E

p wphph2
cPðxÞ; ð11aÞ
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gmeðxÞ ¼ �2d31Y E
p hcwpPðxÞ; ð11bÞ

geeðxÞ ¼ 2PðxÞeS
33wp=hp; ð11cÞ

sðxÞ ¼ rbwbhb þ 2rpwphpPðxÞ: ð11dÞ

In the expressions above, Yb is the Young modulus of the elastic layer, Y E
p the Young modulus

of the piezoelectric layer for null electric field, d31 the charge piezoelectric coupling coefficient, eS
33

the dielectric constant of the piezoelectric material for null mechanical deformation, rb and rp the
mass densities of the elastic and piezoelectric layers, hb and hp their thicknesses, wb and wp the
respective widths. Finally, hc ¼ ðhb þ hpÞ=2 is the distance between the mid-planes of the
piezoelectric and elastic layers. The function PðxÞ is defined to describe the discontinuities
introduced by the piezoelectric transducers in the constitutive equations: its value is 1 in the axial
region where the piezoelectric transducers are present, 0 everywhere else.

The following points deserve a comment:

* The presented model uses a completely linearized theory.
* In the electric constitutive equations (8b)–(8d) for the electric currents fwi;0ðtÞ; wi;1ðtÞ; wi;2ðtÞg; the

terms given through Thð�Þ are the trivial constitutive equations for the two terminal networks
consisting of a parallel connection of an inductor and a resistor. The terms dependent on .ciðtÞ
and ’u00ðx; tÞ are related to the electric and coupling properties of the piezoelectric layers,
respectively: the former is associated to the equivalent electric capacitance, the latter models
the electromechanical coupling by an equivalent current source controlled by the beam
deformation velocity. In the same fashion, in the mechanical constitutive equations (8a) we can
distinguish between the standard purely mechanical contribution gmmu00ðx; tÞ and the term due
the piezoelectric coupling. The latter adds to the constitutive equation for the bending moment
a contribution proportional to the potential difference ’ciðtÞ:

* The errors introduced by accounting barely for the extensional behaviour of the piezoelectric
layers are acceptable if hp5hb:

* The second terms in expressions (11) for gmmðxÞ and sðxÞ model additional stiffness and mass
per unit length due to the piezoelectric layers.

* The assumption of uniaxial stress state both in the piezoelectric and elastic layers, although
standard, is a crude approximation of the actual stress distribution in the three-dimensional
body. In particular, it is possible to show that it causes relevant errors in the estimation of the
piezoelectric equivalent capacitance and, as a consequence (see the following sections), on the
estimation of the values of the inductors and resistors which are required for an optimal
vibration damping. In the present context, we keep this assumption in order to get qualitative
results and simple symbolic expressions for the constitutive coefficients. However, the analysis
of this problem deserves future investigation.

The interested reader can refer to [23–25] for generality about piezoelectric materials and to
[26] for further details and references about models of laminated piezoelectric beams.
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3.3. Macro-model

Once the macro–micro-kinematical map (6) is prescribed, we define the power densities per unit
length of the macro-model as the average of the corresponding micro-quantities over a module.
Hence, by introducing Eq. (6) into Eq. (7), the following expressions for the internal and external
power densities are found:

%PintðX ; tÞ ¼ MðX ; tÞ ’U�00
ðX Þ þ U0ðX ; tÞ ’C�ðX Þ þ U1ðX ; tÞ ’C�0

ðX Þ þ U2ðX ; tÞ ’C�00
ðX Þ; ð12aÞ

%PextðX ; tÞ ¼ BðX ; tÞ ’U�ðX Þ þ B1ðX ; tÞ ’U�0
ðX Þ þ B2ðX ; tÞ ’U�00

ðX Þ ð12bÞ

and the following macro-constitutive relations are derived from Eqs. (8) and (10):

MðX ; tÞ ¼ %gmmU 00ðX ; tÞ þ %gme
’CðX ; tÞ; ð13aÞ

BðX ; tÞ ¼ � %s .UðX ; tÞ; ð13bÞ

U0ðX ; tÞ ¼
1

lb
T0ðCðX ; tÞÞ þ %gee

.CðX ; tÞ � %gme
’U 00ðX ; tÞ; ð13cÞ

U1ðX ; tÞ ¼ lbðT1 þ 4T2ÞðC0ðX ; tÞÞ þ
l2b
2
T1ðC00ðX ; tÞÞ; ð13dÞ

U2ðX ; tÞ ¼
l2b
2
T1ðC0ðX ; tÞÞ þ

l3b
4
T1ðC00ðX ; tÞÞ; ð13eÞ

where

%gmm ¼
1

lb

Z
Ai

gmmðxÞ dx ¼
Ybwbh3

p

12
þ 2WY E

p h2
chpwp; ð14aÞ

%gme ¼
1

lb

Z
Ai

gmeðxÞ dx ¼ �2Wd31Y E
p hcwp; ð14bÞ

%gee ¼
1

lb

Z
Ai

geeðxÞ dx ¼ 2WeS
33wp=hp; ð14cÞ

%s ¼
1

lb

Z
Ai

sðxÞ dx ¼ rbwbhb þ 2Wrpwphp: ð14dÞ

The longitudinal covering factor W :¼ hp=hb is used. It is defined as the ratio between the length lp
of the piezoelectric transducers and the length lb of a beam element. The first term in %PintðX ; tÞ
represents the mechanical power density due to an homogenized curvature virtual velocity
’U�00

ðX Þ: The other terms are electrical contributions in which f ’C�ðX Þ; ’C�0
ðX Þ; ’C�00

ðX Þg are
generalized potential differences and fU0ðX ; tÞ;U1ðX ; tÞ;U2ðX ; tÞg are generalized currents
appearing in the homogenized model of the electromechanical system. The external power
density %PextðX ; tÞ accounts for the macro-inertia effects arising from those at the micro-level
through the kinematical map (6). In what follows, the higher-order inertial forces B1ðX ; tÞ and
B2ðX ; tÞ; which are related to the rotation and curvature velocities of each beam module, are
neglected by assuming that lb=l is sufficiently small.
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Finally, a weak form of the balance equations in the macro-model is given by imposing that the
following power balance holds for all the admissible test functions f ’U�; ’C�g:Z

A

ðMðX ; tÞ ’U�00
ðX Þ þ U0ðX ; tÞ ’C�ðX Þ þ U1ðX ; tÞ ’C�0

ðX Þ þ U2ðX ; tÞ ’C�00
ðX ÞÞ dX

¼
Z
A

BðX ; tÞ ’U�ðX Þ dX : ð15Þ

The corresponding strong-form balance equations in A are

M 00ðX ; tÞ � BðX ; tÞ ¼ 0; ð16aÞ

U2
00ðX ; tÞ � U1

0ðX ; tÞ þ U0ðX ; tÞ ¼ 0: ð16bÞ

Only the boundary conditions verifying the following relations for each admissible kinematical
field are consistent with the power balance (15):

½MðX ; tÞ ’U�0
ðX Þ � M 0ðX ; tÞ ’UðX Þ�@A ¼ 0; ð17aÞ

½U2ðX ; tÞ ’C�0
ðX Þ � U2

0ðX ; tÞ ’C�ðX Þ þ U1ðX ; tÞ ’C�ðX Þ�@A ¼ 0: ð17bÞ

The substitution of the macro-constitutive equations (13) into the balance equations (16) allows
for the derivation of the following homogenized equations of motion for the PEM beam:

%gmmU IV þ %gme
’C00 þ %s .U ¼ 0; ð18aÞ

l3b
4
T1ðCIVÞ � lbðT1 þ 4T2ÞðC00Þ þ

1

lb
T0ðCÞ þ %gee

.C� %gme
’U00 ¼ 0: ð18bÞ

It is convenient to write down the expanded version of system (18) in non-dimensional matrix
form by introducing the state vector

sðX ; tÞ ¼ fUðX ; tÞ;CðX ; tÞgt; ð19Þ

in which the non-dimensional mechanical and electrical fields are collected (the dimensionless
variables are denoted with the same letters of the dimensional ones). System (18) is rewritten as
follows:

.sðX ; tÞ þDð1Þ’sðX ; tÞ þDð0ÞsðX ; tÞ ¼ 0; ð20Þ

where D1 and D0 are space-differential operators. If the following scaling time and electric flux-
linkage are chosen

t0 ¼ X 2
0

ffiffiffiffiffiffiffiffi
%r

%gmm

r
; C0 ¼

ffiffiffiffiffiffi
%r
%gee

r
U0 ð21Þ

then,

Dð1Þ ¼
0 g @2

@X 2

�g @2

@X 2 d0 � d2 @2

@X 2 þ d4 @4

@X 4

" #
; Dð0Þ ¼

@4

@X 4 0

0 b0 � b2
@2

@X 2 þ b4
@4

@X 4

" #
; ð22Þ
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where the following sets of non-dimensional tuning ðb0; b2;b4Þ and damping ðd0; d2; d4Þ parameters
are defined

b0 ¼
1

L0
ncb; b2 ¼

1

L1
þ

4

L2

� �
cb

n
; b4 ¼

1

4L1

cb

n3
;

d0 ¼
1

R0
ncd; d2 ¼

1

R1
þ

4

R2

� �
cd

n
; d4 ¼

1

4R1

cd

n3
ð23Þ

with

cb ¼
%s

%gee %gmm

X 3
0 ; cd ¼

1

%gee

ffiffiffiffiffiffiffiffi
%s

%gmm

r
X0: ð24Þ

The coupling parameter g is given by

g ¼
%gmeffiffiffiffiffiffiffiffiffiffiffiffiffiffi
%gmm %gee

p : ð25Þ

The number of modules n in a characteristic length X0 is introduced as

n ¼
X0

lb
: ð26Þ

Thus, once the mechanical properties are fixed, all the parameters (23) are expressed as a
function of the number of modules per unit length n; the inductances ðL0;L1;L2Þ; and the
resistances ðR0;R1;R2Þ (see Fig. 3). The scaling variables (21) were chosen in order to impose
equal to the unity the coefficient of U IV in the mechanical equation and to maintain the skew
symmetry in the electromechanical (gyroscopic-type) coupling.

The equations of motion (20) refer to the circuit topology described in Fig. 2. We report in
Table 1 how the circuit parameters ðR0;R1;R2;L0;L1;L2Þ can be chosen in order to synthesize
PEM beams in which the electric evolution is governed (as far as a homogenized model is
concerned) by each one of the differential equations (2). It this way we indirectly show also that
every PDE in list (2) can be recognized as the evolution equation for the corresponding circuit in
Fig. 5 (an infinite value for an electric inductance or resistance is equivalent to an open circuit
condition between the corresponding terminals). We explicitly remark that, when the beam is
coupled with one of the distributed electric vibration absorbers (2), only one among the three
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Table 1

Electric parameters in order to obtain the five distributed vibration absorbers from the generic network topology

Network ðZ; ZÞ ðS; ZÞ ðS; SÞ ðF; ZÞ ðF; SÞ

L0 L N N N N

L1 N N N L L

L2 N L L �4L �4L

R0 R R N R N

R1 N N N N N

R2 N N R N R
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tuning parameters ðb0; b2;b4Þ and one among the three damping parameters ðd0; d2; d4Þ is not
vanishing, as it is ruled by Table 2.

4. Electromechanical dynamics

In the previous section, the evolution equations for homogenized models of the PEM beams
were derived. In the present section, the dependence of their dynamic properties on the electric
parameters is analysed. To this end, the temporal decay of k-waves (i.e. solutions in the form of
electromechanical waves characterized by a single real wave number k) evolving in infinite PEM
beams is studied. For the five absorbers, the optimal electric parameters to damp a k-wave are
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Fig. 5. Characteristic decay time function Toptðk; 1Þ for the five network configurations.

Table 2

Non-vanishing tuning and damping parameters for the five distributed vibration absorbers

Network ðZ; ZÞ ðS; ZÞ ðS; SÞ ðF; ZÞ ðF; SÞ

Tuning b0 b2 b2 b4 b4

Damping d0 d0 d2 d0 d2
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found and the corresponding damping performances are compared. An application to the case of
a simply supported beam is presented.

4.1. k-waves solutions

The evolution equations of the five PEM beams are in form (20), where sðX ; tÞ is the vector-
valued function describing the local, instantaneous electromechanical state of the system. Let us
look for the temporal evolution of solutions skðX ; tÞ in the form

skðX ; tÞ ¼ sðtÞeikX ; ð27Þ

where in sðtÞ only the temporal dependence is left. We call a solution of this form a k-wave, which
is a particular standing wave as defined by Courant and Hilbert [28]. The analysis of k-waves is
relevant because, by means of a Fourier transform (or series), the general solution to a dynamic
problem for a infinite (or finite) beam can be written as the superposition of standing waves, each
one with a fixed wave number. We do not reserve any physical meaning to the term standing wave,
and it is simply used to denote solutions in the form of (27).

The substitution of the waveform solution (27) into the equations of motion (20) leads to the
following system of two second-order ordinary differential equations for the temporal evolution
sðtÞ of a k-wave:

.sðtÞ þ D
ð1Þ
k
’sðtÞ þ D

ð0Þ
k sðtÞ ¼ 0; ð28Þ
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where D
ð1Þ
k ;Dð0Þ

k are real algebraic operators since only even order spatial derivatives appear in D
ð1Þ
k

and D
ð0Þ
k : For the general system in Fig. 2

D
ð0Þ
k ¼

k4 0

0 b0 þ b2k2 þ b4k4

" #
; D

ð1Þ
k ¼

0 �gk2

gk2 d0 þ d2k2 þ d4k4

" #
: ð29Þ

System (28) can be conveniently rewritten as a system of four first-order ordinary differential
equations with constant coefficients, as follows:

’yðtÞ ¼ AkyðtÞ ð30Þ

with

yðtÞ ¼
sðtÞ
’sðtÞ

( )
; Ak ¼

02 I2

�D
ð0Þ
k �D

ð1Þ
k

" #
; ð31Þ

where 02; I2 denote the zero and identity 2	 2 matrices, respectively. The subscript k on Ak

underlines that system (30) is written for the temporal evolution of k-waves. For the system in
Fig. 2:

Ak ¼

0 0 1 0

0 0 0 1

�k4 0 0 gk2

0 �bðkÞ �gk2 �dðkÞ

2
6664

3
7775; ð32Þ

where bðkÞ and dðkÞ are defined by

bðkÞ :¼ b0 þ k2b2 þ k4b4; ð33aÞ

dðkÞ :¼ d0 þ k2d2 þ k4d4 ð33bÞ

and they can be regarded as equivalent tuning and damping parameters, respectively. The
characteristic polynomial of Ak is

m4 þ dðkÞm3 þ ðbðkÞ þ k4ð1þ g2ÞÞm2 þ k4dðkÞmþ k4bðkÞ ¼ 0: ð34Þ

The solution of Eq. (30), starting from a generic initial condition

y0 ¼
sð0Þ
’sð0Þ

( )
; ð35Þ

is given by

yðtÞ ¼ eAkty0: ð36Þ

In order to discuss the qualitative properties of k-waves of form (27), we give a deep insight into
Eq. (36) by recalling the fundamental features of the solution of a linear system of autonomous
differential equations and discussing how they are related to the spectrum s of Ak:

In general, the spectrum s; collecting the eigenvalues of the real operator Ak is composed of p

real eigenvalues fm1;y;mpg and q complex conjugate pairs fmpþ1;m
�
pþ1;y;mpþq; m

�
pþqg; with p þ

2q ¼ 4: It can be shown that, since we are dealing with dissipative systems, all the eigenvalues
must have a non-positive real part. Let us associate to each real eigenvalue mm and to each
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complex pair fmn; m
�
n g the real generalized eigenspaces Nm;Nn; respectively (the real eigenspace

Nn associated to the complex conjugate pair fmn;m
�
n g can be defined as the vectorial space

generated by the set of vector fReðen
1Þ;�Imðen

1Þ;y;Reðen
kÞ;�Imðen

kÞg; where fen
1;y; en

kg are
the (complex) generalized eigenvectors associated to mn). Hence, let us recall the following
properties (see [27] for complete proofs). We denote by V the (four-dimensional) vector space in
which y lies:

(1) The vector space V can be decomposed as direct sum of the generalized eigenspaces

fN1;y;Np;Npþ1;y;Npþqg: ð37Þ

(2) Solution (36) can be decomposed into

yðtÞ ¼
Xpþq

j¼1
yð jÞðtÞ; ð38Þ

where each yð jÞðtÞ has values in N j and it is the (unique) solution starting from the initial data

y
ð jÞ
0 ; projection of y0 on the corresponding generalized eigenspace Nj:

(3) For each j there exists an ljX0 such that yð jÞðtÞ is a linear combination of terms of the
form

tleReðmjÞt ð39Þ

for j ¼ 1;y; p and of the form

tleReðmjÞt sinðImðmjÞÞ; t
leReðmjÞt cosðImðmjÞÞ ð40Þ

for j ¼ p þ 1;y; p þ q; where in general 0plpljpdimðNjÞ and lj ¼ 0 if and only if Nj �
kerðAk � mjIÞ:

It is easy now to show that, for each j ¼ 1;y; p þ q; for each y0 a constant Mjðy0ÞX0 exists
such that, for each t > 0;

yð jÞðtÞpMje
�Rj t; ð41Þ

where

Rj :¼ �ReðmjÞ: ð42Þ

Hence, the following important properties are verified for the temporal evolution sðtÞ of a
standing wave with a wave number k > 0:

(1) For each j ¼ 1;y; p þ q; the projection of sðtÞ in the eigenspace Nj can be characterized by
the exponential decay rate Rj defined by relationship (42). Equivalently, we can define the
characteristic damping time as tj :¼ 1=Rj: For complex conjugate eigenvalues, we can
introduce also a damping ratio

zi :¼ �
ReðmjÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ReðmjÞ
2 þ ImðmjÞ

2
q : ð43Þ
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(2) The whole solution sðtÞ can be characterized by an exponential decay rate

R :¼ min
j¼1;y;pþq

ð�ReðmjÞÞ ð44Þ

and by a damping time

t :¼ max
j¼1;y;pþq

ðtjÞ ¼ 1=R: ð45Þ

Moreover, it is possible to define the following system damping ratio:

z :¼ min
j¼1;y;pþq

ðzjÞ: ð46Þ

All the quantities above refer to a fixed wave number k and, when necessary, the explicit
functional dependence on k is underlined. The proposed characterization for the temporal
evolution sðtÞ is based only on the system eigenvalues and is completely independent of the initial
data y0:

4.2. Optimal damping of k-waves

The optimization and performance estimation of the five distributed vibration absorbers which
are characterized by the equations of motion (2a)–(2e) is subdivided into three steps: (i) definition
of a performance index (or a cost function) which is related to the damping properties of the
system; (ii) maximization of the performance index for a single wave number %k in order to obtain
the optimal design of the electric passive controller (the so obtained vibration absorbers are
called %k-absorbers); and (iii) analysis and comparison of the damping performances of the five
%k-absorbers for wave numbers different from %k:
The distributed array of piezoelectric transducers and the interconnecting electric network were

conceived to obtain a structural modification of a beam aimed at passive vibration control. We do
not attempt to find any optimal interconnecting topology, but, for a single wave number, we state
a general optimization problem for the system in Fig. 2, in order to find the optimal equivalent
tuning and damping parameters bðkÞ and dðkÞ defined by Eqs. (33). The optimal tuning and
damping parameters for each one of the five circuit topologies in Fig. 4 are found as particular
cases since, for each topology, only one b among the three tuning parameters ðb0;b2; b4Þ and one d
among the three damping parameters ðd0; d2; d4Þ is not vanishing, as shown in Table 2.

4.2.1. Performance index

We optimize the system performance by minimizing the temporal decay obtained for a standing
electromechanical wave in form (27) with a fixed wave number %k: Since the temporal evolution of a
standing wave is determined by the system of the two second-order differential equations (28), we
can note that, once the wave number is fixed to %k; the optimal design of the electric part of that
system is equivalent to the optimization of a dissipative one-degree-of-freedom dynamic vibration
absorber gyroscopically coupled to a harmonic oscillator. Hence, the optimization techniques
which were developed for that application can be fruitfully revisited. In particular, we follow a
pole-placement method analog to the one that was adopted by Hagood and Von Flotow [2] for the
optimization of a resonant shunted piezoelectric transducer.
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We choose as performance index PI the system decay rate which was introduced by definition
(44). Let us underline its functional dependence on the wave number k; the tuning parameter b
and damping parameter d by writing

PIðk; b; dÞ :¼ Rðk; b; dÞ ¼ min
j¼1;y;4

ð�Reðmjðk;b; dÞÞÞ: ð47Þ

We assume that d; bX0: Definition (47) implies the assumption of a pole-placement criterion for
the system optimization. Indeed, it completely characterizes the system performance by the
location of the eigenvalues on the complex plane. The optimization of a given network implies the
maximization of index (47) with respect to (b; d) when the wave number k is fixed and equal to %k:

4.2.2. Optimization
Finding analytical expressions for the parameters b and d which maximize the performance

index (47) is not a trivial task. Indeed, the evaluation of PI requires the determination of the roots
of the fourth-order characteristic polynomial (34). Although analytical formulae are available,
they are cumbersome and do not allow a easy quantitative analysis. On the other hand, a
numerical optimization of index (47) with respect to b and d for a single wave number is always
possible, but it does not allow for an analytical definition of the relations expressing the optimal
parameters. We proceed by employing a useful property of index (47): it is maximum when the
four eigenvalues of Ak appear in the form of two coincident complex conjugate pairs. This
property is widely exploited in the literature (see e.g. [2,4,9], where the optimization of dynamic
vibration absorbers is carried out by means of a pole-placement method). The characteristic
polynomial of the system governing the temporal evolution of a %k-wave is given by expression (34)
for k- %k: A fourth-order polynomial %pðmÞ; the roots of which are two coincident complex
conjugate pairs, has the form

%pðmÞ ¼ ðm� ða þ ibÞÞ2ðm� ða � ibÞÞ2; ð48Þ

where a and b are real numbers specifying the location of the roots. In order to impose that
pðmÞ ¼ %pðmÞ for each m; the following non-linear system in ða; b; dopt;boptÞ must be satisfied:

doptð %kÞ ¼ �4a; ð49aÞ

boptð %kÞ þ %k4 þ %k4g2 ¼ ð6a2 þ 2b2Þ; ð49bÞ

%k4doptð %kÞ ¼ �4aða2 þ b2Þ; ð49cÞ

%k4boptð %kÞ ¼ ða2 þ b2Þ2: ð49dÞ

It is possible to show that, for go2; the only admissible (b; d > 0 and a; bARÞ solution of (49)
furnishes the optimal equivalent parameters

boptð %kÞ ¼ %k4; doptð %kÞ ¼ 2g %k2: ð50Þ

The corresponding location of the eigenvalues is expressed by

a ¼ �
1

2
%k2g; b ¼ %k2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

g2

4

s
: ð51Þ
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The associated damping ratio is

z ¼ �
affiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ b2
p ¼

g
2
: ð52Þ

This optimal damping ratio depends only on the non-dimensional coupling parameter g and it is
the same for the five network configurations.

By recalling definitions (33) for bðkÞ and dðkÞ and that, for each network configuration only one
among ðb0; b2;b4Þ and one among ðd0; d2; d4Þ is not vanishing, the optimal tuning and damping
parameters ðbi; djÞ of the ith order network with a jth order dissipation can be found from
expressions (50) of the optimal equivalent parameters ðbopt; doptÞ: The corresponding expressions
are reported in Table 3. The optimal inductors and resistors as a function of the number of
modules in a characteristic length n and of the design value of the wave number %k are immediately
found through definitions (23). The corresponding expressions are reported in Table 4. Looking at
their expressions for the different circuit topologies, we can note the following points:

(1) Dependence on location: The optimal values of the resistors and the inductors in each module
are the same if they are located in the same circuit branch (e.g. the optimal value of the ground
resistor R0ð %kÞ is the same in the ðZ; ZÞ; ðS; ZÞ and ðF; ZÞ networks, and the optimal value of the line
inductor L2ð %kÞ is the same in the ðS; ZÞ and ðS; SÞ networks).

(2) Dependence on wave number: If the resistors and the inductors are properly located, their
optimal values are independent of the wave number %k: Indeed, the optimal resistors are
independent of the wave number if the corresponding dissipation term appears in Eqs. (20) with a
second-order spatial derivative (ðS; SÞ and ðF; SÞ networks); the optimal inductors are independent
of the wave number if they are located so as to lead to fourth-order networks (ðF; ZÞ and ðF; SÞ).
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Table 4

Optimal inductors and resistors in each module for the five distributed vibration absorbers

Network Optimal inductors Optimal resistors

ðZ; ZÞ L
opt
0 ð %kÞ ¼ cb

%k4 n R
opt
0 ð %kÞ ¼ cd

2g %k2 n

ðS; ZÞ L
opt
2 ð %kÞ ¼ 4cb

%k2
1
n

R
opt
0 ð %kÞ ¼ cd

2g %k2 n

ðS; SÞ L
opt
2 ð %kÞ ¼ 4cb

%k2
1
n

R
opt
2 ð %kÞ ¼ 2cd

g
1
n

ðF; ZÞ L
opt
1 ð %kÞ ¼ cb

4
1
n3 L

opt
2 ð %kÞ ¼ �cb

1
n3 R

opt
0 ð %kÞ ¼ cd

2g %k2 n

ðF; SÞ L
opt
1 ð %kÞ ¼ cb

4
1
n3 L

opt
2 ð %kÞ ¼ �cb

1
n3 R

opt
2 ð %kÞ ¼ 2cd

g
1
n

Table 3

Optimal tuning and damping parameters for the five distributed vibration absorbers

Network ðZ; ZÞ ðS; ZÞ ðS; SÞ ðF; ZÞ ðF; SÞ

Optimal tuning bopt
0 ð %kÞ ¼ %k4 bopt

2 ð %kÞ ¼ %k2 bopt
2 ð %kÞ ¼ %k2 bopt

4 ð %kÞ ¼ 1 bopt
4 ð %kÞ ¼ 1

Optimal damping dopt0 ð %kÞ ¼ 2g %k2 dopt0 ð %kÞ ¼ 2g %k2 dopt2 ð %kÞ ¼ 2g dopt0 ð %kÞ ¼ 2g %k2 dopt2 ð %kÞ ¼ 2g
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The ðF; SÞ network satisfies both conditions, therefore we expect that such a system can be
optimized for all the wave numbers at the same time (this important result is confirmed by the
plots in Figs. 6 and 7).

(3) Dependence on number of modules: The optimal inductance in each module is proportional to
n in the zeroth-order network, proportional to 1=n in the second-order networks, and
proportional to 1=n3 in the fourth-order networks. Hence, their optimal values can be
significantly decreased in second- and fourth-order networks by increasing the number of
modules per unit of length. This fact can be relevant because the construction of high-value
inductors implies non-trivial technological problems. Moreover, in the network with a second-
order dissipation, the optimal value of the parallel-connected resistances R2 decreases for
increasing n: Also this effect is desirable because the unavoidable parasite resistances of the
electric components imply a technological upper bound on the value of R2:

4.2.3. Performance of optimal systems

Once a system is optimized for a single wave number %k; it is interesting to study the
corresponding damping properties for k-waves which are characterized by wave numbers k

different from %k:
Let us denote with bopt

i ð %kÞ; doptj ð %kÞ the optimal damping and tuning parameters related to a
generic ith order electric network with a jth order dissipation (refer to Eqs. (2a)–(2e)). As it is
evident from Eq. (52) the corresponding optimal damping ratio is independent of the electric
network. In order to point out the different damping performances shown by different distributed
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vibration absorbers, it is useful to define a function, named the characteristic decay time function,
as follows:

Toptðk; %kÞ :¼
1

PIðk; bopt
i ð %kÞ; doptj ð %kÞÞ

: ð53Þ

This furnishes the value of the characteristic (non-dimensional) decay time for a wave number k in
a structure, the electric circuitry of which is optimized for the wave number %k:

The optimal decay time function obtained for %k ¼ k; i.e. the characteristic decay time obtained
by optimizing the system for the current wave number k; can be evaluated explicitly from
relationships (51):

Toptðk; kÞ ¼
2

gk2
: ð54Þ

Expression (54) depends only on the considered wave number and coupling coefficient and, as one
could expect, the longer the wave number, the smaller the decay time. Hence, the same optimal
decay time function may be attained regardless of the circuit topology. On the contrary, we
anticipate that, when ka %k; the performance of the different PEM systems depends significantly
on the chosen circuit topology (see e.g. the plots in the following Figs. 5–7).

Since the optimal decay time function depends on k as governed by Eq. (54), it is convenient to
define the following relative decay time function:

*Toptðk; %kÞ :¼
Toptðk; %kÞ
Toptðk; kÞ

¼
g
2

k2Toptðk; %kÞ: ð55Þ

It can be interesting also to analyse the behaviour of the system damping ratio zðk; %kÞ as a
function of k in a system optimized for the wave number %k: Note that this function is meaningful
only when eigenvalues with non-vanishing imaginary part are present.

4.3. Design of PEM beams

In the present subsection, by considering a numerical example, the optimal electric parameters
are found for a generic wave number %k and the damping performance of the five network
configurations are analysed and compared. Since we are studying the system described by the non-
dimensional differential equations (28), it is always possible to consider %k ¼ 1 (if %kd is the
dimensional value of the wave number %k; it suffices to fix the scaling length X0 ¼ 1= %kd ).

Let us consider a rectangular cross-section aluminium beam on which piezoelectric sheets made
by the piezoelectric material PSI-5H-S4-ENH are bonded. In Table 5, the cross-section and
material properties of the beam and of the piezoelectric sheets are reported. The longitudinal
covering factor W ¼ 0:9 is fixed.

The homogenized material properties, the dimensionless coupling coefficient g and the
constants ðcb; cdÞ can be evaluated from definitions (23), (24) and (25). Their numerical values are
reported in Table 6. The corresponding dimensionless coupling coefficient is g ¼ 0:237: The
associated optimal damping ratio is z ¼ 11:78% (see Eq. (52)) and it is the same for the five
vibration absorbers.
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Once the numerical value of g is known, it is possible to evaluate the decay time functions
Toptðk; 1Þ and *Toptðk; 1Þ by means of Eqs. (53) and (55). The corresponding plots for the five
network configurations are reported in Figs. 5 and 6. In Fig. 7 we show also the dependence on k

of the system damping ratio defined by Eq. (46).
Figs. 6 and 7 show some important results. The system with ðF; SÞ-network attains the optimal

performance for all wave numbers: this means that

*Toptðk; 1Þ :¼
Toptðk; %kÞ
Toptðk; kÞ

¼ 1 ð56Þ

for each k: This result agrees with those presented in Table 4, which shows that the optimal
resistances and inductances are independent of k for the ðF; SÞ-network. Furthermore, ðS; SÞ-
network can appreciably damp free oscillations with k > 1; although the corresponding damping
ratio is much lower than the optimal one which is reached only for k ¼ %k ¼ 1: Also this behaviour
is in accordance with the relations for the optimal resistances and inductances in Table 4. Indeed,
in ðS; SÞ-network the dissipation is always optimal, while the electromechanical resonant energy
exchange is effective only for a narrowband of wave numbers.

It is important to recall that the proposed dynamic analysis is based on the homogenized beam

model of the modular systems. As a consequence the presented results are meaningful only for
wave numbers which are sufficiently small. Roughly speaking, the dimensionless wave number k

must be smaller than (i) the wave number kw ¼ 2p=ðwb=X0Þ corresponding to a wavelength equal
to the beam width (we assume hbowb), (ii) the wave number kl ¼ p=ðlb=X0Þ ¼ np corresponding
to a wavelength equal to twice the longitudinal dimension of a single module. The first limit is an
intrinsic drawback of the assumption of a one-dimensional beam model. The second restriction is
related to the approximation implied by the homogenized model which is based on a second-order
Taylor expansion of the state variables in each module. The latter limitation can also be regarded
as a design relationship. Indeed, if one desires to realize a controller that is effective up to a
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Table 6

Homogenized constitutive parameters

%gmm %gee %gme %s cb cd

19:8 N=m2 6:83	 10�6 F=m 2:76	 10�3 N=m2=V 0:568 kg=m3 4:19	 103X 3
0 H 24:8	 103X0 O

Table 5

Aluminium beam and piezoelectric sheet cross-section dimensions and constitutive parameters

Beam PZT

Width (wb;wp) 40	 10�3 m 36:2	 10�3 m

Thickness (hb; hp) 4:0	 10�3 m 0:267	 10�3 m

Young modulus ðYb;Y E
p Þ 70	 109 N=m2 62	 109 N=m2

Mass density ðrb; rpÞ 2700 kg=m3 7800 kg=m3

Dielectric constant ðeT
33Þ — 3800	 E0 ¼ 3:36	 10�8 F=m

Charge constant (d31) — �320	 10�12 m=V
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dimensionless wave number kmax; then a number of modules per characteristic length

n > nmin ¼
kmax

p
ð57Þ

must be used. The limitation above is a necessary condition only and it does not guarantee the
effectiveness of the system for the wave number kmax:

4.4. Simply supported beam

When a finite length beam is considered, the analysis of the time evolution of standing waves
can be fruitfully applied for giving an analytical expression of the general solution to the
corresponding boundary value problem. Hence, when the proper boundary conditions are
introduced, it is possible to expand the solution of the system of partial differential equations (20)
as a Fourier series of standing waves. For illustrative purposes, we analyse the particular case of a
simply supported PEM beam, which allows a simple study of the electromechanical system. We
denote with ld the beam length and with l the corresponding non-dimensional expression. The
simply supported PEM beam is modelled by the system of partial differential equations (20)
subjected to the mechanical boundary conditions

Uð0; tÞ ¼ Uðl; tÞ ¼ 0; U 00ð0; tÞ ¼ U 00ðl; tÞ ¼ 0: ð58Þ

The choice of the corresponding electric boundary conditions is a design issue and should be
finalized to the enhancement of the electromechanical coupling. The required boundary
conditions are four for the fourth-order networks ðF; ZÞ and ðF; SÞ; two for the second-order
networks ðS; ZÞ and ðS; SÞ and zero for the zeroth-order network ðZ; ZÞ: In correspondence to the
mechanical boundary conditions (58), we assume the electric boundary conditions

Cð0; tÞ ¼ Cðl; tÞ ¼ 0; C00ð0; tÞ ¼ C00ðl; tÞ ¼ 0 ð59Þ

for the fourth-order networks and

Cð0; tÞ ¼ Cðl; tÞ ¼ 0 ð60Þ

for the second-order networks (see also [9,7], respectively). The boundary modules which allow
the realization of an approximate version of the boundary conditions (59) and(60) are reported in
Fig. 8.
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The general solution of equation (20) with the simply supported boundary conditions can be
formally expanded as follows:

sðX ; tÞ ¼
XN
i¼1

siðX ; tÞ ¼
XN
i¼1

siðtÞsin ip
X

l

� �
: ð61Þ

As it can be easily checked, each temporal evolution siðtÞ is independent and is governed by the
system of two ordinary differential equations (28). Hence, the temporal evolution of siðX ; tÞ is the
same as that of a standing wave with a non-dimensional wave number k ¼ ai; with aAR: In
particular, if the scaling length X0 ¼ ld=p is chosen, a ¼ 1:

Each siðtÞ evolves in time like a pair of electromechanical oscillators. As previously described,
the parameters of the electric networks can be optimized only for a single i: The optimal numerical
values and the corresponding damping performance for the ith pair can be directly obtained from
the table, relations (3) and Eq. (53) by replacing k with i: As a numerical example, we consider a
simply supported PEM beam with the geometrical and material properties given in Table 5. We
report in Table 7 the damping ratios which are obtained for the first six mechanical modes when
the distributed vibration absorbers are optimized for the first one ( %k ¼ i ¼ 1). These values can be
also read directly from the plot in Fig. 7. As a reference let us recall that the typical damping ratio
due to internal dissipation for an aluminium beam is 0:1%: As expected, the distributed vibration
absorber ðF; SÞ provides a simultaneous optimal damping of all the vibration modes. A
remarkable multi-modal damping can be obtained also with the ðS; SÞ-network.

The proposed optimization is based on the analysis of the free evolution of the PEM beams.
However, it is relevant also to investigate the behaviour when an external mechanical excitation is
applied. To this end, we consider the frequency response function (FRF) between the beam axis
vertical displacement UðXu; tÞ at point Xu and a concentrated transverse force applied at point Xf :
In Fig. 9, the FRFs obtained with the various vibration absorbers are compared with the FRF
related to the ðF; SÞ-network for Xu ¼ 0:3l and Xu ¼ 0:7l: The scaling time is chosen in order to
have a non-dimensional angular frequency oi ¼ i2: The comments of the previous subsections can
be adapted to the case of forced vibrations. In particular, we explicitly note that:

(1) these results should be interpreted considering that the systems are optimized such to
minimize the characteristic decay time of the first mode during free oscillations;

(2) the FRFs have the same behaviour around o ¼ 1 for all systems, in accordance with the
results shown in Figs. 6–7; and
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Table 7

Characteristic damping ratios for i ¼ 1;y; 6

Network ðZ; ZÞ ð%Þ ðS; ZÞ ð%Þ ðS; SÞ ð%Þ ðF; ZÞ ð%Þ ðF; SÞ ð%Þ

1 11.78 11:78 11:78 11:78 11:78
2 0.33 0:47 1:51 2:91 11:78
3 0.13 0:16 1:19 1:29 11:78
4 0.074 0:08 1:10 0:73 11:78
5 0.047 0:05 1:06 0:46 11:78
6 0.033 0:03 1:04 0:32 11:78
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(3) the ðF; SÞ network optimally reduces the FRF in correspondence to all the PEM beam
resonances; also the ðF; ZÞ network accomplishes a multi-modal tuning between
the mechanical beam and the electric network, but the corresponding electric dissipa-
tion is optimal only for oC1; the ðS; SÞ-network introduces an appreciable damping
at all natural frequencies, although it is optimally tuned only to the first mechanical
mode.

In order to control the oscillations up to a given wave number, the PEM beam must be formed
by a minimum number of modules per unit length, as ruled by relation (57). As a consequence, the
numerical results presented above about the damping achieved for the first six terms of expansion
(61) are not meaningful for less than six modules. In practice, since for acceptable results the
lumped networks must emulate with a sufficient approximation the behaviour of a continuous
system for the first six modes, it is appropriate to design a PEM beam with at least 12 modules. By
assuming n ¼ 12; the optimal inductors and resistors for a beam of length ld ¼ 0:5 m are reported
in Table 8.
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Fig. 9. Mechanical frequency response function for the vibration absorbers optimized to damp the free oscillations of

the first mechanical mode. The response obtained by means of the fourth-order line ðF; SÞ is compared with those related

to the other networks. The plots correspond to the FRF between the transverse displacement at the axial point

Xu ¼ 0:3l and a transverse force applied at the point Xf ¼ 0:7l:
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5. Conclusions

In the present paper we proved that the concept of distributed piezoelectric vibration control is
of interest in technological applications. We considered several electromechanical systems made
of distributed piezoelectric transducers bonded on a beam and interconnected by properly
designed electric networks. These systems were regarded as waveguides supporting electro-
mechanical oscillations. The electric network interconnecting piezoelectric transducers were
designed in order to enhance, by taking advantage of internal resonance effects, the
transformation of mechanical energy into the electric form. In these networks, the mechanical
energy is dissipated in dedicated resistors, which were chosen in order to obtain optimal vibration
decay times. The performance of different circuit topologies for the interconnection of the
piezoelectric transducers were compared and we showed that a passive controller able to
simultaneously optimally damp all the mechanical vibration modes can be obtained.

The main results obtained for the control of the transverse vibrations of a beam are summarized
in the following list.

(i) Every considered topology may be optimized to achieve the optimal damping performance
for a single wave number. This optimal decay time is the same for all the circuit topologies and
depends only on the electromechanical coupling coefficient.

(ii) The performance of the compared circuits optimized for a single wave number varies
significantly when standing waves of different wave numbers are considered.

(iii) If a distributed vibration absorber with proper dynamic properties is considered, its optimal
electric parameters are independent of the wave number. To this purpose, the dissipation term
associated to the resistors must appear in the homogeneous equations with a second-order spatial
derivative, the ‘‘electric stiffness’’ term due to the inductors, with a fourth-order spatial derivative.
Hence, the fourth-order transmission line with second-order dissipation ðF; SÞ supplies the optimal
decay time for all the wave numbers.

(iv) The nominal value of the inductances in each module depends on the number n of modules
(i.e. transducers) per unit length in different ways and this dependence is affected by the chosen
interconnecting circuit topology. The most convenient circuit is again the fourth-order
transmission line: in this case the inductances in each module are proportional to 1=n3: This is
relevant because the lower the inductances are, the easier is their technological construction with
electr(on)ic components.
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Table 8

Optimal inductors and resistors in each module for the simply supported PEM beam

Network Optimal inductors Optimal resistors ðkOÞ

ðZ; ZÞ L
opt
0 ð %kÞ ¼ 66:5 H R

opt
0 ð %kÞ ¼ 32:1

ðS; ZÞ L
opt
2 ð %kÞ ¼ 18:2 H R

opt
0 ð %kÞ ¼ 32:1

ðS; SÞ L
opt
2 ð %kÞ ¼ 18:2 H R

opt
2 ð %kÞ ¼ 8:80

ðF; ZÞ L
opt
1 ð %kÞ ¼ 781 mH; L2ð %kÞ ¼ �312 mH R

opt
0 ð %kÞ ¼ 32:1

ðF; SÞ L
opt
1 ð %kÞ ¼ 781 mH; L2ð %kÞ ¼ �312 mH R

opt
2 ð %kÞ ¼ 8:80
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(v) The piezoelectric controller obtained with the ðF; SÞ network is robust under forcing
frequency shifts, accomplishing a broadband optimal damping. This point was illustrated by
means of a numerical example of a simply supported PEM beam, which may be useful to the
design of a demonstration prototype.

The proposed damping devices can be actually constructed. Although technological aspects
have not been detailed in this paper, it should be noted that the required high or negative
inductances are feasible only using electronic active filters. The technological and theoretical
problems to be solved in this context are related to the synthesis of equivalent electric networks
which are completely passive.
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