

Seasonal variations in lipid composition of the hydrothermal vent mussel Bathymodiolus azoricus from the Menez Gwen vent field

Ana Colaço, Catarina Prieto, Ana Martins, Miguel Figueiredo, Virginie Lafon, Margarida Monteiro, Narcisa M. Bandarra

▶ To cite this version:

Ana Colaço, Catarina Prieto, Ana Martins, Miguel Figueiredo, Virginie Lafon, et al.. Seasonal variations in lipid composition of the hydrothermal vent mussel Bathymodiolus azoricus from the Menez Gwen vent field. Marine Environmental Research, 2009, 67 (3), pp.146. 10.1016/j.marenvres.2008.12.004. hal-00501989

HAL Id: hal-00501989 https://hal.science/hal-00501989

Submitted on 13 Jul 2010

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Accepted Manuscript

Seasonal variations in lipid composition of the hydrothermal vent mussel Bathymodiolus azoricus from the Menez Gwen vent field

Ana Colaço, Catarina Prieto, Ana Martins, Miguel Figueiredo, Virginie Lafon, Margarida Monteiro, Narcisa M. Bandarra

PII:	S0141-1136(08)00261-4
DOI:	10.1016/j.marenvres.2008.12.004
Reference:	MERE 3310
To appear in:	Marine Environmental Research
Received Date:	16 April 2008
Revised Date:	11 December 2008
Accepted Date:	15 December 2008

Please cite this article as: Colaço, A., Prieto, C., Martins, A., Figueiredo, M., Lafon, V., Monteiro, M., Bandarra, N.M., Seasonal variations in lipid composition of the hydrothermal vent mussel Bathymodiolus azoricus from the Menez Gwen vent field, *Marine Environmental Research* (2008), doi: 10.1016/j.marenvres.2008.12.004

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1	Title:
2	Seasonal variations in lipid composition of the hydrothermal vent mussel Bathymodiolus azoricus
3	from the Menez Gwen vent field
4	
5	
6	Running Head:
7	Seasonal variation lipids vent mussel
8	
9	
10	Authors and addresses:
11	
12	Ana Colaço ^{1*} ; Catarina Prieto ¹ ; Ana Martins ¹ ; Miguel Figueiredo ¹ ; Virginie Lafon ¹ ; Margarida
13	Monteiro ² ; Narcisa M. Bandarra ²
14	
15	1-IMAR - Centro da Universidade dos Açores- Department of Oceanography and Fisheries,
16	Cais de Sta. Cruz 9001-382 Horta, Azores, Portugal.
17	2-INRB/IPIMAR Nutrition Laboratory, Av. Brasília, 1449-006 Lisbon, PORTUGAL
18	* Author to whom correspondence should be addressed acolaco@uac.pt
19	
20	

22 ABSTRACT:

23

24 Specimens of the hydrothermal mussel Bathymodiolus azoricus collected in Menez Gwen 25 hydrothermal vent field (NE Atlantic) during 2002-2003 were examined for feeding patterns 26 variations through three seasons. The fatty acid profile and lipid classes of the mussels were 27 studied, together with the MODIS/AQUA derived near-surface chlorophyll *a* to test the hypothesis 28 that surface productivity might be related to the feeding patterns of this species. The lipid levels 29 showed pronounced seasonal fluctuations with the highest values occurring in January and August. 30 Seasonal variations in lipid classes and fatty acid composition of neutral and polar lipids in the mussels are presented. Differences in the fatty acid profile of lipid classes in different seasons 31 32 suggest that the higher energy requirements in summer and winter were supplied by bacterial biomarkers ω 7 MUFA (monounsaturated fatty acids), whereas ω 6 PUFA (polyunsaturated fatty 33 34 acids) and NMI (nonmethylene-interrupted) fatty acids predominated during the spring. The 35 MODIS/AQUA data show marked seasonal variability and an anomalous peak during January of 36 2003, although this cannot be directly linked to lipid composition variation.

37

38 KEY WORDS: Menez Gwen, *Bathymodiolus azoricus*; seasonality; lipids; fatty acids; biomarkers,
39 hydrothermal activity

40

41

42

43

44

45 1. INTRODUCTION

46 All production in the deep-sea, with the exceptions of the hydrothermal vent environments is 47 fuelled, either directly or indirectly, by the import of organic matter to the bottom (Gage and Tyler, 48 1991), either as particulate matter (the detrital food chain) or by vertical migration (the grazing 49 food chain) (Raymont, 1983). Although primary production by chemosynthetic bacteria at 50 hydrothermal vents constitutes a rich source of organic carbon in the deep-sea, some vent species 51 do not meet all their nutritional requirements solely from this carbon source (Allen et al., 2001). 52 Seasonal variations in surface primary production may be reflected in vent species, particularly in 53 shallow vent fields such as the Menez Gwen (Mid-Atlantic Ridge, 840m), since surface particles 54 are estimated to sink at a rate of about 100 meters per day (Gage and Tyler, 2001). The mussel 55 Bathymodiolus azoricus dominates communities associated with deep-sea hydrothermal vents in the Azores Triple Junction (ATJ) region, at depths ranging from 840 meters at Menez Gwen vent 56 57 field to 2300 meters at Rainbow vent field (Colaço et al., 1998; Desbruyères et al., 2001). This 58 species is known to live in dual symbiosis (with thio- or methanotrophic bacteria on its gills) (Fiala et al. 2002; Duperron et al., 2006), and use the symbionts for nutritional purposes (Pond et al., 59 60 1998; Colaço et al., 2002). The genus Bathymodiolus is considered a "generalist" in the 61 hydrothermal vent habitat, as it is able to take advantage of both suspension-feeding and the production of its endosymbionts (Le Pennec et al., 1984). Some pelagic material has been found in 62 63 the gut of specimens (Colaço, 2001), which shows that this species is able to use the detritus food 64 chain.

Although primary production by chemosynthetic bacteria at hydrothermal vents constitutes a rich source of organic carbon in the deep-sea, some vent species do not meet all their nutritional requirements from this carbon source alone (Allen et al., 2001). The hypothesis that the particle flux from the upper ocean layers can contribute to the carbon uptake by the mussel can be tested

by checking for biomarkers of surface primary producers in the mussel body, such as specific fatty acids. In the Menez Gwen region, marked seasonal variation in near-surface Chl *a* and sea surface temperature is evident from the results of this study. These Chl *a* cycles might be reflected in the lipid composition of the vent mussel, especially in those from the shallowest vent field Menez Gwen, since these are the biomarkers that persist in the pelagic food chain (Daalsgard et al, 2003).

74 Animal diets are usually verified by gut contents and faeces analysis or by behavioural studies. 75 However, these data only provide information on food consumption during a brief window of time, 76 and there may be a discrepancy between the diet ingested and the absorption / incorporation of the 77 different food items into the mussel tissues. Lipids are major sources of metabolic energy (neutral 78 lipids) and essential materials for the formation of cell and tissue membranes (polar lipids). The 79 fatty acid composition of marine organisms reflects to some extent the fatty acid pattern of their food sources (Sargent et al., 1987; Howell et al., 2003) since the FA are destined either for 80 81 oxidation to provide energy (ATP) or for incorporation into phospholipids (Sargent, 1995; Sargent 82 et al, 1995). Diatoms, flagellates, macroalgae and bacteria may be distinguished by their fatty acid 83 composition. Fatty acids as dietary traces in the marine environment help to explore food origins 84 of various marine invertebrates (Howell et al., 2003; Suhr et al., 2003; Laureillard et al., 2004) and 85 the relationships in food webs within communities and marine ecosystems (Kharlamenko et al., 86 1995; Phleger et al., 1999). For example, the fatty acids 18:4\omega3; 20:3\omega3; 22:5\omega3; 22:6\omega3 and 87 phytanic acid are photosynthetic biomarkers (Bergé and Barnathan, 2005). Therefore, comparison 88 of fatty acid profiles among mussels collected at different seasons can be used to gain further 89 information about the feeding habits of this bivalve. In order to acquire a better understanding of 90 the lipid composition of stored and structural fat of this species, this work was carried out during 91 three different seasons to i) investigate seasonal variations in lipid content and compositions, and 92 fatty acid compositions of the mussel B. Azoricus and ii) acquire a better understanding of the role 93 of photosynthesis-derived carbon on mussel nutrition.

94

95 2. MATERIALS AND METHODS

96 2.1 Sampling

97 During the SEAHMA (Seafloor and Sub-Seafloor Hydrothermal Modelling in the Azores Sea) 98 cruise in August 2002, specimens of deep-sea hydrothermal-vent mussels, B. azoricus Von Cosel, 99 Comtet and Krylova, were collected at the Menez Gwen vent field, located at approximately 100 37.51°N and 32.31°W (at 840 m depth), using the French ROV Victor 6000 and the French R/V 101 "L'Atalante". At that time, retrievable cages (Dixon et al., 2001) were moored and filled with 102 mussels (~200 mussels per cage) using the ROV. These were then placed at diffuse venting areas 103 (the natural mussel habitat). These cages were then recovered in January and April 2003 with the 104 Portuguese R/V Arquipelago. Pruski and Dixon, (2003, 2007) showed that the retrievable cages 105 provided a much less stressful collection method than the ROV. The content of the mussel cages 106 was shared with other researchers for various studies. At the time of recovery, three mussel 107 samples from each recovery batch were dissected and soft tissue frozen at -80°C for subsequent 108 laboratory analyses.

109 2.2 Lipid extraction

Total lipids were extracted according to the Bligh and Dyer method (1959) as modified by White et al., (1979). The lipids were then separated into different fractions using solid phase extraction chromatography in silica gel columns (Isolute [®] SPE Columns). Non-polar lipid components were separated with 7.5 ml of diethyl ether-hexane (1:1). The medium polar lipid fraction (mainly glycolipids) was extracted with 7.5 ml of acetone and the high polar lipid fraction (mainly phospholipids) was recovered with 15 ml of methanol. The absolute value of each lipid fraction was obtained by weight after solvent evaporation. The relative percentage of lipid classes (polar

and non polar) and the different polar lipid components were determined by HPLC equipped with
an evaporative light scattering detector (ELSD) using the methodology previously used by
Bandarra et al. (2001).

120 2.3 Fatty acid analyses

Fatty acid methyl esters (FAMEs) were prepared using base-catalysed transesterification with
sodium methoxide 0.5 M solution in anhydrous methanol (2 h at 30 °C), as proposed by Park et al
(2001) and Kramer et al (2002).

124 FAME analyses were performed in a Varian CP 3800 (Walnut Creek, CA, USA) gas 125 chromatograph equipped with an auto sampler and fitted with a flame ionisation detector at an 126 injection temperature of 250°C. The separation was achieved using a capillary column HP-127 INNOWAX (30 m length, 0.25 mm internal diameter and 0.25 µm film thickness) from Agilent (Albertville, MN, USA). Temperature was initially kept at 180°C for 5 minutes. Then, it was raised 128 129 at a rate of 4°C/minute up to 220°C, and maintained at 220°C for 25 minutes with the injector set 130 at 250°C. The split ratio was 100:1 and the measurement was taken using C21:0 as an internal 131 standard. The FAME identification was made by comparison to standards and whenever there was 132 any question about the results, an FA structural verification (see below) was performed. The fatty 133 acid profile was obtained by calculating the relative area percent of the chromatographic peaks 134 using C21:0 fatty acid as internal standard. All analytical determinations were made in triplicate.

135 The concentration of each FAME was reported as mg g⁻¹ dry weight of tissue.

136 2.4 FA structural verification

137 Due to the specific nature of the samples, which can have unusual fatty acids, a derivatization
138 method was used to further verify the mono and polyunsaturated double bond position of the
139 identified FAME. The 4,4-dimethyloxazoline (DMOX) (Fay and Richli. 1991) derivatives were

prepared by re-dissolving in 500 µl of 2-amino-2-methylpropanol (FLUKA) heating overnight at 180°C. After cooling, the reaction mixture was dissolved in 5 ml of dichloromethane and washed twice with distilled water. The dichloromethane solution was dried with Na₂SO₄ and evaporated under a stream of nitrogen flow at room temperature. The residue was dissolved in n-hexane for analysis by gas chromatography–mass spectrometry (GC-MS).

145 The compounds were analysed with a gas chromatograph (Finnigan Trace gas chromatograph 146 ultra) coupled with a mass spectrometer (Finningan Polaris Q mass spectrometer system - Thermo 147 Electron Corporation, MA, USA)). A splitless injection was performed with 1µl of sample. The 148 carrier gas was helium at 10 Psi. A 25 m x 0.25-mm id x 0.25 µm HP-5[®] (Hewlett-Packard) 149 column was used. The GC-MS conditions for DMOX derivatives elution were as follows: started 150 with 2 minutes at 90°C, followed by a 5°C min⁻¹ ramp up to 280°C over 20 minutes.

151 2.5 Chlorophyll *a* concentration and surface temperature measurements derived from 152 satellite images

153 Monthly MODIS/AQUA-derived near-surface chlorophyll a (Chl a) and sea surface temperature 154 (SST) images were obtained for a region above the mid-Atlantic Ridge at approximately 37°N, 155 31°W (Menez Gwen). MODIS spatial resolution is 1.1 km resolution. Chlorophyll a and SST 156 images were obtained using the Ocean Chlorophyll 3 bands OC3M (O'Reilly et al. 2000) and 157 long-wave SST (LW-SST) (Franz, 2006) algorithms, respectively. Regular daily MODIS images 158 were obtained from the Ocean Colour Level 1/2 browser (OceanColor Web 2006). These images 159 are mapped (Level2-map) with SeaDAS, and a master file was created specifically for the Menez 160 Gwen region. The download and mapping process is automated within the HTRP (High Resolution 161 Picture Transmission) station in the Azores HAZO- system developed by Figueiredo et al. (2004).

MODIS data was used to study the monthly and inter-annual surface pigment and temperaturevariability at Menez Gwen between 2002 and 2008. Only Chl *a* values below 0.05 and above 7 mg

- $164 m^{-3}$ were excluded from further analysis due to pixel contamination from clouds, aerosols and/or
- 165 suspended sediment. Only SST values above 10°C and below 30°C were used to avoid "false" low
- 166 water temperature values due to pixel cloud contamination.
- 167

168 **2.6 Statistical analysis**

- 169 The Kruskall Wallis test (Zar, 1999) was applied to test for seasonal differences in polar and
- 170 neutral lipid composition of *B. azoricus*. A significance level was established at 0.05.
- 171 A principal component analysis (PCA) (Legendre and Legendre, 1998) was performed using the
- 172 different FA profiles as descriptors for different individuals in order to determine whether the polar
- 173 lipids and neutral lipids differ in specific seasons and between seasons.
- 174

175 3. RESULTS

- 176
- 177 3.1 Lipid classes

The total lipid content of *B. azoricus* varied significantly (Kruskal-Wallis test: H (3, 3, 3) =7.20 p =0.027) with the season (Table 1). The lowest levels were found in spring, while in summer the mussels showed approximately a three-fold increase. The relative proportion of polar and nonpolar lipid content in the total tissue also showed a tendency to vary throughout the year.

The non polar lipid content as a percentage of total lipids also showed seasonal variation (see
Table 1). The highest levels were found in winter (91%), while spring and summer showed the
same percentages (76%).

185 The polar lipid fraction was lowest during winter (8.5%), with the spring and summer showing186 similar percentages (%).

187 Phosphatidylethanolamine (PE) and cardiolipine (CL) were most abundant during summer, while188 the phosphatidylcholine (PC) reached its peak level in spring.

189 3.2 Fatty acids

- 190 The fatty acid profile of polar lipids (PL) and non-polar lipids (NPL) was analyzed for the winter,
- 191 spring and summer months. A wide variety of fatty acids were detected (Table 2).
- 192 The most common fatty acid for both lipid classes was the C16:0 and $16:1\omega7$.

193 In the PL fraction, 20:3\omega6 showed the highest percentage, reaching over 50% during winter. The 194 second most common fatty acid was 16:1007, which showed higher levels in summer than in 195 winter. The fatty acids $18:2\omega 6$ and $20:1\omega 7$ showed higher percentages in spring and summer. 196 Nevertheless, in these seasons 22:6\omega3 appeared in significant amounts. Although the C18:1 group 197 represented approximately 6 % of the polar lipids in all seasons, the highest contributor to the 198 MUFA in all lipid classes in the spring and summer was 16:107. The highest percentages of 199 PUFA were present during winter and the lowest in the spring and summer. Branched fatty acids 200 showed no evidence of seasonal variation.

201 Levels of fatty acids $18:4\omega 3$ and C20:4 $\omega 6$ were higher in the polar than in the non polar fraction.

202 The most common fatty acid in non polar lipids was the $16:1\omega7$. Levels of this fatty acid decrease 203 in spring and increase in summer. Fatty acids $20:1\omega7$ and $22:2\omega(9,15)$ were also important 204 components (>5%) in this lipid fraction in all seasons. However, it was observed that the registered 205 levels of $22:2\omega(9,15)$ were much higher in spring (>20%) than during other seasons 206 (approximately 5%).

207 In non-polar lipids MUFA showed a significant decrease during spring. This decrease was mainly 208 due to the ω 7 fatty acids. PUFA showed highest levels in spring. Despite the low quantities, 209 branched fatty acids were more important in winter compared with other seasons. The NMI fatty

- 210 acids were more abundant in NPLs and reached their peak levels in spring. The non methylene
- 211 interrupted dienoic (NMID) fatty acids C20:2 was very important to the non-polar fraction in all
- seasons, with C22:2 being very important in the spring.
- 213 The polar lipid fraction also showed a high proportion of $C20:3\omega 6$, while in the non-polar fraction,
- 214 C20:1 ω 7 and the NMI C22:2 ω (9,15) represented an important part of the total lipids.

215

216 Photosynthetic biomarkers did not appear in significant percentages in the samples analysed. There 217 were no significant differences between seasons and the highest percentage found was in the PL 218 fraction. Despite the lack of seasonal variation in the ω 3 fatty acids family of both lipid fractions, 219 the percentage of ω 3 and ω 6 PUFA in the PLs was significantly higher (p < 0.05) than in the NPL, 220 with the exception of ω 6 fatty acids, whose levels increased during the spring.

The PCA showed that there were no major differences between the different lipid classes and seasons. The first component explains 71.73% of the variance and all the individuals are grouped in one end of the firts component. The second component explains only 16.85% of the variance The individuals from the winter sampling showed more differences, mainly due to fatty acid C20:3w6, which contributed by almost 67% to the second factor (Fig.2).

226 3.4 Satellite Data

MODIS near-surface Chl *a* (mg m⁻³) and surface temperature (SST in °C) monthly medians were calculated for the Menez Gwen region from June 2002 through to March 2008 (Fig. 1). During this period of time, strong spring Chl *a* bloom signals were evident. Spring blooms began at different times in different years. During the first two years (2002 and 2003), late spring blooms (April/May) were observed, while in the later years the blooms commenced earlier (March/April). The highest Chl *a* monthly averages (0.30 - 0.35 mg m⁻³) were found during the years 2003, 2005, and 2008 and the lower averages (0.05 - 0.09 mg m⁻³) were found in 2002, 2004, 2006 and 2007.

In addition, Chl-*a* autumn blooms of a smaller amplitude were more or less visible in 2002-2003 while late "autumn" blooms (Dec/Jan) were observed in subsequent years (2004 to 2007). For all years, the lowest monthly Chl *a* averages were observed during summertime.

237

4. DISCUSSION

The total lipid content of *B. azoricus* varied markedly (p < 0.05) depending on the season. The lowest values were found in spring, while in summer the mussels showed an approximately threefold increase. Since phytoplankton blooms occur in the spring at this latitude in surface waters (see Fig. 1), this result was somewhat unexpected. Nevertheless, if they feed primarily on material resulting from zoo- and phyto-degradation, there would be a time lag, which would tend to explain the higher levels in summer.

Winter was the period with the lowest level of PLs in membranes, probably due to the utilizationof some structural lipids to maintain the body during periods of food scarcity and reproduction.

247 The high NPL content in the winter suggests that a significant portion of the total lipids exist as 248 energy reserves in this season. The relative amounts of these compounds, however, varied along 249 the year. According to Colaço et al (2006) and Dixon et al (2006), this species is sexually mature 250 in winter. The gonadal cell proliferation must at some stage involve intense biochemical synthesis 251 of protein and lipid reserves for egg production, thus explaining the high level of NPLs (storage 252 lipids) during winter (Holland, 1978). Since sexual reproduction is an energy-intense process, the 253 dramatic decrease in NPLs after winter suggests that the this lipid class may be used as energy 254 reserves for reproduction purposes, and the subsequent decrease observed is probably correlated 255 with spawning. Several authors (Gardner & Riley 1972; Swift, 1977; Beninger & Stephan, 1985, 256 Pazos et al. 1997 and Soudant et al. 1999) observed changes in the neutral lipids in other mytilids

due to reproduction, whereas the polar lipids were influenced to a lesser extent and remainedpractically constant over the year.

259 The higher PE and CL values in summer are in accordance with the highest levels of bacterial fatty 260 acid biomarkers present in this season, since PE is frequently the main lipid component of 261 microbial membranes, and CL is found only in the membranes of bacteria and mitochondria 262 (Kraffe et al, 2005). The PC is usually the most abundant phospholipid in animal and plant tissue 263 membranes, often amounting to almost 50% of the total (Christie, 1989). On the other hand, it is 264 less often found in bacterial membranes, probably in only 10% of species (Christie W.L. 2007). Its 265 higher level in spring may be related to the abundant availability of particles due to the spring 266 bloom. The low level of PC in winter, the period with the lowest level of structural lipids, confirms 267 the probable use of this phospholipid in mussel lipid body metabolism maintenance.

268

269 4.1 Fatty acid composition:

The fatty acid composition of an animal can be used as an indicator of its trophic ecology (Sargent et al. 1987, Colaço, et al. 2007). Deep-sea hydrothermal vent animals use the organic metabolites produced by bacteria as a food source (Pond et al. 2000; Colaço et al. 2002), and until recently it was generally accepted that the contribution of photosynthetic-derived material was negligible.

MR

In the present work, the presence of the ω 7 fatty acid family and the NMID, whether in the NPL or PL fraction, indicate a clear dependence on bacterial-derived carbon in all seasons. The presence of abundant NMID C22:2 ω (9,15) in NPLs but not in PLs could indicate an inability to use this fatty acid for physiological or structural purposes and thus might explain its accumulation in NPLs for energy needs as observed by Sato and Ando (2002) in brittle stars.

The presence of phytanic acid, even in small proportions, reflects utilization by the vent mussels oforganic material created in the photic zone during the photosynthesis processes. However the ω3

281 family of fatty acids did not show seasonal variations like those of the fatty acids from the $\omega 6$ 282 family. The former appeared in higher percentages in the NPL fraction in spring, while in the PL 283 fraction the higher percentages were found in winter, mainly due to the fatty acid 20:3 ω 6. The 284 presence of greater quantities of the ω_3 family in the PL fraction than in the NPL fraction seems to 285 indicate that the former are principally incorporated and used for structural functions, rather than 286 for energy purposes, which is congruent with their role as essential fatty acids. In marine animals 287 the fatty acids comprising the lipid reserves are mainly saturated or monounsaturated (Pond et al. 288 2000), which is in line with the results of this work.

In PLs, the high level of PUFA 20:4ω6 measured during wintertime may be related to intense
seasonal biochemical synthesis of reproduction lipid structures, which takes place during this
season. This fatty acid is a precursor of prostaglandins, and prostaglandins play a key role in the
reproductive processes of molluscs (Morse 1984).

In this study, branched fatty acids did not change during the year, but the results suggest that they may contribute towards an implementation of reserve lipids during winter, as reflected in the greater amounts of non-polar lipids found during this season.

The composition of the fatty acid profile of *B. azoricus* confirms the existence of a food chain based on bacterial chemosynthetic rather than phytoplanktonic primary production (Fisher 1990). However, the presence of trace amounts of phytanic, $22:5\omega3$ and $22:6\omega3$, which are of phytoplanktonic origin, is probably related to the ability of the vent mussel to filter-feed on external particulate material.

301 The hydrothermal mussels have ingested this available material. The slow uptake of fatty acids in 302 the PL class explains the high levels of total lipids in the summer. This fact could explain the 303 higher amounts of PUFAs ω 3 and other phytoplankton biomarkers such as ω 6 in NPLs during 304 spring.

305 5. CONCLUSION

The presence of phytanic acid reflects the utilization of surface organic material by the vent mussels. However, phytanic acid and other photosynthetic-derived fatty acids are never present in large quantities in this species, even when phytoplankton blooms are evident in surface waters. This species relies mainly on chemosynthetic-derived material, and the variations observed are probably due more to physiological stages (e.g. reproduction) than to seasonal variations of sea surface water productivity.

312 Further studies will be fundamental to improving our understanding of how this surface-bottom

313 relationship is established / maintained and to quantify its importance.

314

315 6. ACKNOWLEDGEMENTS:

316 The authors wish to acknowledge the crews of the RV 'L'Atalante and the RV 'Arquipélago', as 317 well as the 'VICTOR 6000' teams for their field support. We would like to thank Prof. F. Barriga, 318 who served as the chief scientist for the mission SEAHMA I. MODIS satellite data was obtained 319 from NASA/GSFC and processed at the Department of Oceanography and Fisheries of the 320 University of the Azores (DOP/UAç). IMARDOP/UAz is Research and Development Unit #531 321 and Associated Laboratory #9 funded by the Portuguese Foundation for Science and Technology 322 (FCT) through pluri-annual and programmatic funding schemes (FEDER, POCI2001, FSE) and by 323 the Azores Directorat for Science and Technology (DRCT). This research is a contribution of 324 project PDCTM/P/MAR/15281/1999/ SEAHMA - Seafloor and sub-seafloor hydrothermal 325 modeling in the Azores sea (POCI-POSI-FEDER). OPALINA (PDCTE/CTA/49965/2003) 326 Projects.

327

328 7. REFERENCES

329

- Allen, C.E., Copley, J.T., Tyler, P., 2001. Lipid partitioning in the hydrothermal vent shrimp
- **331** *Rimicaris exoculata*. Marine Ecology, 22, 241-253.
- 332 Bandarra, N., Batista, I., Nunes, M., Empis, J., 2001. Seasonal variation in the chemical
- composition of horse-mackerel (*Trachurus trachurus*). European Food Research Technology, 212,
 535-539.
- Beninger, P.G., Stephan, G., 1985. Seasonal variations in the fatty acids of the triacylglycerols and
- 336 phospholipids of two populations of adults clams (*Tapes decussatus* and *T. philippinarum*) reared
- in a common habitat. Comparative Biochemistry and Physiology B, 81B, 591–601.
- Bergé, J-P., Barnathan, G., 2005. Fatty acids from lipids of marine organisms: molecular
 biodiversity, roles as biomarkers, biologically active compounds, and economical aspects.
- 340 Advances in Biochemical Engineering / Biotechnology, 96, 49-125.
- 341 Bligh, E.G., Dyer, W.J., 1959. A rapid method for total lipid extraction and purification. Canadian
- 342 Journal of Biochemistry and Physiology, 3, 911-917.
- 343 Christie, W.W., 1989. The preparation of derivatives of fatty acids. In: Gas chromatography and
- 344 *lipids*. William W. Christie (Ed.). The Oily Press, Ayr, Scotland, p. 64-84.
- 345 Christie, W.L., 2007. The lipid library. Accessed 15 May. www.lipidlibrary.co.uk
- 346 Colaço, A., 2001. Trophic ecology of deep-sea hydrothermal vent fields from the Mid- Atlantic
- 347 Ridge. PhD dissertation, University of Lisbon, Lisbon, Portugal
- 348 Colaço, A., Dehairs, F., Desbruyeres, D., 2002. Nutritional relations of deep-sea hydrothermal
- 349 fields at the Mid-Atlantic Ridge: a stable isotope approach. Deep-Sea Research Part I, 49, 395-412.

- 350 Colaço, A., Desbruyères, D., Guezennec, J., 2007. The use of polar lipid fatty acids to determine
- trophic links in chemosynthetic communities. Marine Ecology, 28, 15-24.
- 352 Colaço, A., Desbruyères, D., Comtet, T., Alayse, A.M., 1998. Ecology of the Menez-Gwen

353 hydrothermal vent field. Cahiers de Biologie Marine, 39, 237-240.

- 354 Colaço, A., Martins, I., Laranjo, M., Pires, L., Leal, C., Prieto, C., Costa, V., Lopes, H., Rosa, D.,
- 355 Dando, P.R., Serrão-Santos, R., 2006. Annual spawning of the hydrothermal vent mussel,
- 356 *Bathymodiolus azoricus*, under controlled aquarium conditions at atmospheric pressure. Journal of
- 357 Experimental Marine Biology and Ecology, 333, 166-171.
- 358 Dalsgaard, J., St John, M., Kattner, G., Müller-Navarra, D., Hagen, W., 2003. Fatty acid trophic
- 359 markers in the pelagic marine environment. Advances in Marine Biology, 46, 225-340.
- 360 Desbruyeres, D., Biscoito, M., Caprais, J.C., Colaco, A., Comtet, T., Crassous, P., Fouquet, Y.,
- 361 Khripounoff, A., Le Bris, N., Olu, K., Riso, R., Sarradin, P.M., Segonzac, M., Vangriesheim, A.,
- 362 2001. Variations in Deep-Sea hydrothermal vent communities on the Mid-Atlantic Ridge near the
- 363 Azores plateau. Deep-Sea Research Part I, 48, 1325-1346.
- 364 Dixon, D., Lowe, D., Miller, P., Villemin, G., Colaço, A., Serrão-Santos, R., Dixon, L., 2006.
- 365 Evidence for seasonal reproduction in the Atlantic vent mussel *Bathymodiolus azoricus*, and an
- 366 apparent link to the timing of photosynthetic primary production. Journal of Marine Biological
- 367 Association of United Kingdom, 86, 1363-1371.
- Dixon, D.R., Dando, P.R., Santos, R.S., Gwynn, J.P., 2001. Retrievable cages open up new era in
 deep-sea vent research. InterRidge News, 10, 21-23.
- 370 Duperron, S., Bergin, C., Zielinski, F., Blazejak, A., Pernthaler, A., Mckiness, Z.P., Dechaine, E.,
- 371 Cavanaugh, C.M., Dubilier, N., 2006. A dual symbiosis shared by two mussel species,
- 372 Bathymodiolus azoricus and Bathymodiolus puteoserpentis (Bivalvia: Mytilidae), from

- 373 hydrothermal vents along the northern Mid-Atlantic Ridge. Environmental Microbiology, 8, 1441-374 1447.
- Fay, L., Richli, U., 1991. Location of double bonds in polyunsaturated fatty acids by gas
 chromatography-mass spectrometry after 4,4-dymethyloxazoline derivatization. Journal of
 Chromatography, 541, 89-98.
- 378 Fiala-Médioni, A., McKiness, Z.P., Dando, P., Boulegue, J., Mariotti, A., Alayse-Danet, A.M.,
- 379 Robinson, J.J., Cavanaugh, C.M., 2002. Ultrastructural, biochemical, and immunological
- 380 characterization of two populations of the mytilid mussel *Bathymodiolus azoricus* from the Mid-
- 381 Atlantic Ridge: evidence for a dual symbiosis. Marine Biology, 141, 1035-1043.
- 382 Figueiredo, M., Martins, A., Castellanos, P., Mendonça, A., Macedo, L., Rodrigues, M., Lafon, V.,
- 383 Goulart, N., 2004. "HAZO: a software package for automated AVHRR and SeaWiFS aquisition
- and processing", Arquivos do DOP, Série Relatórios Internos, 3/2004, 92 pp.
- Fisher, C.R., Kennicutt II, M.C., Brooks, J.M., 1990. Stable Carbon isotopic evidence for carbon
 limitation in hydrothermal vent vestimentiferans. Science, 247, 1094-1096.
- 387 Franz, B., "Implementation of SST Processing within the OBPG. OceanColor Documents"
 388 (http://oceancolor.gsfc.nasa.gov/DOCS/modis_sst/) 2006.
- Gardner, D., Riley, J.P., 1972. The component fatty acids of the lipids of some species of marine
 and freshwater molluscs. Journal of Marine Biological Association of United Kingdom, 52, 827832.
- 392 Gage, J.D., Tyler, P.A., 1991 Deep-Sea Biology: A natural history of organisms at the deep-sea393 floor. Cambridge University Press

- Holland, D.L., 1978. Lipid reserves and energy metabolism in the larvae of benthic marine
- invertebrates. In: Malins, D.C., Sargent, J.R. (Eds) Biochemical and Biophysical Perspectives in
- 396 Marine Biology. Academic Press, London, U.K. 85-123pp.
- 397 Howell, K.L., Pond, D.W., Billet, D.S., Tyler, P.A., 2003. Feeding ecology of deep-sea seastars
- 398 (Echinodermata: Asteroidea): a fatty acid biomarker approach. Marine Ecology Progress Series,
 399 255, 193–206.
- 400 Kharlamenko, V.I., Zhukova, N.V., Khotimchenko, S.V., Svetashev, V.I., Kamenev, G.M., 1995.
- 401 Fatty acids as markers of food sources in a shallow-water hydrothermal ecosystem (Kraternaya
- 402 Bight, Yankich Island, Kurile Islands). Marine Ecology Progress Series, 120, 231–241.
- Kraffe, E., Soudant, P., Marty, Y., Kervarec, N., 2005. Docosahexaenoic acid- and
 eicosapentaenoic acid-enriched cardiolipin in the manila clam *Ruditapes philippinarum* Lipids, 40,
 619-625.
- 406 Kramer, J.K., Blackadar, C.B., Zhou, J., 2002. Evaluation of two GC columns (60 m Supelcowax
- 407 10 and 100 m CP Sil 88) for analysis of milkfat with emphasis on CLA, 18:1, 18:2 and 18:3
- 408 isomers, and short and long-chain fatty acids. Lipids, 37, 823–835.
- 409 Laureillard, J., Mejanelle, L., Sibuet, M., 2004. Use of lipids to study the trophic ecology of deep-

410 sea xenophyophores. Marine Ecology Progress Series, 270, 129–140.

- 411 Legendre, P. Legendre, L., 1998. Numerical ecology. Elsevier Science, Amsterdam.
- 412 Le Pennec, M., Prieur, D., 1984. Observations sur la nutrition d'un Mytilidae d'un site
 413 hydrothermal actif de la dorsal su Pacifique oriental. Comptes Rendus de L Academie des Sciences
 414 Serie III, 298, 493-498.

- 415 Morse, D.E., 1984. Biochemical and genetic engineering for improved production of abalones and
- 416 other valuable molluscs Aquaculture, 39, 263-282.
- 417 OceanColor Web. 2006. OceanColor level 1/2 browser.(Daily accessed) http://418 oceancolor.gsfc.nasa.gov/cgi/browse.pl.
- 419 O'Reilly, J.E., Maritorena, S., Siegel, D., O'Brien, M.C., Toole, D., Mitchell, B.G., Kahru, M.,
- 420 Chavez, F.P., Strutton, P., Cota, G., Hooker, S.B., McClain, C.R., Carder, K.L., Muller-Karger, F.,
- 421 Harding, L., Magnuson, A., Phinney, D., Moore, G.F., Aiken, J., Arrigo, K.R., Letelier, R., Culver,
- 422 M., 2000. Ocean color chlorophyll a algorithms for SeaWiFS, OC2, and OC4: Version 4. In:
- 423 Hooker, S.B., Firestone, E.R. (Eds). SeaWiFS Postlaunch Technical Report Series, Volume 11,
- 424 Park, Y., Albright, K.J., Cai, Z.Y., Pariza, M.W., 2001. Comparison of methylation procedures for
- 425 conjugated linoleic acid and artefact formation by commercial (trimethylsilyl) diazomethane.
- 426 Journal of Agricultural and Food Chemistry, 49, 1158–1164.
- Pazos, A., Roma'n, G., Acosta, C., Sanchez, J., Abad, M., 1997. Lipid Classes and Fatty Acid
 Composition in the Female Gonad of *Pecten maximus* in Relation to Reproductive Cycle and
 Environmental Variables. Comparative Biochemistry and Physiology B, 117, 393–402.
- Phleger, C.F., Nelson, M.M., Mooney, B., Nichols, P.D., 1999. Lipids of abducted Antarctic
 pteropods, *Spongiobranchaea australis*, and their hyperiid amphipod host. Comparative
 Biochemistry and Physiology B., 124, 295–307.
- 433 Pond, D., Gebruk, A., Southward, E.C., Southward, A.J., Fallick, A.E., Bell, M.V., Sargent, J.R.,
- 434 2000. Unusual fatty acid composition of storage lipids in the bresilioid shrimp *Rimicaris exoculata*
- 435 couples the photic zone with MAR hydrothermal vent sites. Marine Ecology Progress Series,436 198,171-179.

- 437 Pond, D.W., Bell, M.V., Dixon, R.D., Fallick, A.E., Segonzac, M., Sargent, J.R., 1998. Stable-
- 438 carbon-isotope composition of fatty acids in hydrothermal vent mussels containing methanotrophic
- 439 and thiotrophic bacterial endosymbionts. Applied and Environmental Microbiology, 64, 370-375.
- 440 Pruski, A.M., Dixon, D.R., 2003. Toxic vents and DNA damage: first evidence from a naturally
- 441 contaminated deep-sea environment. Aquatic Toxicology, 64, 1-13.
- 442 Pruski, A.M., Dixon, D.R., 2007. Heat shock protein expression pattern (HSP70) in the
- 443 hydrothermal vent mussel *Bathymodiolus azoricus*. Marine Environmental Research, 64, 209-224.
- 444 Raymont, J.E.G., 1983. Vertical migration of zooplankton In: Raymont J.E.G (Eds) Plankton and
- 445 productivity in the oceans. V. 2, (pp. 489–524) Pergamon Press Ltd.
- 446 Sargent, J.R., 1995. Origins and functions of egg lipids: nutritional implications. In: Bromage NR,
- 447 Roberts RJ (eds.), Broodstock Management and Egg and Larval Quality. Blackwell Science,
 448 Oxford, p 353
- Sargent, J.R., Bell, M.V., Bell, J.G., Henderson, R.J., Tocher, D.R., 1995. Origins and functions of
 n-3 polyunsaturated fatty acids in marine organisms. In: Cevc G, Paltauf F (eds.), Phospholipids:
 Characterization, Metabolism and Novel Biological Applications. AOCS, Champaign, Illinois, p
 248
- 453 Sargent, J.R., Parkers, R.J., Mueller-Harvey, I., Henderson, R.J., 1987. Lipid biomarkers in marine
- 454 ecology. In: Sleigh, M.A. (Eds) Microbes in the Sea, E. Horwood Limited, 119-138 pp.
- 455 Sato, D., Ando, S., 2002. Distribution of novel nonmethhylene-interrupted fatty acids over neutral
- 456 and polar lipids of Ophiuroidea (Brittle star). Journal of Oleo Science, 51, 563-567.
- 457 SeaWiFS Postlaunch Calibration and Validation Analyses, Part 3. NASA, Goddard Space Flight
- 458 Center, Greenbelt, Maryland, 9-23pp.

- 459 Soudant, P., Ryckeghem, K.V., Marty, Y., Moal, J., Samain, J.F., Sorgeloos, P., 1999. Comparison
- 460 of the lipid class and fatty acid composition between a reproductive cycle in nature and a standard
- 461 hatchery conditioning of the Pacific Oyster Crassostrea gigas. Comparative Biochemistry and
- 462 Physiology B, 123, 209-222.
- 463 Suhr, S.B., Pond, D.W., Gooday, A.J., Smith, C.R., 2003. Selective feeding by benthic
- 464 for aminifera on phytodetritus on the western Antarctic Peninsula shelf: evidence from fatty acid
- 465 biomarker analysis. Marine Ecology-Progress Series, 262, 153-162.
- 466 Swift, M.L., 1977. Phosphono-lipid content of the oyster, Crassostrea virginica, in three
- 467 physiological conditions. Lipids, 12, 449- 451.
- 468 White, D.C., Davis, W.M., Nickels, J.S., King, J.D., Bobbie, R.J., 1979. Determination of the
- 469 sedimentary microbial biomass by extractible lipid phosphate. Oecologia, 40, 51-62.
- 470 Zar, J.H., 1999. Biostatistical Analysis. Prentice-Hall, Inc. New Jersey.

A

Fig. 1. MODIS/AQUA monthly median SST (in $^{\circ}C$) and Chl a (in mg m⁻³) values for the Menez Gwen region from 2002-2008. Large dark grey squares represent autumn Chl a blooms, while the light grey circle represents the highest monthly median temperature value for the region.

Fig. 2. Principal component analyses with individuals as cases and fatty acids as descriptors. Winter stands for individuals collected in Winter; Spring for individuals collected in spring and Summer for individuals collected in Summer. N stands for non-polar and P stands for polar fatty acids. Component 1 represents 71,73% of the variance, while the component 2 represents 16,85% of the variance.

ACCEPTED

Table 1. Lipid class composition by season of the mussel Bathymodiolus azoricus.

Table

Table 2. Fatty acid composition (mean percentage of total fatty acids \pm SD) of non-polar and polar lipids and total lipids extracted from mussels *Bathymodiolus azoricus* collected from the Menez Gwen vent field in different seasons. Total lipids are given as

mg	g ⁻¹ dw		(mean		±	SD).	
	Win	ter	Spri	Spring		ner	
Fatty acids	Non-polar lipids	Polar lipids	Non-polar lipids	Polar lipids	Non-polar lipids	Polar lipids	
12:0	0.03 ± 0.06	0.1 ± 0.08	0.04 ± 0.03	0.18 ± 0.05	nd	0.05 ± 0.02	
13:0	0.08 ± 0.09	0.17 ± 0.15	0.03 ± 0.01	0.19 ± 0.03	0.03 ± 0.01	0.03 ± 0.01	
14:0	0.01 ± 0.02	0.94 ± 0.86	0.01 ± 0.01	1.92 ± 0.60	0.01 ± 0.01	2.22 ± 0.52	
14:0 isobr.	0.05 ± 0.02	0.11 ± 0.09	0.03 ± 0.00	0.15 ± 0.10	0.04 ± 0.02	0.19 ± 0.02	
15:0	0.10 ± 0.05	0.2 ± 0.18	0.10 ± 0.01	0.31 ± 0.06	0.07 ± 0.01	0.23 ± 0.01	
15:1	0.06 ± 0.05	0.14 ± 0.13	0.06 ± 0.04	0.11 ± 0.06	0.03 ± 0.01	0.06 ± 0.04	
16:0	8.09 ± 4.27	6.05 ± 5.20	5.15 ± 1.17	10.03 ± 0.85	8.09 ± 0.67	9.90 ± 0.315	
16:1ω9	0.52 ± 0.89	0.11 ± 0.10	0.63 ± 0.59	0.91 ± 0.17	nd	0.43 ± 0.14	
16:1ω7+ω6	28.5 ± 9.76	5.30 ± 5.22	13.61 ± 2.10	19.38 ± 1.57	34.52 ± 3.36	27.24 ± 1.28	
16:0 iso	0.17 ± 0.12	0.05 ± 0.04	0.14 ± 0.10	0.07 ± 0.01	0.05 ± 0.02	0.07 ± 0.03	
16:0 anteiso	5.91 ± 8.56	0.73 ± 0.63	0.76 ± 0.23	0.90 ± 0.19	1.70 ± 2.50	0.20 ± 0.06	
Phytanic	0.01 ± 0.01	0.09 ± 0.12	0.01 ± 0.01	0.13 ± 0.03	nd	0.07 ± 0.04	
17:0	0.04 ± 0.01	0.14 ± 0.19	0.04 ± 0.01	0.50 ± 0.11	0.03 ± 0.01	0.29 ± 0.04	
17:1ω6+ω7	0.11 ± 0.06	0.06 ± 0.09	0.18 ± 0.01	0.22 ± 0.17	0.17 ± 0.02	0.14 ± 0.01	
16:4w3	0.20 ± 0.09	1.32 ± 1.07	0.41 ± 0.13	0.93 ± 0.14	0.12 ± 0.05	1.52 ± 0.04	
18:0	0.03 ± 0.00	1.8 ± 1.59	0.03 ± 0.03	3.14 ± 0.61	0.04 ± 0.07	2.23 ± 0.24	
18:1 ω 11	0.02 ± 0.02	0.08 ± 0.07	0.01 ± 0.02	0.87 ± 0.18	nd	1.10 ± 0.25	
18:1w9-c*w13	1.25 ± 0.39	4.92 ± 1.36	1.46 ± 0.34	3.80 ± 1.41	1.73 ± 0.10	2.55 ± 0.46	
18:1ω7+ω6+ω8	0.43 ± 0.23	1.74 ± 0.57	0.45 ± 0.10	4.24 ± 1.15	0.67 ± 0.10	3.49 ± 0.27	
18:3 NMI	0.54 ± 0.22	1.36 ± 0.28	0.47 ± 0.07	5.56 ± 1.64	0.87 ± 0.17	8.07 ± 0.73	
18:3 NMI	0.07 ± 0.03	0.05 ± 0.05	0.06 ± 0.02	0.12 ± 0.05	4.06 ± 0.21	0.03 ± 0.01	
18:2ω6	0.60 ± 0.11	0.36 ± 0.10	0.04 ± 0.06	0.80 ± 0.39	1.34 ± 0.09	0.78 ± 0.08	
18:4ω3	0.16 ± 0.13	1.66 ± 0.88	0.45 ± 0.33	2.31 ± 0.46	0.24 ± 0.01	3.00 ± 0.47	
20:0	0.16 ± 0.05	0.07 ± 0.13	0.53 ± 0.44	0.19 ± 0.09	0.15 ± 0.03	0.91 ± 1.48	
$20:100 \times 1000$	0.10 ± 0.05 0.23 ± 0.06	0.67 ± 0.19	nd	3.67 ± 0.09	0.07 ± 0.06	3.79 ± 0.49	
20:1@7±@6	6.73 ± 2.39	0.05 ± 0.03	578 ± 0.97	4 19 + 2.18	9.82 ± 0.51	5.33 ± 0.89	
20:2@6	0.15 ± 0.08	0.19 ± 0.10	0.12 ± 0.05	0.87 ± 0.21	0.23 ± 0.05	1.14 ± 0.13	
20:3@6	0.02 ± 0.03	50.58 ± 20.29	0.01 ± 0.01	11.02 ± 2.60	nd	10.87 ± 1.38	
$20.20(0, 15) \pm 0(7, 15) \pm 0(6, 15)$	2 42 +2 02	nd	2.62 ± 0.62	0.06 ± 0.07	0.02 ± 0.04	0.07 ± 0.00	
20.2w(9,15)+w(7,15)+w(0,15)	3.43 ±2.93	11u	2.03 ± 0.02	0.00 ± 0.07	0.92 ± 0.04	0.07 ± 0.09	
20:3@3	0.08 ± 0.06	0.16 ± 0.15	0.01 ± 0.01	0.27 ± 0.04	0.09 ± 0.05	0.17 ± 0.04	
20:3@6	0.03 ± 0.02	0.1 ± 0.09	0.09 ± 0.03	0.11 ± 0.01	0.07 ± 0.02	0.06 ± 0.03	
20:4@6	0.02 ± 0.02	2.22 ± 1.02	0.74 ± 0.62	3.12 ± 2.16	0.04 ± 0.02	0.59 ± 0.47	
22:0	0.07 ± 0.12	nd	nd	0.26 ± 0.07	0.01 ± 0.01	0.04 ± 0.05	
22:1011	nd	0.11 ± 0.12	nd	0.78 ± 0.06	nd	0.66 ± 0.26	
22:109	0.71 ± 0.67	0.38 ± 0.11	0.21 ± 0.03	0.47 ± 0.08	0.32 ± 0.18	0.26 ± 0.31	
22:10/	2.43 ± 0.92	1.82 ± 0.87	7.98 ± 0.10	3.82 ± 1.02	0.96 ± 0.17	2.81 ± 0.53	
22:3 NMI	1.78 ± 0.92	0.06 ± 0.09	2.01 ± 0.30	0.60 ± 0.24	1.96 ± 0.07	0.34 ± 0.03	
22:2@(9,15)	6.36 ± 3.54	0.04 ± 0.06	20.67 ± 2.14	0.39 ± 0.12	3.97 ± 1.09	0.37 ± 0.07	
22:506	0.12 ± 0.06	0.09 ± 0.13	0.23 ± 0.18	0.17 ± 0.16	nd	0.03 ± 0.04	
22:503	0.14 ± 0.18	0.01 ± 0.02	0.19 ± 0.03	0.07 ± 0.04	0.09 ± 0.05	0.10 ± 0.09	
22:003	0.20 ± 0.08	4.64 ± 2.49	1.23 ± 0.60	1.09 ± 0.96	0.27 ± 0.23	0.54 ± 0.30	
2 saturated	$8.61 \pm 4.6/$	9.47 ± 8.27	5.93 ± 1.70	10.72 ± 2.47	8.43 ± 0.15	15.90 ± 2.68	
Z MUFA	40.99 ± 15.44	15.90 ± 8.77	$30.3/\pm 4.3$	42.40 ± 8.97	48.34 ± 4.51	4/.80 ± 4.93	
S FUFA	13.9 ± 8.5	39.29 ± 17.39	29.81 ±3.97	$2/.49 \pm 9.08$	14.27 ± 2.15	$2/.08 \pm 4.00$	
	0.15 ± 8.72	0.98 ± 0.89	0.97 ± 0.34	2.01 ± 0.45	1.81 ± 2.56	0.48 ± 0.10	
Z INVII Not identified or -0.01	12.21 ± 1.00	1.01±0.57	23.93 ±3.18	12.78±2.13	11.85±1.6	6.94±0.96	
Not identified or <0,01	30,30±37,32	10,04±44,85	33,4±11,55	12,08±21,06	27,22±10,02	0,03±11,/0	
total lipids (mg.g 'dwt)	40.3 ± 22.1		14.0 ±	14.0 ± 1.6		189./±33.8	

n.d.- not detected