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Introduction

We study flexure of a Saint-Venant cylinder whose sections are Bredt-like with constant thickness, as defined
in [1], {2}, [3]. We propose a perturbation series for the shear stress field in terms of a thickness parameter. In
torsion, there is a unique stress flow function (named after Prandtl) for any regular section ([3], [4], [6], [7]).
On the contrary, in flexure of cylinders with bi-connected sections such a flow function cannot be uniquely
determined. To avoid a gauge choice, we use different perturbation methods for mono- and bi-connected
sections. In the last case we introduce a perturbation series directly for shear stress and Helmholtz differential
operators. For both classes of sections the resulting hierarchy of problems for the series terms can be solved.
The perturbation series in the present form does not always converge ([10]); however, it allows for a rational
deduction of many of the engineering formula found in technical textbooks (e.g. Jourawski formula, [6],
(7], {12], [13]). Moreover, the method we propose seems to frame many of the results on thin walled bars
quoted in [12], without the need for introducing internal constraints of Kirchhoff type. This is actually
an interesting result, because we prove that the introduction of such constraints is not necessary a priori:
in fact, our procedure of asymptotic development shows that the solution of Saint-Venant flexure problem
always verifies constraints of Kirchhoff type when the section is thin.

The method presented here supplies: i) an efficient procedure for comparing the order of magnitude, in terms
of the thickness parameter, of the stress field components and resultants; ii) a probably useful method for
finding new results for thick sections considering higher order terms in the perturbation parameter: we show
these results for some sections of technological interest; iii) as examples we consider rectangular and annular
sections, in order to give an estimate of the relative magnitude of the maximum values attained by the stress
components. For instance, an interesting caveat can be obtained: when the radius of curvature is five times
the thickness, the second order maximum tangential stress component amounts to 15% of that given by
Jourawski formula. As a by-product we are able, in the case of mono-connected sections, to estimate the
boundary layer effect of Kelvin type ([11]) in flexure.

We remark that: a) our series supply analytic expressions for shear stress which can be, once regularized, of
some use in technological applications, especially in optimization problems; b) our results open interesting
mathematical problems like those solved by Wheeler and Horgan for the lowest term of shear stress in the
case of mono-connected sections ([1], [2]). All calculation will be performed in absolute notation, for sake of
simplicity; the most important results will also be given in components along an orthonormal basis, to be of
more immediate grasp.

557



558 F. DELL’ISOLA and G.C. RUTA

Geometry of Bredt-like sections

We adopt a section, called Bredt-like in [3], obtained by thickening a plane curve £ (middle line) along its
Frenet normal with constant thickness. The middle line is given in terms of its arc length s:

L:={gePlg—m=nro(s), s €[0,1]}; (1)

m is the centroid of £ and P is the plane including the section. The Frenet basis for the middle line is:
I(5) = 92 =ho(s),  mis) = T =~ wiofs); @
* is Hodge operator in P (7 rotation in the positive orientation of P). The e-Bredt-like section is given by
Do :={y€Ply—m=r(s,z) = ro(s) + zeb xro(s), s €[0,{], z € [-1,1]}. (3)

In (3) z is the coordinate along #rg, § is half the thickness of the section and ¢ is a thickness parameter
playing the role of the perturbation parameter. We regard s, z as rescaled coordinates over D, ([8]).
The field problem for the shear stress t in flexure is written in the form ([5], [6])

divt =Yk -[«(y—b)] inD° (4)

curl t = 2Gvk - (y— o) inD° (5)
t-n=0 ondD (6)

f (t-1)ds = 2Gvk - Ar(br — o). (7)

L=8R

In (4)-(7) Y, G, v are Young’s and shear moduli and Poisson’s ratio, respectively; k describes the linear
variation of the curvature of the axis of the cylinder ([6]); R is the inner Jordan region of £ and its area is
Ar: b and bg are the centroids of D and R, respectively; o is any point in P. Let t,, t, be the solutions of
(4)—~(7) associated to o and o', respectively. The field t, — t, is the solution of a torsion problerh, already
studied in [3]. Because of (3) we obtain

b—o=m—-0— ——|r| ==m—0— ——V. (8)
0

Following Timoshenko [11], we will choose b = o. The resultant of the shear stress field solution of (4)~(7) is
q: (é’/ t DY 3k, Iy @/ [(+rs) ® (+r3)] D, 9)
D D

where rp is the position vector field with respect to the centroid b. Eq. (9), derives from global balance
equations of force and torque on the cylinder. Let us consider an orthonormal basis (e;, e;) along the
directions of the principal axes of inertia of the section; let us also consider a rectangular Cartesian co-
ordinate system with origin b and z and y axes along e;, e2. Then the tensor of inertia defined by Eq. (9)s

s (5 8).

where I, I, are the moments of inertia of the section with respect to the z and y axes, respectively. The

is represented by the matrix

parameter k is given in terms of the components q;, g2 of the resultant shear force by (for instance see [6])

J-! 1
k=- *q:—(-q—z—el—ZI—EZ). (11)

Y Y
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Asymptotic expansions for mono-connected (open) sections

In technical textbooks mono-connected sections are called open, referring to their middle line. It may be
proven that the problem (4)—(7) in this case is equivalent to

A¥ =0 inD° (12)
grad¥ -1 = —145 Alalre @ ry) + B(xry @ *r3)]1}  on D (13)

if t = G{[B(xrs @ 1) — afrpy ® *rb)]% — xgrad ¥}, ¥ is a scalar function defined over the section and
a=1-2v, f =3+ 2v; we use the definition (x ® y)z := (x - z)y. Integration of (13) leads to a Dirichlet
boundary condition to be added to (12). We then consider (12)-(13) in D, with coordinates s, z. We denote
by fi, f2 the restrictions of ¥(s, z,€) to the curves z = —1, z = 1 respectively, assuming, without loss of
generality, ¥(0,0) = 0. Laplace operator becomes a linear differential operator whose coefficients are rational
functions in ¢ ([9]); fi, fo are fifth order polynomials in e. We are so led to assume

U(s,z,6) = Y Wa(s, 2)" (14)

n=0

As a consequence, (12)—(13) become

[ee]
Z {e"+363[—-23x3\11,,,” — 2K¥p oy — zzrca‘Il,,,z + zn‘I!n,,]+
n=0

€"+262 [322K2\I’n,zz + ‘I’n,aa + QZKZ\I,'I,Z]"'
€n+161 [—321{‘1’"‘2; - K"I’n,z]‘Jf'

" [¥n,:2]) }=0 in [0,0] x [-1,1], (15)
Z U,(s,—1)e" = fi(e,s) z= -1, (16)
n=0
Do Ua(s, )" = fale,s)  z=1 (17)

1}
o

n

& is the curvature of £ and the comma means differentiation with respect to the indicated variables. Equating
the first four powers in € in (15)-(17), we obtain

Uo(s,z) = — k -/Os[a(ro ® ro) + B(*ro @ *r¢)]kq ds, (18)

4
¥i(6,2) =207 - [ {als(ro ® rolfo = s(to @ tolol + Als(ero ® srolfo + (L4 50 8 £0) «rul}dst
_zég ‘ I[a(ro®l‘0)*f0+ﬁ*(r°®r°)i‘0][1=0‘ "
V(s 5) =675 {(zz 1) a0l [ s+ falho © ) = (1 20)k0 6 wtollo] +
_ %'[a(l + *T @ *1o) — (o ® f0)1r0's=0+
+/0’{a [“ (o ® Fo)ro - (W) f"] "

i [K(1+t0®to) *To+ Fo + (*"®*r° ;I*‘°® *") i-o] }ds}, (18)
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3 _ P
Usa(s, z) :(L3—2—263§- . {—4w¢ro +8(1 4 v)x? */ ro ds—(1+42v)x* i‘o}+
0

Lk Q(I+V®ro-1f'l‘o®v>*l._0+[77*<V®l‘o+l‘o®v>m

12 3 +

+=0

k [° ) . .
- ZZ/ {%[*(ro ®Io)v — k(v ®rg + rg ® v)re)+
0
- %[(I + Lo ® o) * V + K(*V ® *ro + *rg @ *v)Io + 3ikko) }ds. (20)

Because of the relationship between t and ¥ and taking into account the expression of the gradient operator
in s, z coordinates ([9]), we obtain

: . 1 (1S, 5. .
to=Y (k . */0 rg ds) Iy = —2_6 (m[_yy + QZ—I) ro =: t,0rq, (22)
t =22G6{k-[(1+1/)n*/3 r ds—ur]}i‘ = 26 | Kty — — (’“’”(s)-‘“y(s))]f (23)
1 o [} 0 0 s0 1+v I.z- Ig a0y

tg :G&z{(l - 2% [(1 +v) (fc,, */ ro ds+ 2K r0> + i-oJ ® *ro+
0

2 _ 3 ¥

[BZ ! (2(1 +v)K? */ ro ds — v(kro + *i‘o)> + ?—(1—;—2 / (kro + *%)ds] ® i‘o}k =
0 0
1 v q1y(s) _ g22(s) @ 2 : } :

—s2({,2_1 2, _ @, %2 .
= <z 3) {x ts0 W9 [K( 1, 1, + 1, e] Ireg rg ¢ Fo+

2 o v .
+ 562 { (%ez - %(ﬁ) /0 (Ktro + *T)ds} ro+

st z(s)  q2y(s) 1 92 Q . .
_ 22)82 Kysls0 _ 41 = I . . 24
+(1-2% { 5 K I, + I +2(1+u) e; I Iye2 Lo *To (24)

In the former, S;, Sy are the first moment of area of the portion of the section corresponding to a cut directed

along *rg at the arc length s, with respect to the z and y axes; z(s), y(s) are the parametric equations of
the middle line. Equation (22) is Jourawski formula; note that fOI ro ds = 0 because of the choice of the
centroid as origin of P. We now compare the formal e-series expansions of the right hand sides of equalities
(9)1 and (9)2, whose coefficients we denote c,, d, respectively. As obtained by equality (9)2, the resultant
shear stress is a sixth order polynomial in ¢ whose even coeflicients vanish. On the contrary, if we replace
in (9); the formal expansion for t, in general we obtain a complete power series in €. This is what we call
effect of Kelvin type in flexure (see [11] for Kelvin effect in torsion). We estimate this effect by means of the
difference ¢, — d,, for n = 1, 2, 3. We have, denoting by J;,, the n-th term of J; induced by (3),

I
cp=d; =Y * 25/ (*ro ® *ro)ds} k=Y xJuk, (25)
0
Cy = d2 :0, (26)
4 il
cs—ds = — §G63u]r0 ® *rolok. (27)

The effect appears at first with cg, in relation with t; (order €2): a boundary layer (named edge effect in [8])
arises and its global effect is likely to be given by (27) (note that fol(ni'o + *¥)ds = 0)). Indeed: a) it may
be proven that the ¥,, we have given verify exactly all boundary conditions up to order one in ¢; b) the field
to verifies boundary condition (6) pointwise, t; and t; as a mean over the thickness.
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Asymptotic expansions for bi-connected (closed) sections

The Helmholtz problem (4)-(7) can be turned into Poisson form with Dirichlet boundary conditions once
a particular solution of (4) and (7) is found. Such a solution is not uniquely determined for bi-connected
sections; In order to avoid a gauge choice whose physical meaning is uncertain, we apply a perturbation
method directly to (4)-(7). In s, z coordinates ([9]), equations (4)—(7) become (here 0 ~ {)

€ty s + (1 — zKeb)t, , — €brt, =€8(1 — zre8)Yk - (#ro — zebrg) in [0,] x [—1, 1], (28)
bty — (1 — zreb)t, , + ebrt, =2e6(1 — zxe6)Grk - (xo + zed *¥g) in [0,1] x [-1,1], (29)
t, =0 z==l, (30)

/E t, ds =2Gvk- Ag(br —m) z=0; (31)

in the former t = t,1o + ¢, * Ig; because of (8), b = m. We propose the formal expansion

(o] oo
t:i‘gz t,,.e"+*i‘oz tine”. (32)
n=0 n=0

Substituting (32) into (28)~(31) we obtain a hierarchy of problems for t. Equating first powers in ¢ we have:

to:{y}([/ *l‘ods—-l/(/ l‘odS)dS]+2GARVk.(bR—m)}I.‘0:
0 { L 0 l

_ 1 (1S | ©25: v 2SRz @Sry\ . _ . .
= {”25 ( Lt )t T, )T et (33)
. v (s m(s . .
t1 = 26[Kty0 — 2G(vk - rom)JFo = 26 {rct,o - [‘” I':( ) _ quly( )] } fo, (34)

st . .
to :62{(1 —zz) [f—'—Q—ﬂ +k~(Gro+Y;c*r0m)] *Tot+

2 _
+ <3Z ! (rczt,o +vGk - (krg + *i‘o)>—zk - *1rg + l/ k[ktyo — G(vk -ro)|ds|rg p=
3 3 31, '

1
:(1 — 22)62 {————K“‘ t,o + ‘—2 <q26 - 2‘92) - i‘o — K [——qzy(s) + —qII(S)}} * I"0+

2 I+ \L '], I, I,
322 -1 v ay(s)  gez(s) Q@ [ -
é* 2, - = Zey | -
e (57 [ gy e (42 25) 4 (oo ) ]
1{a 4] o1 2, UK 1y(s)  g22(s) .
+ 3 (Iyel + Ireg) ro + 31‘/; [IC tso 2(1+ ’/) ( Iy — L. ds To. (35)

In the former, Sr., Sr, are the first moment of area of the region R with respect to the z and y axes;
z(s), y(s) are the parametric equations of the middle line with respect to the point m. Equation (33) is
Jourawski formula for closed sections; note that the second term in the right hand side of (33) gives a Bredt
shear stress field for closed sections of constant thickness, once the product vk - (bg — m) is interpreted as
a unit angle of twist. In technical literature (33) is often given in implicit form, as a consequence of the
principle of virtual work.

Once introduced cn, d, with the same meaning as in the previous section we have

ClzdIZY*

1

‘26/ (*ro ® *ro)ds} k=Y *«Jnk, (36)
0

cy =d; =0, 37)

2.4 ' . . .
ca=d3 =Y = {553/ {r(fo ® *ro + *1o ® Fo) + (Fo ® ro)]ds}k =Y *J;3k. (38)
0
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In closed sections the expansions (9);, (9)2 lead to the same results at the first three orders in ¢.

Applications and conclusions

We start considering three sections of particular technological interest (see for instance [6], [7], [12], [13]),

rectangular and semicircular (open) and annular (closed).

Rectangle

We have b = m and zero curvature of the middle line; given an orthonormal basis e, e, for P, it is

r = (s—h)e; + zebe; = 1y = ey, *rp = ey,
where A is half the length of the middle line. Substituting (39) into (22)-(24) we have

2

71 s
to=2 (hs— = e,
‘ IU(S 2)91

_zé(s—h)q_g
T o1l4vwv Ire

)

62 3—-22 q1 2, 42
== () B (1 - 22 By
ts 2(1+U)[u( 3 )Iye1+( )sIIeg

The resultant shear forces and the estimate of Kelvin effect are given by

4
c; =d; :Yg&ha(eg ® el)k =Y +Juk,

¢ = dp =0,
ds =2G6%h(er @ e2)vk = ——gze
c3 3—3 €1 2 —1+V'12 2-

(39)

(40)
(41)

(42)

Eq. (40) gives the Jourawski field ([6], [7], [11], [12], [13]). Eq. (41) implies that when k//e; (q//e1) the

first order correction to Jourawski formula vanishes, which is a known result. On the other hand, if k//e;

eq. (41) gives a nonvanishing correction to Jourawski formula, bilinear in (s — k) and z, result which we

could not find in literature. Eq. (42) supplies the estimate of the second order correction to eq. (40) given

by our perturbation method and gives an analytical expression for the shear stress field arising in flexure of

‘thick’ rectangles. It may be easily proven that, if the material of which the section is made has v = 1/3 (as

it is, in average, for steel, for example), one has:
a. if the stress distribution is equivalent to a force parallel to e,

0.17%, if 6/h =1/10,
2 mar _ 8’ 0.7%, if 6/h=1/5,
tO, maz 6h? - 185%, if 5//1, = 1/3}

4.21%, if 6/h=1/2;

b. if the stress distribution is equivalent to a force parallel to es,

5%, if 8§/h=1/10,
12, mazr —6_ _ 10%, if 6/’1 = 1/5,

i, mar  2h | 16%, if §/h=1/3,
25%, if §/h=1/2.

The difference appearing in eq. (45) vanishes when k//ez (q//e;): Kelvin effect in flexure arises only when

k//e; (qa//ez). We remark that
G(26)3

cg—ds = €3, 7 = vk - (hey);

(46)
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26 is the section thickness. Kelvin effect in torsion is given by (46) when 71 is the unit angle of twist.

Semicircular section
Given an orthonormal basis e;, e for P, eq. (1), with respect to the centre of the circle, is

r = (r — zeb) (cos %el +sin Eez) , sef0,l=m=r], z€[-1,1], (47)

where r is the radius of the middle line. Its centre of position is given by the vector m — o = ZLe;. As there
are no qualitative difference among the fields t,, for this case and for the rectangle, we give only the estimate

of the Kelvin effect at order three in e:
16
cz—ds = gG&ar(ez Q el)I/kA (48)
In this case, the difference in (48) vanishes when k//e; (q//e2) and Kelvin effect in flexure arises only when
k//e2 (q//e1). Again, we remark that

G(26)3
3

26 is the section thickness. Kelvin effect in torsion is given by (49) when ; is the unit angle of twist.

2r
¢z —dz = To€y, 9 = vk- (-;el); (49)

Circular tube
We have b = m and constant curvature of £; with respect to the orthonormal basis e;, es, eq. (1) is

r = (r — z¢6) <cos Ze; +sin ;ez) , sef0l=2nr], z € [-11]; (50)
r

r 1s the radius of the middle circumference, so that k = 1/r. We have the following:

to =r° <q—20()s S _ B f) To, (51)
I, ro I r

2ér [ qo s g1 . Ss\. .
t; = 22 052 — Lgin 2
1 1+V(Ixcosr IySIDT‘)rO‘ (52)

2

b =G5 (1= 18 (sin® — 052 wio - Zoi] (Zeos® — Lgin®) :
2 =G [( z)ﬁ(YIzsmr Ylycosr * I 2Gro Ixcosr Iysmr (53)

These fields are the same as these given by a truncated expansion of the exact analytic solution ([6]). Our
series cannot supply the exact solution with a finite number of iteration steps because the exact solution is
rational in €; on the other hand, we had no need of introducing complex variables and harmonic functions.
Egs. (51)-(53), once integrated along the thickness, give the fields plotted in [12]. As previously made for
the rectangle, assuming v = 1/3 one has:

a. comparing the stress component along rg,

7.5%, if 6/r = 1/10,
tl,mar _ ¢ 15%, if 5/7‘:1/5‘
tO, maz - 7‘(1+I/)_ 25%, if 6/7‘:1/3‘

37.5%, if §/r = 1/2;

b. comparing the stress component along xrg.

0.5%, if 8/r =1/10,
t2, mar _ & 2.0%, if 8/r=1/5,

tl,mar _m— 55%, if 6/7’:1/3,
12.5%, if 6/h=1/2.

The ¢,, dy, are
cp =d; =Y * (27rr36)(e1 ®e+er@e)k =Y xJik, (54)
Cy = dz :0, (55)
cz=dy =Y » (21rr63)(91 Rey—ey®e )k =Y xJsk. (56)
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In
to

Co

this case, the shear stress resultants as obtained by (9); and (9)3 are exactly the same, which is a result
be expected because of the particularly rich symmetry group of the considered section.

mparison with Vlasov theory of thin walled bars

We have proposed a perturbation method that has given us the possibility of finding simple formulee that

provide higher order corrections to the known Jourawski shear stress field, both for mono- and bi-connected

sec

tions of a Saint-Venant cylinder with constant thickness.

We remark that:
a) we have introduced no constraints of Kirchhoff type to obtain our formulee, while in [12] such constraint

is the basis for all the presented results; on the contrary, we have proven that at the first order in ¢
Kirchhoff constraint is automatically satisfied. This fact has a natural and immediate interpretation in
terms of our procedure, because the lowest step of the asymptotic expansion stands for a thin section,
in the ordinary sense attributed to this term in the technical literature. In this case, the result naturally
found by us which needs to be postulated by means of an internal constraint is physically reasonable

and meaningful;

b) the proposed perturbative method allows for a precise analysis of the relative order of magnitude of the

shear stress field in thin walled bars in terms of a thickness parameter of the section; on the contrary,
the analysis developed in [12] leads to the determination of only the first nonzero fields by means of
a procedure involving reactive forces and shell-like models. We have also shown, in some simple but
significant cases from the point of view of technological applications, that our simple formulee provide
nonzero corrections to the Jourawski shear stress field that may be quite relevant when the section
becomes thick. In the literature, only in few cases —e.g. annular and rectangular sections— higher order
corrections can be evaluated considering series expansions, while the expansion method presented here

can be applied for every Bredt-like section.
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