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ABSTRACT 26 

 27 

Large organic falls to the benthic environment, such as dead wood or whale bones, harbour 28 

organisms relying on sulfide-oxidizing symbionts. Nothing is known however concerning 29 

sulfide enrichment at the wood surface and its relation to wood colonization by sulfide-30 

oxidizing symbiotic organisms.  31 

In this study we combined in situ hydrogen sulfide and pH measurements on sunken wood, 32 

with associated fauna microscopy analyses in a tropical mangrove swamp. This shallow 33 

environment is known to harbour thiotrophic symbioses and is also abundantly supplied 34 

with sunken wood. A significant sulfide enrichment at the wood surface was revealed. A 35 

72 hour sequence of measurements emphasized the wide fluctuation of sulfide levels (0.1 36 

to >100 µM) over time with both a tidal influence and rapid fluctuations. Protozoans 37 

observed on the wood surface were similar to Zoothamnium niveum and to Vorticellids. 38 

Our SEM observations revealed their association with ectosymbiotic bacteria, which are 39 

likely to be sulfide-oxidizers. These results support the idea that sunken wood surfaces 40 

constitute an environment suitable for sulfide-oxidizing symbioses. 41 

 42 

 43 
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1 INTRODUCTION 44 

 45 

Thiotrophic symbioses have long been associated with particular geological 46 

environments in the deep-ocean, such as hydrothermal vents or methane seeps. In these 47 

environments productive communities of invertebrates have been shown to rely on 48 

chemoautotrophic carbon fixation by microbes (Childress and Fisher 1992). Among them, 49 

several species of bivalves and siboglinid tubeworms harbor endosymbiotic sulfide-50 

oxidizing bacteria (Cavanaugh 1985; Felbeck and Jarchow 1998; Duperron et al. 2005). 51 

More recently, organisms relying on sulfide-oxidizing symbionts have been described in 52 

association with organic falls in the shallow and deep-sea, most of them being related to 53 

whale falls (Deming et al. 1997; Smith and Baco 2003; Fujiwara et al. 2007; Lorion et al. 54 

2008). Symbiotic associations were notably described for the mussel Idasola washingtonia, 55 

which lives attached to the bones, and the burrowing clam Vesicomya c.f. gigas found in 56 

the sediments surrounding whale skeletons (Deming et al. 1997). From fluorescence in Situ 57 

hybridization analyses and transmission electron microscopy (TEM) observations, 58 

symbiotic associations were recently described for several mytilid species attached to the 59 

wood pieces (Gros and Gaill 2007; Gros et al. 2007). While extracellularly located, 60 

comparative analyses of 16S rDNA and adenosine-5’-phosphosulfate (APS) reductase 61 

gene sequences from these “epibionts” indicate that they are closely related to sulfide-62 

oxidizing gill-endosymbionts of other Bathymodiolinidae (Duperron et al. 2008) providing 63 

the first molecular evidence for the occurrence of thiotrophic symbiosis in direct 64 

association with sunken wood. 65 

Mangrove swamp is a shallow seawater environment known to offer a variety of 66 

habitats for thiotrophic symbioses. High organic carbon influx from the mangrove forest 67 

result in almost millimolar sulfide enrichment in the sediment, through anaerobic 68 
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degradation processes. Some invertebrates like the lucinid bivalves Lucina pectinata 69 

and/or Anodontia alba living in these sediments were shown to harbour intracellular 70 

sulfide-oxidizing symbionts (Durand et al. 1996; Frenkiel et al. 1996; Gros et al. 2003). 71 

Moreover some ciliate colonies sampled from the mangrove swamp have also been shown 72 

to develop from artificial sulfide sources in the laboratory (Vopel et al. 2001), and were 73 

later confirmed to harbour sulfide-oxidizing epibionts (Rinke et al. 2006). Sulfide gradients 74 

characterized in situ in the environment of symbiotic ciliates confirmed their close 75 

association with sulfide “minivents” sustained by the degrading vegetable materials (Vopel 76 

et al. 2005). These ciliates have been found on disturbed bacterial mats at the peat surface, 77 

as well as on decaying leaves and rootlets from the mangrove peat (Bauer-Nebelsick et al. 78 

1996a; 1996b; Ott and Bright 2004; Ott et al. 2004; Rinke et al. 2006), but have not been 79 

described associated with dead wood. 80 

To our knowledge, no study has been specifically dedicated to dead wood-81 

associated habitats in mangrove swamps. Nevertheless, naturally sunken dead wood is 82 

abundant in mangrove swamps. These might constitute substantial habitats for organisms 83 

relying on thiotrophic symbiosis in this environment. Furthermore, it was anticipated that 84 

their study could provide some clues to address the relationship between sulfide 85 

enrichment and the colonization by thiotrophic organisms.  86 

The questions we addressed in this study were twofold: (1) what characterizes these 87 

environments in terms of sulfide exposure? (2) does sunken wood provide a suitable 88 

habitat for thiotrophic symbioses in a mangrove swamp? Our aim was to characterize 89 

biological and chemical habitat conditions at the interface of sunken wood and seawater. 90 

By deploying autonomous sulfide sensors on pieces of naturally sunken wood, we were 91 

able to directly assess (in situ) the daily variability of sulfide concentration at the surface of 92 
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the wood. The associated organisms were subsequently observed and analyzed using 93 

scanning electron microscopy (SEM). 94 

 95 

 96 

2 MATERIALS AND METHODS 97 

 98 

2.1 Sampling 99 

For chemical measurements pieces of sunken wood from a few centimeters to 1 100 

meter in length with a diameter up to 15 cm were analyzed. Such wood was located in < 1 101 

meter depth in the mangrove swamp in Guadeloupe (16°N, 61.5°W) in the Caribbean area. 102 

These pieces of wood, as well as the other collected vegetable material (leaves and seeds), 103 

all derive from the dicotyledon species Rhizophora mangle (Linnaeus, 1753). A series of 104 

these samples were transferred to the lab in order to analyze the associated microfauna 105 

using SEM.  106 

Collected samples were observed with a stereomicroscope before preparation for 107 

SEM observations in order to detect possible symbioses among the organisms associated 108 

with these items of vegetable debris. Underwater pictures were taken using a Nikon 109 

Coolpix 5600 camera inside a DiCAPac bag. 110 

 111 

2.2 Sulfide concentration measurements 112 

Autonomous probes were used to measure in situ hydrogen sulfide concentration 113 

and pH at the surface of sunken wood pieces (Fig. 1) and at the interface of mangrove 114 

swamp water and sediment. The sulfide measuring system composed of a custom-made 115 

Ag/Ag2S sulfide electrode (0.8mm diameter, 2 mm length) was combined with a 2 mm 116 

diameter pH glass electrode, both being connected to submersible potentiometric 117 
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autonomous data loggers (NKE, France). These sensors have been used in a variety of 118 

deep-sea chemosynthetic habitats (Le Bris et al. 2008). The pH measuring system is 119 

similar to the one described by Le Bris et al. (2001). A series of successive short-term 120 

measurements were recorded on the surface of the wood, in the sediment and the overlying 121 

water with tightly attached sulfide and pH electrodes. Following these snapshot 122 

measurements, chemical conditions were continuously monitored over three days on a 123 

piece of wood about 1 meter long and 10 cm wide (Fig. 1). One sulfide electrode was 124 

attached to the wood, in order to maintain its sensing part in close contact with the surface 125 

of the wood (Fig. 2). The sensing tip of the electrode was precisely positioned within a 126 

white patch of a few millimeters diameter on the wood surface that was suspected to 127 

indicate the presence of a ciliate colony. The 2 mm diameter pH electrode was positioned a 128 

few centimeters apart from the sulfide electrode on another white patch (Fig. 1, 2). Our 129 

reason for decoupling the electrodes was to overcome a too large physical disturbance that 130 

would have resulted in both electrodes positioned in the same patch. For comparison, a 131 

second sulfide electrode was positioned in the water a few centimeters from the wood 132 

surface (Fig. 1, 2). The manipulation was performed very carefully avoiding displacing the 133 

wood in order to preserve as much as possible the natural hydrodynamic conditions. The 134 

electrodes were calibrated in the laboratory before deployment. The Nernstian sensitivity 135 

of the silver sulfide electrode to sulfide ions offers the possibility to detect free sulfide over 136 

a wide range of concentrations. Quantitative assessments of total free sulfide concentration 137 

were done using the H2S acidity constant of Rickard and Luther III (2007) and the pH 138 

value simultaneously recorded with the glass electrode. It was assumed that the pH 139 

variation is similar on both white patches, which might not be rigorously the case. As the 140 

pH is needed to calculate the sulfide concentration from raw data, the results should be 141 

regarded as first order estimates rather than high accuracy measurements. Nevertheless, the 142 
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continuous data provide access to the temporal variability of the medium, which is of 143 

greater relevance to the addressed questions than would be a limited series of highly 144 

accurate discrete measurements.  145 

 146 

2.3 Scanning Electron Microscopy observations 147 

Samples were fixed 2 hours at 4°C in 2% glutaraldehyde fixative solution in caccodylate 148 

buffer (900 mOsm, pH 7.2). They were dehydrated in an ascending series of acetone, 149 

critical point dried in CO2, and sputter-coated with gold before viewed with a Hitachi S 150 

2500 at 20 kV. 151 

 152 

  153 

3 RESULTS 154 

 155 

3.1 Sulfide concentrations 156 

The mangrove sediments were confirmed to be highly enriched in sulfide while no 157 

trace of sulfide was detected in the overlying water (Table 1). Concentrations of hydrogen 158 

sulfide up to almost 1mM were detected in the mangrove sediment (data not shown), 159 

consistent with the measurements of Ott et al. (1998) in the sediment of the mangrove 160 

swamp of the Twin Cays (Belize). Sulfide variation with depth in the sediment appeared to 161 

be very steep in the first centimeters. Microscale sediment profiling could not be achieved 162 

with our sensors and was out of the scope of this study. 163 

Short-term measurements within white patches on the surface of sunken wood 164 

exposed to seawater also revealed local sulfide enrichments, up to at least 114 µM, while 165 

no sulfide was detected in the surrounding water (Table 1). The 72 hour sequence, 166 

additionally, showed that the sulfide levels and pH values on the surface of a naturally 167 
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sunken wood were very variable over time. Large fluctuations in the levels of sulfide were 168 

observed, with concentration changes that can exceed 100 µM within 1 hour or less (Fig. 169 

7a). In addition, a slower cycle was observed showing successive stages with low sulfide 170 

maxima (< 50 µM to undetectable) and high sulfide maxima (>100 µM) (Fig. 7a). This 171 

periodicity was demonstrated by both the sulfide (Fig. 7a) and the pH (Fig. 7b) electrode 172 

responses, even though the two measurements were completely independent, indicating 173 

that this behavior was not a measurement artifact. A few centimeters from the wood 174 

surface, the second sulfide sensor did not record any detectable sulfide in water. Our 175 

measurement of sulfide therefore illustrates the environmental conditions at the surface of 176 

the wood. Variations of 0.3 to 0.4 pH units in amplitude were observed over the 72 hour 177 

period. Both pH and sulfide records correlated well with the water height at Pointe-à-Pitre, 178 

suggesting a tidal influence on the local chemical conditions at the wood surface (Figs. 7 a 179 

and b).  180 

 181 

3.2 Organisms analyzed 182 

All the wood samples analyzed were colonized by a very diversified fauna, 183 

composed of organisms belonging to Annelida, Arthropoda, Ciliophora, Chordata, 184 

Cnidaria, Kamptozoa, Mollusca, Nematoda, Plathelminthes, and Urochordata with 185 

different abundances. 186 

Among these organisms, the colonial ciliate Zoothamnium niveum (Hemprich & 187 

Ehrenberg, 1831), which was attached to the surface of the wood, constituted the white 188 

patches noticed during in situ sampling and chemical measurements. SEM observations 189 

revealed the presence of numerous bacteria with 2 morphotypes covering the whole body 190 

of the organisms similar to previous studies (Fig. 5) (Bauer-Nebelsick et al. 1996a; 1996b; 191 

Rinke et al. 2006). 192 
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SEM observations of a vorticellid ciliate regularly recorded nearby Zoothamnium 193 

niveum colonies on the wood samples, revealed the presence of a bacterial coat covering 194 

the whole zooid and stalk surface (Fig. 6). The rod-shaped bacteria were organized in one 195 

single layer on the surface of the organism. 196 

 197 

 198 

4 DISCUSSION 199 

  200 

4.1 Wood as a suitable substrate to sustain thiotrophic symbioses 201 

Although our measurements did not achieve the sub-millimetric resolution of the 202 

microelectrode used for the study of rootlets, they confirmed that sulfide is similarly 203 

enriched at the surface of large pieces of sunken wood within the mangrove. Direct 204 

degradation of wood material by microbes is likely to be the source for this sulfide 205 

production, as the presence of a Teredinid burrow or a local accumulation of particulate 206 

organic matter could be excluded. The mechanism that sustains sulfide production from 207 

wood material still has to be detailed, but it is likely that microbial degradation of the wood 208 

generates anoxic niches suitable for SRB activity as in organically enriched sediments. The 209 

substantial pH decrease observed at the surface of the wood (7.3 to 7.6) compared to 210 

mangrove swamp water (8.0) is also consistent with this assumption.  211 

While Z. niveum and the vorticellid ciliates were already known in the mangrove 212 

environment or on small pieces of decomposing organic substrate (Bauer-Nebelsick et al. 213 

1996a; 1996b; Ott and Bright 2004; Ott et al. 2004), this study is the first to report their 214 

presence on less easily degraded wood material. The sulfide enrichments measured on the 215 

white patches of the sunken wood are comparable with those determined in the laboratory 216 

by Vopel et al. (2001) on decomposing rootlets from peat pieces where Z. niveum 217 
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developed (110 and 360µM H2S) and in situ in the water contained in decomposing rootlet 218 

tubes (up to 739 µM H2S) (Vopel et al. 2005).  219 

While the symbiotic association of Z. niveum with its sulfide-oxidizing symbionts has been 220 

well described (Bauer-Nebelsick 1996 a and b; Ott et al. 1998; Ott and Bright 2004; Ott et 221 

al. 2004; Rinke et al. 2006; 2007), there was no phylogenetic identification of the 222 

vorticellid ciliate and its symbionts. In previous studies similar vorticellid ciliates, 223 

identified as Vorticella sp., were able to develop on artificial sulfide sources (Vopel et al. 224 

2001) and were observed close to Z. niveum colonies in the natural environment (Ott and 225 

Bright, 2004). The vorticellid ciliate sampled in our study was identified as 226 

Pseudovorticella sp. based on phylogenetic analyses (Muller, personal communication). 227 

The presence of elemental sulphur, suggested by its white colour in incident light is 228 

confirmed by Raman spectrometry (Maurin et al. 2008).  229 

 Regular observations of natural sunken wood pieces showed that Z. niveum colonies 230 

persisted for several weeks on the surface of a single piece of wood, while their life span is 231 

estimated at 7 days (Ott and Bright 2004), suggesting that these colonies find long-lasting 232 

favourable conditions, implying that there is long-term sulfide availability. 233 

 234 

4.2 Sulfide variability in wood microhabitats and potential importance for 235 

chemolithoautotrophic growth of symbiotic organisms 236 

The fact that the ciliates are concentrated on small patches suggests that suitable 237 

conditions only occur on some particular features of the wood surface, presumably where 238 

specific topographic features prevent the medium being totally flushed with oxygenated 239 

seawater. Another important outcome of this study lies in the fact that at a single point the 240 

sulfide concentration fluctuates over time. Sharp transitions commonly exceeding 100 µM 241 
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H2S in amplitude over a period of < 1 hour and a marked periodicity of sulfide 242 

concentration maxima were observed over longer time periods. 243 

This study showed that periodicity was a characteristic feature of the sunken wood 244 

habitat and reflected a tidal influence, and this is the first time that this has been recorded 245 

in such a microhabitat. The lowest sulfide maxima were recorded during low tide and high 246 

values corresponded with high tide. A likely explanation for this fluctuation is the tidal 247 

variability of current intensity in the area (Bouchereau, personal communication). As 248 

shown by Vopel et al. (2005) on shorter timescales, higher velocities may induce a 249 

reduction of the thickness of the boundary layer at the surface of the wood and result in the 250 

replacement of the sulfidic layer with an oxygenated layer. If we assume that the pH 251 

increase at low tide is indicating the advection of mangrove water in the ciliate micro-252 

environment, the reduction of sulfide levels should be related to an increase in the oxygen 253 

concentration. The fact that pH never goes up to the mangrove water value, even when 254 

sulfide is not detectable, indicates that the chemical microenvironment remains 255 

permanently under the influence of wood degradation processes and is thus likely to 256 

remain hypoxic. 257 

The tidal modulation of oxygen and sulfide exerts significant constraints on the 258 

availability of chemical substrates for chemolithoautotrophic growth, with periods of low 259 

electron donor availability.  Conversely, the rapid and sharp fluctuations can be considered 260 

to create optimal conditions for growth of epibionts, providing them with both sulfide and 261 

oxygen. The concomitant pH increase suggests that oxygenated seawater is periodically 262 

supplied to the microhabitat. These pulsations could be hydrodynamically-driven 263 

fluctuations under the influence of local flow speed, as described in Vopel et al. (2005). 264 

 265 

 266 
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5 CONCLUSION 267 

 268 

Fluctuating chemical conditions characterizing microhabitats on the surface of the 269 

wood are likely to be a prerequisite for the settlement of sulfide-oxidizing symbioses. 270 

Unlike peat rootlets, decaying leaves or disturbed peat surfaces, the production of 271 

sulfide from the large piece of wood is potentially sustained over much longer period. This 272 

would have important consequences on the capacity of thiotrophic organisms to colonize 273 

sunken wood after its transport to the benthic habitat. From the analysis of wood-274 

associated fauna diversity, Distel et al. (2000) reported close relationships with vent and 275 

seep species and suggested that these habitats might have served as stepping stones, at 276 

evolutionary scale, for the colonization of deep-sea sulfidic habitats. This idea is consistent 277 

with the fact that sulfide production can be supported by bacteria during the wood 278 

degradation process. The potential for long-term evolution of colonization at the surface of 279 

the wood needs to be further studied, particularly monitoring sulfide levels and 280 

colonization over the course of the wood degradation. 281 

 282 

 283 
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FIGURE CAPTIONS 414 

 415 

Figure 1: In situ measurement set-up during the 3 day autonomous deployment. The pH 416 

electrode (straight arrow) and one of the sulfide electrodes (curved arrow) are 417 

positioned on the surface of a naturally sunken piece of wood, the second sulfide 418 

electrode is lying in the water above the mangrove sediment a few centimeters from the 419 

wood (asterisk) (sensors data loggers are not visible on this picture). 420 

 421 
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Figure 2: Close up view of the sensing tips sulfide (curved arrow) and pH (straight arrow) 422 

electrodes at the surface of the wood. The electrodes are maintained in close contact 423 

with ciliate colonies visible as white patches on the wood surface. 424 

 425 

Figures 3-4: Colonies of ciliates are restricted to specific areas of wood surface. 426 

Zoothamnium niveum feather-shaped colonies (Fig.3) and Vorticella sp. (Fig. 4) appear 427 

white-colored in incident light. The little zooid (curved arrow) of Vorticella sp. is on a 428 

long stalk (straight arrow). 429 

 430 

Figures 5-6: SEM views of the protozoan ciliates collected on wood samples. The retracted 431 

coiled central stalk (arrow) of the feather-shaped colonial ciliate (Zoothamnium 432 

niveum) with numerous zooids. Both, zooids and stalk, are covered by bacteria (Fig. 5). 433 

The solitary vorticellid ciliate is composed of a single inverted bell-shaped zooid 434 

(asterisk) borne by a long spring-shaped stalk when contracted (straight arrow) (Fig. 6). 435 

Both, zooids and stalks, are also covered by bacteria of about 1.5µm long (insert). Only 436 

the adhesive disk and the more basal part of the central stalk are devoid of bacteria 437 

(curved arrow). 438 

 439 

Figure 7: Variation of the total H2S concentration (a) and pH (b) over 72 hours on the 440 

surface of a sunken piece of wood, together with predicted water height at Pointe-à-441 

Pitre. 442 

 443 
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 Table 1: Sulfide content measured from discrete measurements in the mangrove water, 

sediment pore water and sunken wood surface. 

 
 
Environment Sulfide concentration (µM) pH 
Mangrove water 
 (n=4) 

< 0.1 7.86 – 7.99 

Mangrove sediment < 5cm 
(n=7) 

<0.1 - 375  nd 

Mangrove sediment 20-35cm 
(n=4) 

71 - 850 7.33 – 7.78 

Sunken wood surface 
(n=8) 

< 0.1 - 114 7.42 – 7.92 

 

nd = not determined 

 


